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Abstract: Entropy is a concept that remote to the 19th century and it was associated with the
work realized by a thermal machine in the context of the Industrial Revolution. The 20th century
saw an unprecedented scientific revolution and one of the most important innovations from this
time was Information Theory, which also has a concept of Entropy. It can be argued that this
is one of the most misused scientific therms and researchers of different areas have been using
it wrong. In this paper, a historical background for the evolution of the concept of “entropy” is
presented, as well as mathematical proofs and logical arguments for the interconnection of the
concept in different areas of science, and how it is related with complexity.
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1. INTRODUCTION

Entropy is a measure largely used in science and engineer-
ing (Cover and Thomas, 2012). Having been first intro-
duced in thermodynamics by Clausius (Greven et al., 2014)
and improved by Boltzmann and Gibbs still in nineteenth
century (Wehrl, 1978). The concept was generalized by
Shannon in the twentieth century (Shannon, 1948). Today,
its applications can be found in biology (Brooks et al.,
1988; De Martino and De Martino, 2018; Caro et al.,
2018), cosmology, in which it is the center of one of the
biggest open problems of science (Maldacena, 2018; Xiao
et al., 2018; Bousso, 2018), economics (Bossomaier et al.,
2018; Gu et al., 2015), engineering (Zeeshan et al., 2017;
Rostaghi and Azami, 2016; He et al., 2016) and even
linguistics (Degaetano-Ortlieb and Teich, 2017; Reynar
and Ratnaparkhi, 1997; Campbell, 1982).

With such a wide range of applications, it raises the nat-
ural question: what is the difference, if any, among the
“entropies” used in each field? It can be observed in several
papers a misunderstanding of the meaning of entropy when
applied to different areas other than physics and infor-
mation theory (Tame, 2019; Adami, 2016; Kovalev, 2016;
Hayflick, 2007; Morowitz, 1986). However, sometimes even
in these areas the concept is misused (Martyushev, 2013;
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Henderson, 2003) and university students have many mis-
conceptions about the theme (Sozbilir, 2003).

There have been attempts to conciliate the entropy of
thermodynamics with that of information theory. The
most common approach is defining entropy as “disorder”
(Wright, 1970; Schrodinger, 1968), something that is in-
troduced as soon as the high school for thermodynamics.
However, if it has, at first, a didactic appeal, it is not a
good analogy since “order” is a subjective human concept
and “disorder” is not the measurement that can be ob-
tained always with entropy (Soubane et al., 2018).

A most sophisticated way of relating these two concepts
can be done using quantum states representations and as-
sociating the Shannon entropy with von Neumann entropy
(Weilenmann et al., 2016). This approach, however, de-
mands prior knowledge of theoretical quantum mechanics
hard to be found in biology or economics researchers.

Another confusion is made by relating complexity to
entropy. Computer science and statistics have boarded
the problem of complexity by the means of Kolmogorov
Complexity (Kolmogorov, 1963). Again, the abstraction
level of the concept can make researchers from other
areas, such as biologists and chemists (in which the study
of complexity plays an important role) misunderstand
concepts (Adami, 2002).

In this paper, a historical evolution of the concepts of
“entropy”, “information” and “complexity” is presented,
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as well as some clarifications for the concepts, showing
how entropies in different areas are fundamentally the
same, and how entropy and complexity differ from each
other. Also, it is present a computational framework in
python to go through these different concepts in the form
of Maxwell’s Demon.

2. THEORY

2.1 Thermodynamics approach

Clausius coined the word “entropy” (from the Greek word
for “change”) in the 1850s to associate the inevitable
generation of heat when work is done in a system, changing
its temperature (Clausius, 1960). The relationship derived
by him is showed in Eq. 1

dS =
δQ

T
+ δSger (1)

with unit J/K. It is a convention to use δQ to indicate
an inexact differential, in which the integration depends
not only on the starting and ending states but also on the
process path in between. On the other hand, entropy is
a thermodynamic property and, therefore, dS is an exact
differential and the integration not depends on the process
path between the starting and ending states.

