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ABSTRACT

Managing scientific names in ontologies that represent species taxonomies is challenging due to the 
ever-evolving nature of these taxonomies. Manually maintaining these names becomes increasingly 
difficult when dealing with thousands of scientific names. To address this issue, this paper investigates 
the use of ChatGPT-4 to automate the development of the Organism module in the Agricultural Product 
Types Ontology (APTO) for species classification. Our methodology involved leveraging ChatGPT-4 
to extract data from the GBIF Backbone API and generate OWL files for further integration in APTO. 
Two alternative approaches were explored: (1) issuing a series of prompts for ChatGPT-4 to execute 
tasks via the BrowserOP plugin and (2)  directing ChatGPT-4 to design a Python algorithm to perform 
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analogous tasks. Both approaches rely on a prompting method where we provide instructions, context, 
input data, and an output indicator. The first approach showed scalability limitations, while the second 
approach used the Python algorithm to overcome these challenges, but it struggled with typographical 
errors in data handling. This study highlights the potential of Large language models like ChatGPT-4 to 
streamline the management of species names in ontologies. Despite certain limitations, these tools offer 
promising advancements in automating taxonomy-related tasks and improving the efficiency of ontology 
development.

1.  INTRODUCTION

Ontologies capture a well-defined and well-expressed shared conceptualization of a domain [1]. 
They essentially specify the kinds of entities relevant to a particular domain and the relationships among 
such entities, thereby constructing a large semantic structure that represents the key aspects of domain 
knowledge [2]. Ontologies also play a crucial role in facilitating the integration of heterogeneous data 
sources, enabling interoperability among information systems [3].

Ontology development is a comprehensive process involving the conceptualization step, during which 
domain experts and ontologists work together to specify significant concepts and relationships peculiar to 
a particular domain. Such collaboration guarantees that the established ontology sufficiently addresses the 
intricacies of the domain while being responsive to new knowledge and uses [4, 5]. Ontologies facilitate 
the structured representation of knowledge, enhancing interoperability and reusability in modeling real-
world concepts [6].

Ontologies in the agricultural domain often incorporate taxonomic classifications to represent and 
organize knowledge about organisms with agricultural interest. Biologists define taxonomy as “the 
theory and practice of identifying, describing, naming, and classifying organisms” [7]. A taxonomy can 
be considered an ontology, as it formalizes hierarchical relationships and categories among organisms. 
However, the science of taxonomy faces numerous challenges from the dynamic nature of scientific 
discovery, as scientists continuously find new species and revise earlier established classifications [8]. The 
current debate over competing classification systems, such as the Linnaean hierarchy versus phylogenetic 
taxonomy, further compounds this situation by not reaching a consensus [9]. Additionally, maintaining 
consistency in naming conventions across languages and disciplines, managing synonyms (multiple names 
for the same organism), and resolving homonyms (the same name referring to different organisms) are also 
issues that have to be handled [10].

Despite these challenges, taxonomic classifications remain a valuable resource for structuring 
agricultural ontologies, aiding in the standardized classification of organisms of agricultural interest. 
Many approaches exist for integrating taxonomic data into these ontologies, ranging from manual to 
semi-automated methods. In manually curated vocabularies such as AGROVOC and Agrotermos, curators 
enter taxonomic names by completing forms to add new concepts, ensuring alignment with authoritative 
taxonomic databases [11]. In contrast, semi-automated methods, such as those employed by the Food 
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Ontology (FoodOn), leverage computational tools to streamline taxonomy integration. For example, 
FoodOn applies a ROBOT template-driven approach to refine seafood nomenclature, facilitating the 
alignment with NCBI GenBank names and NCBITaxon [12].

Building on existing taxonomy integration approaches, this study evaluates the potential of large 
language models (LLMs) to convert taxonomic data into OWL format for integration into an agricultural 
ontology. Specifically, it leverages ChatGPT-4 to extract taxonomic data from the Global Biodiversity 
Information Facility (GBIF) Backbone Taxonomy API, which is then converted into OWL and integrated 
into the ontology. Two methods are explored: direct API querying via ChatGPT and a Python-based 
approach using LLM-generated code. The study assesses these methods in terms of scalability, reliability, 
and effectiveness in incorporating taxonomic data into a domain-specific ontology. In particular, it 
examines the feasibility of a GPT-driven approach for enhancing the Agricultural Product Types Ontology 
(APTO) by improving taxonomic accuracy and addressing ambiguities in agricultural product names, 
which often vary across languages, regions, and cultural contexts.

The paper is further organized as follows: Section 2 reviews related work, Section 3 introduces APTO, 
Section 4 outlines the methods employed in this study, Sections 5 and 6 present the results of Approach 1 
and 2, respectively, Section 7 explains the integration of species classification into APTO, and Section 8 
concludes with the final considerations.

2.  RELATED WORK

The application of LLMs in Knowledge Graph (KG) and ontology development has gained attention 
due to their ability to process and generate conceptual schemas from natural language text sources [13].  
Recent studies have demonstrated that LLMs, such as ChatGPT, can significantly support tasks in 
ontology engineering, including concept extraction, class hierarchy generation, and semantic relationship 
identification [13-14].

A popular use of LLMs in ontology development is automating concept extraction and populating 
ontologies with domain knowledge. For example, Aggarwal et al. [15] experimented with using LLMs 
in academic ontology development in engineering fields, with promising results in extracting and 
structuring domain knowledge. Zaitoun et al. [16] also employed LLMs to enrich biomedical ontologies, 
demonstrating that they are able to identify missing concepts and relations. Trajanoska et al. [17] and Reis 
et al. [18] demonstrated how LLMs can be utilized for enhancing KG construction from unstructured text.

