

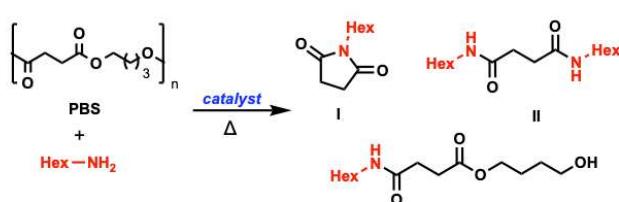
Recycling and upcycling of poly(succinates) via aminolysis reaction catalyzed by earth abundant metals

Bianca C. Rocha (PG),¹ Leandro H. Andrade (PQ).^{1*}

leandroh@iq.usp.br

¹Departamento de Química, Universidade de São Paulo, SP, Brasil.

Key words: Upcycling, recycling, polymers, aminolysis, succinimides, succinamides.


Highlights

Upcycling and recycling of polyesters via aminolysis reaction. Production of succinimides and succinamides employing non-expensive and non-toxic catalysts. Excellent yields were obtained.

Resumo/Abstract

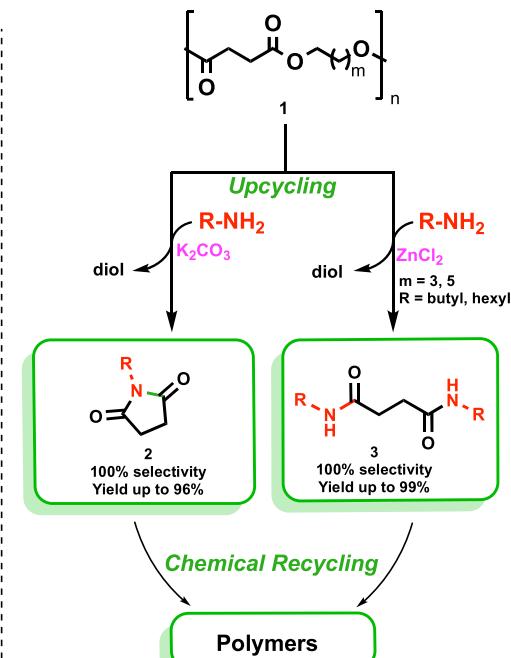

Given that polymeric waste is a significant concern in the 21st century, this study proposes the upcycling and chemical recycling of poly(succinates). The upcycling involves the transformation of poly(succinates) into different compounds, *N*-substituted succinimides and succinamides. This approach was based on the reaction of poly(succinates) **1** with amines and Lewis-acid ($ZnCl_2$) as catalyst to afford *N*-substituted succinimides **2**. By changing the catalyst to a weak base (K_2CO_3), poly(succinates) **1** were transformed into succinamides **3**. Both processes showed 100% selectivity and excellent yields (up to 99%) (Table 1). Succinimides and its *N*-substituted derivatives can be found in pharmaceuticals.^{1,2} Our work also describes that these compounds can be used in polymerization reactions with diols or diamines to produce polyesters or polyamides, respectively³ (Scheme 1).

Table 1: Aminolysis of polybutylene(succinate) with different catalysts

Entry	Catalyst	Time (h)	Temp. (°C)	Conv. I/II/III (%) ^a	Yield (%)
1	$ZnCl_2$	12	130	I (100)	23 ^b
2	TsOH	12	130	I (27)/ II (36)/ III (26)	-
3	K_2CO_3	12	130	I (23) / II (60)/ III (17)	-
4	$ZnCl_2$	24	130	I (100%)	96 ^c
5 ^d	K_2CO_3	18	130	I (40%) / II (60%)	-
6 ^d	K_2CO_3	18	110	II (100%)	99 ^c
7 ^d	K_2CO_3	18	90	-	-

General conditions: The reactions were carried out in batch using 0.5 mmol of PBS (relative to the repeating unit), 2 equiv. of hexylamine and 20 mol% of the catalyst. ^aConversion was determined by GC-MS. ^bPurification was performed by liquid-liquid extraction, followed by filtration in silica gel. ^cPurification was performed by filtration in silica gel. ^dReaction was carried out using 22 equiv. hexylamine.

Scheme 1: Upcycling and chemical recycling of poly(succinates)

[1] Wang, F.; Zhang, Z.; Chen, Y.; Ratovelomanana-Vidal, V.; Yu, P.; Chen, G-Q.; Zhang, X. *Nature Comm.*, **2022**, 13, 7794.
 [2] Wu, F.; Wang, Y.; Zhao, Y.; Zeng, S.; Wang, Z.; Tang, M.; Zeng, W.; Wang, Y.; Chang, X.; Xiang, J.; Xie, Z.; Han, B.; Liu, Z., *Nature Comm.*, **2024**, 15, 712
 [3] Acosta-Guzmán, P.; Mateus-Gómez, A.; Gamba-Sánchez, D., *Molecules*, **2018**, 23, 2382.

Agradecimentos/Acknowledgments

We thank FAPESP (2022/15898-1) for the financial support.