The entropy generation amount, δSgen, is due to irre-
versible phenomena occurring inside the system and this
value is never negative. However, the entropy change of a
system, dS, could be either positive or negative, depending
on the direction of heat transfer (to or from the system).
For reversible processes δSgen = 0. It is noted that for
an adiabatic process, δQ = 0, the increase in entropy is
always associated with the irreversible paths.

Contrary to energy, the total entropy increases and is
then not conserved. The reversible process is an ideal
process and it never really occurs. Therefore, an amount
of the irreversibility is always there in the system, i.e., the
entropy of the isolated system still goes on increasing; it
never reduces. This concept is referred to as the principle
of the increase of entropy: the entropy of a closed system
(a) never decreases and (b) tends to grow up by the system
irreversibilities.

According to (Nag, 2013), an irreversible process always
tends to take the isolated system to a state of greater
disorder, and this system always tends to a state of greater
entropy.

In the late 1800s, Boltzmann derived an statistical me-
chanical interpretation for entropy: the entropy S of a ideal
gas is a state function of the number of microstates W
possible for the molecules given the macrostate (defined
by temperature, volume and pressure). Thus, his entropy
is defined as

S = k logW (2)

In which k is the Boltzmann’s constant. Gibbs (Jaynes,
1965) extended the concept of Boltzmann entropy to the
cases in which the microstates are not equally likely:

S = −k
∑
i

pi log pi (3)

where pi is the probability of the i-nth microstate (if the
W microstates are equally likely, then pi=(1,2,3,...,n) = 1/W
and Eq. 19 is the same as the Boltzmann entropy).

2.2 Information theory approach

Shannon (Shannon, 1948) developed in 1948 the Informa-
tion Theory. One of the main concepts of this theory is
the entropy of a discrete probability distribution. Let X
be a discrete random variable which can assume n different
values (states). Then, the entropy H of X is

H(X) = −
n∑

i=1

pi(x) log pi(x) (4)

Generally, the base of the logarithm is 2, and the entropy is
measured in bits (however, this is just a way to informing
in which base it is, since entropy is dimensionless).

Shannon obtained the name “entropy” from von Neumann
itself, as he related (Tribus and McIrvine, 1971):

“My greatest concern was what to call it. I thought of
calling it ‘information’, but the word was overly used, so
I decided to call it ‘uncertainty’. When I discussed it with
John von Neumann, he had a better idea. Von Neumann
told me, ‘You should call it entropy, for two reasons. In
the first place your uncertainty function has been used in
statistical mechanics under that name, so it already has a
name. In the second place, and more important, no one
really knows what entropy really is, so in a debate you will
always have the advantage.’ ”

The motivation of Shannon was associated with the gen-
eration and transmission of symbols, like letters (encoded
in some type of electrical signal). As letters do not appear
with the same probability in any language (in English, the
most common letter is “e” and the most common word
is “the” (Newman, 2005)), it is possible to compress mes-
sages. For example (Cover and Thomas, 2012), suppose we
have to send 8 letters with frequencies 1/2, 1/4, 1/8, 1/16,
1/64, 1/64, 1/64 and 1/64. Using a binary coding, initially,
one could assume it is needed 3 bits (000, 001, 010, 011,
100, 101, 110, 111). However, since their frequencies differ,
it is possible to encode as 0, 10, 110, 1110, 11101, 111101,
111110 and 111111. The average number of bits would
be 2 bits. Therefore, one of interpretations of entropy in
information theory is the measurement of the ultimate
data compression.

This result is exactly what is obtained using Eq. 4, which
give the following interpretation for entropy (Shannon): in
any alphabet of n symbols with frequencies distributed as
X, a message with m symbols encodes nm states. Then, let
− log pi(x) be the information content of the event i. Then,
the entropy is the average information for the frequencies:

H(X) = E[− log p(X)] (5)
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The entropy of a system (or a message, or an event) in
bits can be thought of as the number of yes/no questions
needed to fully describe it. This fact was also knew in
chemistry in 1930 (Ben-Naim, 2008). The Gibbs entropy
then measure the number of these questions needed to fully
specify the microstate, given the macrostate.