LLMs also facilitate semantic relationship discovery and ontology alignment. Amini et al. [19] 
investigated LLMs for complex ontology alignment, using contextual embeddings to improve relationship 
detection. Matentzoglu et al. [20] demonstrated how LLMs like MapperGPT enhance entity linking and 
mapping precision. Wu et al. [21] suggested an approach using online clustering with LLMs for ontology 
expansion.
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Additionally, studies have explored applying LLMs for entity resolution, focusing on identifying, 
matching, and reconciling entities across different data sources. Hees [22] examined LLMs for aligning 
non-ontological data to ontologies, focusing on semantic interoperability in the energy sector. Using 
GPT-3.5 and GPT-4, the study aligned datasets from the ENERSHARE project with the Semantic 
TreeHouse ontology framework. The findings suggest that while LLMs support entity resolution, they 
function best as recommendation tools rather than deterministic alignment methods.

Zhang et al. [23] explored weakly-supervised taxonomy enrichment, demonstrating how LLMs can 
identify discriminative features to enhance hierarchical structures. Their study introduced self-supervised 
entity resolution techniques and seed-guided taxonomy construction, showing that minimal human 
supervision enables LLMs to build structured ontologies from text corpora.

Hofer et al. [24] analyzed LLM-driven entity reconciliation in KG construction, emphasizing the need 
for incremental ontology updates. Their findings indicate that while LLMs generate entity alignment 
candidates, a hybrid approach combining LLMs with rule-based validation is necessary for improving 
accuracy. The study highlights LLM applications in ontology alignment, particularly in biomedical KGs, 
where they refine taxonomic structures while maintaining semantic consistency.

Chen et al. [25] examined schema-based KGs for taxonomic reconciliation, leveraging OWL ontologies, 
RDFS, and SHACL. The study underscores the importance of ontology mapping repositories (e.g., UMLS 
Metathesaurus, BioPortal, MONDO) in resolving cross-domain taxonomic inconsistencies. Additionally, 
it explores LLM integration in entity resolution, particularly in instance matching and automated ontology 
extension.

These works emphasize the potential for LLMs to automate and improve ontology engineering, which is 
also investigated in this study. Table 1 summarizes how these works relate to our study.

Despite these developments, integrating LLMs into ontology engineering is challenging. Issues related 
to model interpretability and reliability [14, 26-27], domain specificity, and computational costs [28] 
are some of the key obstacles. Furthermore, the reliability of LLM-generated outputs in highly technical 
fields remains a concern, as hallucination and data bias continue to affect the consistency and accuracy 
of results [29]. Overcoming these challenges is crucial to guaranteeing the robustness and real-world 
applicability of LLM-supported ontology engineering.
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3.  THE AGRICULTURAL PRODUCT TYPES ONTOLOGY (APTO)

APTO is a domain-specific ontology we developed to standardize terminology for agricultural product 
types within the Brazilian commodities market and comprises 3,333 statements. It incorporates over 200 
product types identified in datasets from three Brazilian agricultural price index agencies, namely Cepeaa, 
Ipeab, and Conabc.

The ontology adopts a modular approach, comprising two core segments: the Organism module 
and the Product Type module. The Organism module links agricultural products to their biological 
origins using taxonomic classifications aligned with the GBIF Backbone Taxonomy, while the Product 
Type module categorizes products based on their origin (e.g., plant-based, animal-based, or inorganic) 

a  URL: https://www.cepea.esalq.usp.br/en
b  URL: https://www.ipeadata.gov.br/
c  URL: https://www.conab.gov.br/info-agro/precos

Table 1.  Relationship between related studies and this paper.

Study Focus area Relationship with this study

Aggarwal et al. [15] LLMs for scholarly ontology 
generation.

Automated concept and relationship extractions 
in ontology development.

Zaitoun et al. [16] LLMs for biomedical ontology 
augmentation.

Demonstrates LLMs’ ability to identify missing 
ontological relationships.

Trajanoska et al. [17] 
& Reis et al. [18]

LLMs for KG construction from 
unstructured text.

LLM automation of ontology engineering tasks.

Amini et al. [19] LLMs for ontology alignment using 
contextual embeddings.

Enhances taxonomic data alignment through 
contextual embeddings.

Matentzoglu  
et al. [20]

LLMs for entity linking and 
mapping.

Improves entity matching, crucial for taxonomic 
reconciliation.

Wu et al. [21] LLMs for ontology expansion 
using online clustering.

Provides insights into LLM-based ontology 
expansion.

Hees [22] LLMs for semantic interoperability 
and ontology alignment.

Applies LLMs to ontology alignment, relevant for 
aligning non-ontological data to an ontology.

Zhang et al. [23] LLMs for weakly-supervised 
taxonomy enrichment.

Supports taxonomy enrichment with minimal 
human supervision.

Hofer et al. [24] LLMs for incremental ontology 
updates and entity reconciliation.

Enhancing the scalability of ontology 
completion, updates, and creation using LLMs 
to extract and integrate new concepts from 
structured data, such as tabular datasets.

Chen et al. [25] KGs for taxonomic reconciliation 
and LLM integration.

Demonstrates how schema-based KGs aid 
taxonomic integration with LLMs.
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and processing state (raw, processed, or by-product). This duality allows APTO to capture the intricate 
relationships between products, their sources, and their processing stages, making it generally suitable for 
applications ranging from semantic web integration to agricultural market analysis.

We reused existing domain ontologies such as AGROVOCd [30] and Agrotermose [31] when designing 
APTO. AGROVOC is a multilingual thesaurus developed by the Food and Agriculture Organization 
(FAO) to standardize terminology in agriculture, fisheries, forestry, and related domains [30, 32]. In 
contrast, Agrotermos is a Brazilian agricultural vocabulary designed to support research and dissemination 
of knowledge specific to the Brazilian agricultural sector [33]. Additionally, Agrotermos serves as a 
terminology provider to AGROVOC for Brazilian Portuguese and incorporates concepts from AGROVOC 
into its vocabulary, ensuring interoperability and alignment between the two resources.