A source of confusion between thermodynamical entropy
and information entropy is the difference with the unit:
while the later is dimensionless, the former has units of
J/K. Actually, the Boltzmann (Gibbs) entropy is the same
as Shannon, except for the Boltzmann constant, which has
units of J/K, giving the entropy unit J/K. However, it
has been shown that this unit is historically connected
with the definition of the Kelvin temperature system: the
Lagrangian of temperature in statistical mechanics has
units of energy (Leff, 1999), and is common in plasma
physics to express temperature in eV (Bernard et al., 2018;
Bagryansky et al., 2015). In this more generic approach,
thermodynamical entropy is dimensionless, and the dif-
ference between the Shannon and the Gibbs entropies is
merely the Boltzmann’s constant.

2.3 Maxwell’s Demon and the Landauer’s Principle

In 1867, Maxwell developed a mental experiment that
supposedly violates the second law of thermodynamics. In
his own words (Bennett, 1987):

“... if we conceive of a being whose faculties are so sharp-
ened that he can follow every molecule in its course, such a
being, whose attributes are as essentially finite as our own,
would be able to do what is impossible to us. For we have
seen that molecules in a vessel full of air at uniform tem-
perature are moving with velocities by no means uniform,
though the mean velocity of any great number of them,
arbitrarily selected, is almost exactly uniform. Now let us
suppose that such a vessel is divided into two portions, A
and B, by a division in which there is a small hole, and that
a being, who can see the individual molecules, opens and
closes this hole, so as to allow only the swifter molecules
to pass from A to B, and only the slower molecules to
pass from B to A. He will thus, without expenditure of
work, raise the temperature of B and lower that of A, in
contradiction to the second law of thermodynamics.”

Several approaches to solve this paradox have been pro-
posed. The most successful one is the Landauer’s principle
(Landauer, 1961). It states that every irreversible process
(defining a logically irreversible device when its output
does not uniquely define the inputs), such as the erasing
of a logical bit, is accompanied by an increase of at least
kT log 2 J of heat. Therefore, by Eq. 1, there is an increase
of entropy in the system, imposing fundamental limits
to computation. Moreover, it can be used to solve the
Maxwell’s Demon paradox: the demon has to, at some
point, “forget” the state of the particles, to update the
information. This process of forgetting generates heat and
entropy, since it is an irreversible phenomena.

Figure 1. The Maxwell’s Demon: a being who knows the
velocity of every particle in the box, and can select
their passages using a opening in the wall that divides
it could separate those with high energy from those
with low energy without realizing work, violating the
second law of thermodynamics. Actually, the demon
has to forget past states of the system, and by the
Landauer’s Principle, this process generates heat (at
least kT log 2 J per bit erased) and entropy.

2.4 Kolmogorov Complexity (KC)

Complexity is not the same as entropy (Carroll, 2017).
Entropy measures the number of different combinations of
microstates needed to specify the macrostate; complexity
is the measure of the description of an object. Mathemati-
cally, this measure is realized by means of the Kolmogorov
Complexity (KC) in a universal Turing Machine (a finite
state machine that has an input of symbols of a finite
alphabet an process then, returning a new set of symbols).
The KC K(s) of the string s is the number of units of
information (bits, for example) of the smallest algorithm in
a language that can reproduce the object. This measure of
complexity has in its core an interrogation about random-
ness. If a string is deterministic, then its KC is low, since
the code that generate it is simple. For example, the string
“001001001001001”and the string“011001101111011”both
have 15 bits, but the first one can be coded as“repeat (001)
5 times”, and the second one seems to be random, and the
code to generate it will have to contain the entire string.
One could use the string to represent physical objects, and
the KC would be a measure of complexity of a physical
system.

One classical example used in KC is the Mandelbrot’s set.
Fig. 2 shows the graph for f(z) = zn+1 = z2n+c. The figure
seems to be very complex and of hard description, with
several colors and a intricate pattern for the perimeter.
However, since it can be generated through iterations in
the complex plane, its KC turns out to be small and the
figure itself is very simple.

Shannon’s entropy and KC holds a remarkable relation-
ship. Using the Kraft inequality, it can be show that (Cover
and Thomas, 2012):

E

[
1

n
K(Xn|n)

]
→ H(X) (6)

and therefore, the compressibility of KC in the universal
computer goes to the entropy limit.

However, in a physical sense, it is important to notice that,
even though the entropy is always increasing, complexity
follows another pattern (Fig. 3): it was low in the early
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Figure 2. A Mandelbrot’s set is a recursive complex-
domain sequence, that can bee zoomed infinitely and
still show the same patterns. However, it is not com-
plex in the sense of Kolmogorov, since it can be
generated by recursion. Therefore its KC is very low.
The python code that generates this figure has only
507 bytes.

ages of the universe, and will be low again in the far future,
when star production ends (roughly 100 trillion years from
now) and the cosmos goes to heat death (Frautschi, 1982).
It is now, in this intermediary epoch, in which complexity
exists, with structures like planets, galaxies and living
beings. Entropy, however, has always been increasing, since
the Big Bang (Fig. 3).

These complex structures, that uses energy to decrease
entropy locally, can only exist in a time when entropy has
not reached its maximum (heat death), and therefore, it is
possible to use the gradient of energy (consequence of the
fact that the universe is not in equilibrium) to generate
spontaneously complex systems.

Figure 3. Complex structures need to exchange energy
with the environment to reduce their entropy and
increase the entropy of the environment. Therefore,
they can only form in times in which entropy can
increase. Entropy, however, is always increasing by
the second law of thermodynamics. The early universe
and the far future universe are both simple, uniform
hot and dense state in the beginning and empty space
in the end, but the entropy was low in the past and
will be at its maximum at the end by heat death.
Source of figure: (Carroll, 2017).

3. RESULTS

3.1 Deriving Boltzmann’s and Gibbs entropy

Lets take the system for the ideal gas and divide it in
two parts. It is know that S = S1 + S2 and W = W1W2.
Therefore, the deduction is as follows:

S(W1) + S(W2) = S(W1W2) (7)

Deriving both sides with respect to W1 and keeping W2

constant results in

S′(W1) = W2S
′(W1W2) (8)

Deriving now in W2 keeping W1 constant, applying the
chain rule:

0 = S′(W1W2) +W1W2S
′′(W1W2) (9)

0 = S′(W ) +WS′′(W ) (10)

Replacing S′(W ) = f(W ):

f(W ) +W
df(W )

dW
= 0 (11)

f(W )dW +Wdf(W ) = 0 (12)

(fW )′ = 0 (13)

Integrating both sides, returns

fW = k (14)

which is the same as

W
dS

dW
= k (15)

∫
dS = k

∫
dW

W
(16)

S = k logW + c (17)

But it is known that a crystal at 0 K has null entropy
(Nernst, 1907), and only one microstate. Replacing this
fact in the equation 17:

0 = k log 1 + c (18)

from which we conclude that c = 0 and S = k logW is
the entropy of an ideal gas, where k is the Boltzmann
constant. Gibbs (Jaynes, 1965) extended the concept of
Boltzmann entropy to the cases in which the microstates
are not equally likely:

S = −k
∑
i

pi log pi (19)
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where pi is the probability of the i-nth microstate (if the
W microstates are equally likely, then pi=(1,2,3,...,n) = 1/W
and Eq. 19 is the same as the Boltzmann entropy).

3.2 Information theoretic proof that Gibbs entropy is the
same as Clausius

With the development of information theory in the twen-
tieth century and the concept of maximum entropy for
statistical mechanics (Jaynes, 1957), which states by the
second law of thermodynamics that a system in thermo-
dynamic equilibrium has reached its maximum entropy
(and therefore, it is in the macrostate that has the most
microstates, corresponding to gas velocities), it is possible
to show that Shannon entropy is the same as Clausius
entropy as well.

Using Eq. 19, and the unitarity principle,
∑

i pi = 1, in
which i is the i-nth state, we can write the average energy
of a system is

E =
∑
i

piEi = U (20)

Applying Lagrange multipliers, we have

L =− k
∑
i

pi log pi + λ1

(∑
i

pi − 1

)

+ λ2

(∑
i

piEi − U

) (21)

Differentiating and equaling zero

−k log pi − k + λ1 + λ2Ei = 0 (22)

Isolating pi

pi = exp

(
−k + λ1 + λ2E2

k

)
(23)

Using the canonical partition function Z (Baxter, 2016),
defined as

Z =
∑
i

exp

(
λ2
k
Ei

)
(24)