Despite their utility, a review of these vocabularies revealed gaps, particularly in the consistency and 
currency of taxonomic names. The dynamic nature of taxonomies, where scientific names are frequently 
updated due to synonymization and other taxonomic revisions, presents a significant challenge for 
maintaining ontological accuracy. For example, Agrotermos contains outdated taxonomic names due 
to the lack of automated mechanisms for verifying authoritative taxonomic sources for synonymization. 
Similarly, AGROVOC relies on a manual process for incorporating scientific names into its vocabulary as 
specified by its editorial guidelines [11], which can result in similar issues. Figure 1 illustrates this problem 
with the species Prochilodus cearensis Steindachner, 1911, which is a preferred term in Agrotermos, yet 
it is declared a synonym of Prochilodus brevis Steindachner, 1875 in the GBIF Backbone Taxonomy [34].

d  URL: https://agrovoc.fao.org/browse/agrovoc/en/
e  URL: https://sistemas.sede.embrapa.br/agrotermos/
f  URL: https://sistemas.sede.embrapa.br/agrotermos/resources/c8f08feb5e299b153a2f3c9b2630cd0f

Figure 1.  Example of synonym in Agrotermos in Portuguesef.
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We did not import species name classes directly from Agrotermos and AGROVOC to prevent these 
inconsistencies from propagating into APTO. Instead, we developed a method to extract up-to-date data 
from the GBIF Backbone Taxonomy and convert it into OWL format for seamless integration into the 
ontology.

The development of APTO followed the SABiO methodology for ontology development [35], which 
encompasses five main phases: (1) Purpose Identification and Requirements Elicitation, (2) Ontology 
Capture and Formalization, (3) Design, (4) Implementation, and (5) Testing. This paper focuses on the 
Design phase, where we explored the use of ChatGPT to streamline the integration of taxonomic data into 
the ontology.

APTO has been implemented in OWL and is accessible through endpoints, including a SPARQL 
endpointg, a text-search interfaceh, and an OWL/XML serializationi. For Findability, Accessibility, 
Interoperability, and Reusability (FAIR) purposes, the ontology has been made available on AgroPortalj.

4.  METHODS

Ontologies and KGs are closely related, with ontologies often serving as foundational frameworks 
for creating and interpreting KGs. Ontologies provide structured representations of domain-specific 
knowledge, including classes, relationships, and constraints. This logical foundation aligns with the 
principles of KGs, which are graph-based structures used to model interconnected data for reasoning 
and discovery [36-37]. Ontologies not only aid in formalizing the semantics of KGs but also extend their 
capabilities by enabling advanced reasoning tasks [37]. Furthermore, they enhance KG construction 
by ensuring semantic interoperability and consistency, particularly when generating KGs from textual 
data [38]. The overlap between ontologies and KGs illustrates how these paradigms coalesce to support 
complex data representation and reasoning [39]. Given this close relationship, ontology development can 
benefit from recent techniques employed in KG construction, particularly applying LLMs.

The method employed in this case builds upon the framework outlined by [40] for LLM-augmented 
KG development to explore this synergy. The authors address different techniques using LLMs in KG 
development, including LLM-augmented KG Construction, and describe two approaches: end-to-end KG 
construction and distilling KGs from LLMs. According to [40], we can understand these approaches as 
follows:

•	 End-to-end KG construction is an innovative approach utilizing LLMs to streamline KG creation 
from raw text, bypassing the conventional multi-stage process [40]. Studies like [41] have developed 
methods integrating LLMs for named entity recognition and relation extraction, employing dual 

g  URL: https://data.pldn.nl/FilipiSoares/APTO/sparql
h  URL: https://data.pldn.nl/FilipiSoares/APTO/elasticsearch/APTO-Text-search/text
i  URL: https://w3id.org/APTO#
j  URL: https://agroportal.lirmm.fr/ontologies/APTO
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BERT-based classifiers to identify relationships between entities [40]. This method allows for the 
direct assembly of KGs, showcasing models like Grapher and PiVE that facilitate KG generation from 
textual descriptions or correct errors in existing KGs using iterative verification with smaller LLMs [40].

•	 Distilling KGs from LLMs capitalizes on the inherent knowledge encoded within LLMs to extract and 
structure this information into KGs [40]. Techniques like COMET [42] leverage LLMs to generate 
commonsense KGs by training on seed sets of knowledge tuples, enabling the LLM to produce 
novel, high-quality knowledge tuples [40]. This approach underscores the potential of LLMs as tools 
for enhancing KG construction and as vast repositories of implicit knowledge ripe for extraction and 
organization into explicitly structured forms [40].

The methodological approach employed in this paper is similar to the End-to-End KG Construction, but 
less complex since we do not deal with extraction from raw text. The data input we used in the ontology 
construction is structured as JSON files with representative and precise names, which makes it easier to 
process (and more precise) than natural language input.

In this research, we used ChatGPT-4 to improve the quality of an ontology. Two alternative approaches 
were explored: (1) issuing a series of prompts for ChatGPT-4 to execute tasks via the BrowserOP plugin 
and (2) directing ChatGPT-4 to design a Python algorithm to perform analogous tasks. We followed the 
workflow activities shown in Figure 2 in both approaches. The following sections discuss each activity in 
detail.

4.1  Selecting the Species List

We started by selecting a list of plant and animal species related to all agricultural product types in 
APTO. This step involved mapping product types from three key Brazilian datasets onto commodity 
price indexes, namely the agricultural prices index from the Center for Advanced Studies on Applied 
Economics (Cepea) [43], the IpeaData Macroeconomic Indicators [44], and the ‘Companhia Nacional 
de Abastecimento’ (Conab) agricultural prices database [45]. We based the association between product 
types and species on resources such as Agrotermos, Agrovoc, and the scientific literature, producing two 
lists: an Animal species list with 14 scientific names and a Plant species list with 74 names, both lists with 
names of species or genus level.

Figure 2.  Workflow for the taxonomic data transformation.
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Another criterion for selecting these species was their agricultural relevance, particularly within 
Brazilian agronomic and livestock domains. The list includes economically significant species, widely 
cultivated, and well-documented in key Brazilian agricultural data repositories. Given Brazil’s diverse 
agricultural landscapes, these species provide a representative yet incomplete view of the taxonomic 
groups involved in commercial agriculture.

While the selection is representative of Brazilian agrobiodiversity, it has limitations when generalizing 
to global taxonomies. Many agricultural taxonomies include species from other regions with different 
climatic, economic, and ecological contexts. As this study focuses on Brazilian datasets, certain species 
with regional importance elsewhere may be underrepresented. However, the approach developed in this 
study is not limited to Brazilian species, as it can be extended to include species from other regions, as 
long as they are represented in the GBIF Backbone Taxonomy.

4.2  Connecting with the GBIF Backbone Taxonomy API

GBIF is an international network and data infrastructure supported by governments worldwide. Its 
primary goal is to provide open access to biodiversity data for all types of life on Earth, accessible 
from anywhere [46]. Recognized as the most extensive biodiversity data infrastructure regarding the 
volume of observations [47], GBIF serves many stakeholders, including researchers, policymakers, and 
other decision-makers. It achieves this by aggregating data from numerous sources, standardizing the 
information, and making it freely available for public use [48].

For the Organism module in APTO, we imported scientific names from the GBIF Backbone Taxonomy [49]. 
GBIF provides an APIk for extracting taxonomic classifications. This API operates on data stored within the 
GBIF Checklist Bank, which indexes every registered checklist dataset across the GBIF network [50]. To 
consume these RESTful JSON web services, GBIF internally utilizes a Java web service client [50]. Using 
ChatGPT-4 and the BrowserOp plugin, we automated the retrieval of taxonomic data for each species via 
the GBIF API.

The GBIF Backbone Taxonomy is a comprehensive synthetic classification system that underpins 
GBIF’s integration of diverse name-based information from various sources, including occurrence 
datasets, species pages, and external databases like the Encyclopedia of Life (EOL), Genbank, and 
the International Union for Conservation of Nature and Natural Resources (IUCN) red list database, 
facilitating consistent taxonomic searches and cross-referencing across resources [49]. Regular updates 
extend its scope by merging additional scientific names from authoritative datasets into the Catalogue 
of Life-based structure [51], enhancing coverage beyond family-level classifications [49]. The taxonomy 
also incorporates identifiers for Operational Taxonomic Units (OTUs) from barcoding projects like iBOL 
and UNITE, employing consensus-based methods to connect Barcode Index Numbers (BINs) and Species 
Hypotheses (SHs) to taxon names and classifications [49]. Available for download in various formats, the 

k   URL: https://api.gbif.org/v1/
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GBIF Backbone Taxonomy data represents a critical resource for taxonomic research, drawing from over 
105 sources to ensure broad and accurate name coverage [49].

4.3  Checking the Accuracy of Scientific Names

International nomenclature codes govern the assignment of scientific names to species, establishing 
principles and rules to ensure clarity and consistency across the scientific community. This process 
involves the formal description and publication of each species, adhering to specific criteria set by these 
codes. Over time, scientific names may become deprecated due to various factors, such as the discovery 
of prior valid names overlooked in earlier assessments or new phylogenetic insights that necessitate 
reclassification [52-53]. As a result, the nomenclatural landscape is dynamic, with taxonomists revising 
and updating names to reflect the most accurate understanding of biological relationships. These updates 
lead to the synonymization of many species names [52-53].

We reviewed each name on the species list to determine whether it was accepted or a synonym. 
In Approach 1, we used ChatGPT to check the name status through the GBIF API. In Approach 2, we 
implemented this process using the Python Taxonomy Converter.

4.4  Extracting Multi-level Taxonomic Classification Data

Species classification follows various conventions, leading to multi-level taxonomies that organize 
life forms into hierarchical categories [54]. In this study, we adopted a seven-tiered framework for the 
taxonomic classification of species, consisting of kingdom, phylum, class, order, family, genus, and 
species, aligned with established biological taxonomy principles [54]. This hierarchical structure is 
crucial for understanding the relationships and distinctions among different life forms [54]. During the 
classification phase, we tasked both applications (ChatGPT integrated with the BrowserOp plugin and the 
Python Taxonomy Converter) with extracting these seven levels of classification for each species listed, or 
six levels for names at the genus level.

4.5  Transforming Taxonomic Data Into OWL

Finally, we used the extracted taxonomic information to generate OWL/XML files, incorporating 
hierarchical relationships that accurately reflect the underlying species taxonomy upon which they were 
based.

5.  APPROACH 1: CHATGPT WITH BROWSEROP PLUGIN

5.1  Prompt Specification and Results

The process consisted of incorporating a series of instructions into the ChatGPT 4 model, as shown 
in Table 2. The prompt engineering methodology used in this study builds on Giray’s work [55], which 
categorizes the components of an effective prompt into four main elements:
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•	 Instruction: A directive that specifies the task, guiding the model’s behavior and ensuring it aligns 
with the desired outcome.

•	 Context: Relevant background information or external details provide additional knowledge, 
enabling the model to generate accurate and context-aware responses.

•	 Input data: The core query or data to be processed serves as the primary driver of the model’s 
understanding and response generation.

•	 Output indicator: An indicator of the expected response format, such as a brief answer, detailed 
explanation, or structured output, shaping the model’s solution delivery.

We built the prompt based on these four elements, as shown in Table 2.

The species names used as Input data are listed in Table 3. The first species in this list, Apis mellifera, 
served as a test case where the ChatGPT model utilized the BrowserOp plugin to send a request to the 
GBIF API. This plugin fetched real-time data from the web [56], and facilitated the interaction as detailed 
in Listing 1. As specified in Context, the call to the GBIF API performed with the BrowserOP plugin 
successfully retrieved the desired data. In our directive to ChatGPT, we specified a connection with the 
GBIF API’s base URL (https://api.gbif.org/v1/), which hosts various endpoints catering to different data 
dimensions, including but not limited to the Registry API, Species API, Occurrence API, and Literature 
API, each serving distinct purposes such as registry lookup, species matching, occurrence data retrieval, 
and literature references, respectively. Despite the lack of explicit instruction on which endpoint to 
use, ChatGPT identified and targeted the appropriate API endpoint for species matching, which is  
https://api.gbif.org/v1/species/.