The partition function combines state functions, such as
temperature and energy for the microstates, and has a
central role in statistical mechanics (Bo-sture et al., 1985).
Differentiating logZ with respect to λ2 returns

∂ logZ

∂λ2
=
E

k
(25)

Using unitarity again, Eq.23 can be written as

exp

(
−k + λ1

k

)
Z = 1 (26)

Therefore,

log

(
1

Z

)
+ 1 =

λ1
k

(27)

Rewriting Eq. 19 in terms of Z, results in

S = −k
∑
i

pi

(
λ2
k
E2 − logZ

)
(28)

Using 25 in 28, give us

S = −λ2
∑
i

piEi + k logZ
∑
i

pi

= −λ2U + k logZ

(29)

Using the definition of thermodynamics temperature
(Callen, 1998)

1

T
=
∂S

∂U
(30)

Since ∂S
∂U = −λ2, Eq. 19 can be written as

S =
U

T
+ k logZ (31)

Now, lets change the energy of the system by δQ. Every
microstate will increase is energy by qi. Calculating the
change in the entropy results in

dS =
δU

T
+ kδ logZ (32)

Calculating the second term

δ logZ =
d logZ

dZ
δZ =

δZ

Z
(33)

Noticing that Z =
∑

i exp(−Ei/kT ), the new partition
function can be written as

Z =
∑
i

exp

(
−Ei + qi

kT

)
(34)

Applying Taylor expansion to e−qi/kt, since qi is infinites-
imal, the partition function is

Z =
∑
i

exp

(
Ei

kT

)(
1− qi

kT

)
= Z0 + δZ (35)

Therefore, the variation of the partition function is given
by

δZ = − 1

kT

∑
i

qi exp

(
− Ei

kT

)
(36)

Using the first law of thermodynamics, the change in U
can be expressed as

δU =
∑
i

δEipi +
∑
i

qipi = δQ+ δW (37)
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Calculating δ logZ, replacing 36 in 33:

δ logZ = − 1

kT

∑
piqi (38)

This value is exactly δW/kT . Replacing this relation in
Eq. 32, we get

dS =
δQ

T
(39)

which is the Clausius first definition of entropy.

3.3 Simulation of the Maxwell’s Demon

The algorithm that generates the simulation is available
in (David, 2017). It was developed using Tkinter python
library, and simulates the idea proposed by Maxwell. There
is a wall controlled by a demon (in this case, the software),
with the power to, analysing the velocities and trajectories
of every particle, it can separate the hot ones (the reds,
with high kinetic energy) from the cold ones (the blues,
with low kinetic energy).

Figure 4. Initial state of the simulation, with the hot and
cold molecules evenly distributed (high entropy state).

The demon must track all velocities and positions for
every particle in the system, in order to change their
positions in the boxes, and in every instant, he must
have in his memory this information. Let’s represent the
information as in a computer, using bits. So, in the first
instant, the demon has part of his memory used, and
part erased, say “00000...10110”. For every iteration of
the particles, more memory needs to be allocated, until
the state “11111...11111”. In this moment, to still having
tracking abilities, the demon has to erasure his memory,
exchanging heat with the world (at least kT log 2 J/bit,
but the current technology generates millions times this
value) and increasing his entropy, solving the “paradox”
created by Maxwell.

Figure 5. Final state of the simulation, with the hot and
cold molecules separated by the wall controlled by the
Maxwell’s Demon (low entropy state).

4. DISCUSSION AND CONCLUSION

Entropy, as a concept, is misused in great part due to
misunderstanding its mathematical or physical meaning.
It is expected that, with this paper, the reader can clearly
understand what the “different” types of entropy are,
how they are deeply connected and its relationship with
complexity.

Readers working with complex systems can use the two
therms, entropy and complexity, to relate the objects
being studied with the physical notions here deducted,
and therefore merge different areas of science, such as
biology, economics, linguistics and computer science. Being
a concept so fundamental to science, due to its own nature,
emerging from counting problems, it is not strange that so
many fields of knowledge are using it.

The interdisciplinarity of the topic has his challenges, due
to the different mathematical level of each field, but with
the theoretical exposition, together with the mathematical
proofs, we expect to reach different target audience with
the same discussion about the meaning of entropy, and
how to use it in their areas.
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