The API response shown in Listing 1 adheres to the prompt specification (refer to Table 2), 
demonstrating the successful extraction of detailed taxonomic classification data for the species Apis 
mellifera. As specified in the prompt’s Input data, ChatGPT retrieved the complete taxonomic hierarchy, 

Table 2.  Prompt Specification.

Element Prompt

Instruction Build an ontology for species names.

Context Access the GBIF API [using the BrowserOp plugin]: https://api.gbif.org/v1/.

Input data Extract the full taxonomic classification for each name in this list, including kingdom, 
phylum, class, order, family, genus, and species. In some cases, the name on the list is at 
the species level, and in other cases, at the genus level.

Input data If a name has the status ‘deprecated’, look for the accepted name for that species.

Output indicator This taxonomy should be organized as OWL classes and subclasses (do not create 
individuals or instances). Each class should have a URI from GBIF and an RDF label 
with the name for that class, with the language tag (considering that scientific names are 
written in Latin, include the language tag “lat”). Finally, generate an OWL code, including 
all the necessary namespaces.
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including the ranks kingdom, phylum, class, order, family, genus, and species. Listing 1 confirms the 
accurate extraction of all ranks, formatted as key-value pairs (e.g., kingdom:Animalia).

The prompt further specified that the ontology generated from the retrieved (Output indicator in  
Table 2) data should incorporate GBIF URIs for each class representing a taxon. Listing 1 shows 
that each taxon is assigned a unique key corresponding to its taxonomic rank (e.g., kingdomKey:1, 
genusKey:133475). GBIF assigns a unique numeric ID to each entity in its Backbone Taxonomy, forming 
the URI that uniquely identifies every scientific name in its catalog. For example, the response indicates 
Animalia is linked to the kingdomKey value 1, which is represented by the GBIF URI https://www.gbif.org/
species/1. These URIs ensure that each taxon is unambiguously identified within the ontology.

The prompt also required ChatGPT to verify the status of the species’ name. The API response in Listing 
1 shows the name status as ACCEPTED, indicating that the species name is valid and recognized within 
the taxonomy catalog. This outcome confirms ChatGPT’s successful execution of this verification step.

Moreover, Listing 1 shows the rules block, which outlines a set of operational guidelines not explicitly 
defined in the prompt, suggesting they originate from ChatGPT’s model internal rules to enhance the 
response’s comprehensiveness and relevance.

Table 3.  List of animal scientific names.

Taxon rank Taxon name

Species Apis mellifera

Species Bos taurus

Subspecies Capra aegagrus hircus

Species Ovis aries

Genus Sus

Species Bombyx mori

Species Prochilodus cearensis

Species Prochilodus scrofa

Species Prochilodus margravii

Species Semaprochilodus insignis

Species Semaprochilodus taeniunes

Species Colossoma mitrei

Species Arapauma gigas

Genus Tilapia
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Finally, the prompt in Table 2 defined that the output should be an OWL file generated from the data 
extracted via the API. Initially, GPT-4 created OWL code using https://api.gbif.org/v1/species/ as the 
namespace for the ontology classes. This URI is a reference point within the GBIF API, linking to JSON 
data files describing scientific names and their relationships, as illustrated in Listing 2.
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However, after careful consideration, we decided to use URIs from the https://www.gbif.org/species/ 
endpoint instead. We chose this endpoint because it provides access to valuable enriched resources 
for end users, such as taxon photos, occurrence statistics, and related information. Although we did not 
import these supplementary resources into the ontology, users can access them by clicking on the URL, 
aligning with linked data principles.

To apply this change, we directed ChatGPT to regenerate the OWL code using https://www.gbif.org/
species/ as the namespace. Listing 3 shows the updated output.

We repeated this process for all taxa listed in Table 3. ChatGPT confirmed the taxon names Bos 
taurus, Ovis aries, Genus Sus, Semaprochilodus insignis, Semaprochilodus taeniurus, Arapaima gigas, 
and Tilapia as accepted names within the GBIF Backbone Taxonomy. Then, it successfully generated the 
corresponding OWL code for these taxa. The OWL files are available on Zenodo [1].

ChatGPT identified the remaining taxa as having outdated or deprecated names, classifying them as 
synonyms, as shown in Table 4. These taxon names were listed as preferred terms in the Agrotermos 
thesaurus but were absent from AGROVOC, the two vocabularies used as the foundation for building this 
ontology. An exception is Capra hircus, which we did not find in either of these vocabularies.
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Agrotermos and AGROVOC include concepts for representing ‘goat’, but with limitations. In 
Agrotermos, the term ‘Cabra’ (Portuguese for goat) is not explicitly associated with its scientific species. 
In AGROVOC, Capra hircus is modeled as an entry term for this concept. To address this gap, we referred 
to the classification provided on Wikipedia, which defines ‘goat’ species as Capra hircus. We added this 
name to the list, which turned out to be outdated.

ChatGPT retrieved the corresponding accepted name from the GBIF Backbone Taxonomy for each 
synonym identified and generated OWL code incorporating these validated names, as shown in Listing 4.

In Listing 4, we tasked ChatGPT with generating OWL code for three species within the same genus: 
Prochilodus Cearensis, Prochilodus Scrofa, and Prochilodus Margravii. However, during our first attempt to 
extract data from the GBIF API using these names, ChatGPT reported that no data was available for these 
taxa. We discovered that this issue stemmed from formatting errors in the species names. According to 
international standards for species nomenclature [57-58], species names should consist of a capitalized 
genus name followed by a lowercase specific epithet, often including the naming authority and year of 
identification. The names we used in the initial query, copied directly from the Agrotermos vocabulary, 
had capitalization errors in the specific epithets (e.g., Cearensis instead of cearensis), which rendered them 
unrecognizable to the GBIF API.

After correcting the formatting to align with these standards, we reissued the query, and Chat-GPT 
successfully retrieved the taxonomic data. Table 5 provides a detailed log of this interaction, highlighting 
the issue and the resolution process.

Following the initial incident, we intentionally repeated the same mistake by submitting the species 
name Colossoma Mitrei with the same capitalization error in the specific epithet. Chat-GPT corrected the 
error autonomously before sending the request to the GBIF API, demonstrating its ability to learn iteratively 
from prior interactions.

This adaptability reflects ChatGPT’s advanced learning capabilities, allowing it to refine its 
comprehension and response strategies over time. Such functionality exemplifies a core characteristic 
of Artificial Intelligence (AI): the ability to internalize lessons from previous interactions and apply 

Table 4.  Synonymous scientific names and their corresponding accepted 
names identified by ChatGPT.

Target name Synonym of

Capra hircus Capra aegagrus

Prochilodus cearensis Prochilodus brevis

Prochilodus scrofa Prochilodus lineatus

Prochilodus margravii Prochilodus argenteus

Colossoma mitrei Piaractus mesopotamicus
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this knowledge to similar situations in the future, thereby reducing errors and enhancing operational  
efficiency [59-60].

In ontology development, this AI-driven error correction potentially reduces manual effort and enhances 
data quality. Studies [59-62] highlight the growing role of AI in fostering intelligent and efficient system 
interactions, making it a transformative tool in fields that demand adaptability and precision.

5.2  Limitations

This approach presented limitations when handling extensive species lists. For this reason, we did not 
move forward with generating the OWL code for the plant species listed in the ontology since the list of 
plant species is larger than the animal species list.

Moreover, the processing time increases with the list’s size, impacting this method’s scalability. For 
example, the processing time to call the GBIF API and generate the ontology for the species Apis mellifera 
was 37 seconds. For the three species Prochilodus cearensis, Prochilodus scrofa, and Prochilodus margravi, 
which were synonyms, the processing time was 2 minutes and 5 seconds. This approach proved efficient 



Exploring a Large Language Model for Transforming Taxonomic Data into OWL: Lessons Learned 
and Implications for Ontology Development

Data Intelligence282

for smaller clusters of species names, particularly when the names are taxonomically related (within the 
same genus or family). However, we observed that reliability decreases for lists with more than five names, 
where the likelihood of hallucinations increases. Initially, we attempted to process the entire list of species 
names from Table 3 through ChatGPT in a single batch. However, this approach resulted in multiple 
inaccuracies, including the generation of URIs non-existent in the GBIF database, incorrect association between 
valid URIs and labels, and occasional omissions of tasks, such as adding RDF labels. We opted for a more 
controlled approach to address these issues by submitting names to ChatGPT individually or in smaller groups 
(at most three species each time). This strategy significantly improved the accuracy of the results.

Another challenge was integrating multiple OWL files using Protégé, which resulted in duplicated labels 
and parent-child relationships as illustrated in Figure 3. Despite attempts to consolidate these files using 

Table 5.  Iteration with ChatGPT.

Agent Prompt

Do it [repeat the steps described in Table 2] for these three species: Prochilodus Cearensis, 
Prochilodus Scrofa, and Prochilodus Margravii.

The attempts to match the species names Prochilodus Cearensis, Prochilodus Scrofa, and Prochilodus 
Margravii with the GBIF database did not yield any results due to too little confidence in the 
matches. This means that the specific names provided might not be directly available in the GBIF 
database under those exact spellings, or are not recognized at the species level in the database.

For taxonomic research and ontology building, accurate species names are crucial. It is possible that 
these names might have synonyms under which they are listed in databases, or there might be slight 
variations in spelling or taxonomy that affect the search results.

In such cases, further steps could include:

Verifying the scientific names for spelling or taxonomic updates. Searching for broader taxonomic 
groups (e.g., the genus “Prochilodus”) and then narrowing down to the species level based on 
additional sources or databases. Consulting specialized taxonomic databases or literature for the 
most current classification and synonyms. If you have alternative or broader taxonomic categories in 
mind or need assistance with another query, please let me know how I can assist further.

Try again with Prochilodus cearensis, Prochilodus scrofa, and Prochilodus margravii.

Based on the data retrieved from the GBIF API for the species Prochilodus cearensis, Prochilodus 
scrofa, and Prochilodus margravii, here’s the ontology in OWL format. It’s important to note that all 
three names are recognized as synonyms for other species within the GBIF database: [provided the 
OWL code shown in Listing 4. After the code block, it commented:] This OWL code represents the 
full taxonomic classification for the species Prochilodus cearensis (synonym for Prochilodus brevis), 
Prochilodus scrofa (synonym for Prochilodus lineatus), and Prochilodus margravii (synonym for 
Prochilodus argenteus), including the higher taxon levels (kingdom, phylum, class, order, family, 
genus) with each class having a valid URI from GBIF and a rdf label of the name for that class in 
Latin.
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Protégé’s merge function, these redundancies persisted, but this can be also considered as a limitation of 
Protégé for handling these multiple files rather than a problem with ChatGPT-generated code.

Another limitation of this approach is its poor reproducibility due to ongoing updates in ChatGPT’s 
technology. During the initial experiments, ChatGPT plugins such as BrowserOP were still operational. 
However, as of March 2024, OpenAI replaced these plugins with GPTs, and ChatGPT no longer has direct 
access to the Internet.

To assess the feasibility of reproducing the results, we attempted to replicate the experiments on March 
6, 2025, using three different GPT models: BrowserOP (the former plugin), ChatGPT-4o, and Data Analyst. 
In all three cases, the models returned the same message indicating their inability to make direct API calls, 
confirming that ChatGPT currently lacks Internet access. Therefore, this approach is no longer viable 
unless ChatGPT restores internet access in the future.

To evaluate whether a similar approach could work with alternative AI models, we tested the same prompt 
using DeepSeek V3 and Google Gemini 2.0. However, the results were highly inaccurate and unreliable. 
Although both models generated API responses that structurally resembled the expected format (similar to 
Listing 1), the responses contained incorrect taxon keys that did not match the expected labels. Additionally, 
neither model correctly identified that the species in this test (Prochilodus scrofa) was a synonym.

Even after multiple refinements to the prompt, including providing more details about API syntax and 
sample responses, both models continued to generate hallucinated results that did not accurately reflect 
the expected outputs. These issues indicate that using this approach with DeepSeek V3 and Gemini 2.0 
would require further fine-tuning or prompt engineering to mitigate these errors. The full prompts and 
interaction transcripts with DeepSeek and Google Gemini are available on Zenodo [1].

In conclusion, this approach is currently not reproducible with ChatGPT due to the lack of internet 
access. Additionally, attempts to apply this methodology to other AI models, such as DeepSeek V3 
and Gemini 2.0, require further adjustments to reduce hallucinations and improve reliability. Therefore, we 
recommend using Approach 2 as a more viable solution for generating an OWL ontology for species taxonomy.

Figure 3.  Duplicated labels and relationships in the ontology visualization in Protégé.
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6.  APPROACH 2: PYTHON ALGORITHM FOR CONVERTING GBIF TAXONOMIC DATA TO OWL

Building on the steps outlined in Table 2 and the prompt interactions described in Section 5, we 
tasked ChatGPT with developing a Python algorithm to generate OWL files from data retrieved via the 
GBIF Backbone Taxonomy API. However, the initial version of the algorithm introduced redundancies 
in the generated OWL code by repeating higher taxonomic levels for each taxon. For example, the class 
Animalia was redefined for every taxon describing an animal species rather than being defined once and 
used as a superclass for the relevant species. To address this issue, we provided ChatGPT with the revised 
instruction outlined in Table 6.

The algorithm second version fixed redundant taxonomic level definitions but introduced a new issue: 
improper class-subclass relationships in the OWL code. When reported to ChatGPT, it responded as 
shown in Table 7.

In this third trial, we got the error: “AttributeError: ‘list’ object has no attribute ‘replace,’ which was 
caused by a typo. We tasked ChatGPT to review the species list, and it detected Semaprochilodus 
taeniunes as a typo, suggesting the correct name as Semaprochilodus taeniurus. ChatGPT inference was 
correct since this is also the accepted name in the GBIF Backbone Taxonomy. After reviewing this name 
and reentering the list, the algorithm worked as expected.

Finally, we tasked ChatGPT with generating the documentation for the algorithm, which we named 
GBIF Taxonomy OWLizer. The complete algorithm and its documentation are available on Zenodo [2].

Table 6.  Iteration with ChatGPT: fixing repetitions.

Agent Prompt

It should present the superior taxon levels once in the code when they are the same for multiple 
species. Animalia, for instance, is a taxon common to all species in this list.

To address the issue of repeating higher taxon levels for multiple species, you can modify the script 
to accumulate unique taxon levels across all species before generating the OWL representation. This 
approach ensures that each taxon level (e.g., kingdom, phylum) is represented only once, regardless 
of how many species share it.

Table 7.  Iteration with ChatGPT: fixing relationships.

Agent Prompt

“To ensure the OWL output correctly represents the subClassOf relationships and avoids duplicating 
common higher taxon levels across species, let’s refine the approach. We’ll adjust the script to build 
a hierarchy that maintains these relationships and ensures each taxon level is included only once.”
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6.1  Script Overview

This Python script follows a pipeline to fetch taxonomic classification data for a species list from the 
GBIF API and generates an OWL representation. It can handle multiple species names, representing higher 
taxonomic levels only once, even if they are shared across species, avoiding duplication of classes as 
reported in the limitations of Approach 1. It also checks synonyms and looks for the accepted names. The 
script is written in Python 3.x and requires the requests library.

6.1.1  Functions

This script met the requirements specified in Table 2, including the following functions:

•	 fetch_gbif_data(scientific_name): Fetches taxonomic classification from the GBIF API for a given 
scientific name.

•	 fetch_synonyms(species_key): Fetches synonyms for a given species key from the GBIF API. It checks 
the accepted scientific name of a species, ensuring that the OWL ontology only includes the correct 
names.

•	 accumulate_taxa(data, taxa): Accumulates unique taxa and their relationships from the GBIF data.
•	 validate_accepted_name(data, taxa): Ensures that only the accepted scientific name is included in 

the taxa dictionary by validating against synonyms.
•	 generate_owl(taxa): Generates an OWL/XML representation from the accumulated taxa.

Listing 5 shows an example of usage for the list of names from Table 3. The output was an OWL/XML 
file (Animalia.xml on Zenodo [1]). Subsequent inspection of this file in Protégé revealed a well-structured 
class hierarchy, depicted in Figure 4. This visualization confirmed the accuracy of the hierarchical 
relationships and the appropriate formatting of the generated OWL code.
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Figure 4.  Classes hierarchy in Protégé.

6.1.2  Testing the Algorithm with a Larger List of Species Names

The scalability limitation of Approach 1 prevented the generation of OWL codes for long species lists. 
In contrast, the second approach works significantly faster. To evaluate its efficiency, we conducted a test 
with 74 plant species listed in the file PlantSpeciesList.py available on Zenodo [1]. As an initial step, we 
asked ChatGPT to verify the spelling of the species names in this list using only its internal knowledge, 
without connecting to the GBIF API.
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Although we did not explicitly request ChatGPT to identify synonyms since our algorithm handles this 
functionality, it flagged Euterpe edulis as a synonym of Euterpe oleracea. However, subsequent verification 
using authoritative sources, including the GBIF Backbone Taxonomy [49] and the Plants of the World 
Online catalog [63], confirmed that both Euterpe edulis and Euterpe oleracea are valid and accepted 
species names. This misidentification highlights the potential for inaccuracies when ChatGPT’s analysis 
is based solely on its internal knowledge rather than being anchored to reliable external sources for 
validating taxonomic names.

Despite the incorrect synonym suggestion, we continued with the task. The algorithm performed 
efficiently, generating OWL code for nearly all the listed species (except for Triticum x Secale) in just 
2 minutes and 31 seconds. By comparison, the first approach required 2 minutes and 5 seconds to 
generate OWL code for only three species. This stark contrast highlights the superior scalability of the 
second approach, which successfully processed 74 species at a similar time. The complete OWL code can 
be found as plantae.xml on Zenodo [1].

6.1.3  Hybrids in Ontological Modeling

The exclusion of Triticum × Secale from the output was due to inconsistencies in hybrid name format-
ting, which can vary across taxonomic catalogs. Hybrid species names are structured to indicate their 
origin from two different species or genera. While many taxonomic authorities use the symbol × to denote 
hybrid status-following conventions in botanical and zoological nomenclature-others may omit it [57, 64]. 
For interspecific hybrids, the × is placed between the genus name and the specific epithet; for intergeneric 
hybrids, it appears between the genus names [64]. For example, the intergeneric hybrid between Triticum 
(wheat) and Secale (rye) is typically written as Triticum × Secale.

In the GBIF Backbone Taxonomy-which aggregates names from various taxonomic sources-the use 
of the hybrid symbol is inconsistent. For instance, Triticum secalel appears without the ×, while Citrus 
×aurantiumm includes the symbol but omits the space. Notably, the GBIF API supports both formats when 
queried. We tested the algorithm using both Triticum × secale (with the symbol and lowercase epithet) and 
Triticum secale (without the symbol), and both returned results, indicating that the name is recognized as a 
synonym of Secale cereale. To avoid issues during processing, hybrid names should be preprocessed into 
one of these formats before being submitted to the algorithm.

To enhance the expressiveness of hybrid modeling in our ontology, we manualy modeled hybrid 
relationships explicitly using an object property is_a_hybrid_of. For instance, the triple:

Citrus aurantium is_a_hybrid_of some (Citrus maxima and Citrus reticulata)

captures the hybrid lineage of Citrus aurantium. A corresponding OWL representation is shown in 
Listing 6, where the IRI https://www.gbif.org/species/8077391 identifies the class Citrus aurantium.

l  URL: https://www.gbif.org/species/4154790
m  URL: https://www.gbif.org/species/8077391
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n  URL: https://filipi-soares.github.io/TaxonOWLConverter/

The is_a_hybrid_of object property formally captures the hybridization relationship, linking the hybrid 
species class to the classes representing its parent species. This approach provides a precise and machine-
interpretable way to represent genetic lineage within the ontology.

6.2  Web Application with User Interface

Building on the Python script of Approach 2, we developed the GBIF Taxonomy OWLizer appn, a 
web-based application that allows users to convert species names into an OWL taxonomy using the GBIF 
API. It provides a simple interface for users to enter species names, fetch their taxonomic classification, 
and download the generated OWL file. This tool is designed for biologists, taxonomists, and ontology 
researchers needing structured taxonomy data in OWL format.

The application supports the following key features:

1.	 Users can input the names of one or multiple species.
2.	 The app queries the GBIF API to fetch taxonomic classifications.
3.	 The app converts the taxonomy data into an OWL ontology format.
4.	 Users can copy and paste or download the generated OWL taxonomy file.
5.	 Previously searched species are cached in local storage, allowing instant retrieval without re- 

fetching data.

To develop the OWLizer, we utilized the following technologies:

•	 HTML, CSS (Bootstrap): Provides a simple and responsive user interface.
•	 JavaScript: Handles API requests, caching, and file downloads.
•	 jQuery: Simplifies DOM manipulation and AJAX requests.
•	 Flask (Python Back-end on Render): Processes API requests and fetches taxonomic data from GBIF.
•	 GBIF API: Provides taxonomic classification data.
•	 GitHub Pages: Hosts the front-end (static website) for free.
•	 Render (Free Tier): Hosts the back-end Flask API that fetches data.
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•	 UptimeRobot: Sends periodic requests to prevent the back-end from going to sleep.

6.3  Limitations

Approach 2 successfully addressed the scalability limitations of Approach 1. However, this algorithm 
remains sensitive to typographical errors in the input data. To mitigate this, we recommend a preliminary 
step in which users utilize ChatGPT to review the list of species names and correct typos. This workflow 
combines the strengths of both tools: ChatGPT’s ability to verify and correct spellings, and the algorithm’s 
efficiency in processing species names and performing synonym checks.

While the GBIF Taxonomy OWLizer web-based app provides a functional and accessible way to 
generate OWL representations of taxonomic data, it has certain limitations due to free-tier services. The 
back-end, which is hosted on Render’s free tier, enters a sleep state after 15 minutes of inactivity, causing 
delays in API responses when it needs to restart. To mitigate this, UptimeRobot periodically pings the 
back-end, keeping it active most of the time. However, this workaround is not entirely reliable and may 
still result in occasional downtime. Since GitHub Pages is used to host the front-end, the application can 
only serve static content, requiring an external back-end to handle API requests.

Furthermore, the app caches responses using local storage, meaning that previously fetched data is 
only available on the same device and browser. This limits persistent caching across multiple sessions or 
devices, which could be improved by integrating a more robust storage solution such as IndexedDB or a 
cloud-based database. Despite these limitations, the current implementation remains an effective and free-
to-use tool for taxonomists and ontology researchers.

7.  INTEGRATING SPECIES CLASSIFICATION IN APTO

After generating and integrating the OWL file with species classifications into APTO Organism module, 
each product type was linked to its corresponding species. This association is essential for accurately 
representing the meaning of commercial product names, particularly within the regional context where 
they are traded. Establishing these precise connections ensures semantic clarity and helps prevent errors 
arising from ambiguous or incorrect associations.

APTO offers several examples that underscore the importance of this type of modeling. For example, 
a frequent ontological modeling error appears in sources such as Agrotermos, Agrovoc, and even in 
Wikipedia, concerning the term ‘Pimenta.’ In Brazilian Portuguese, ‘Pimenta’ is often translated into 
English as ‘pepper.’ While this translation might seem correct, it oversimplifies the term and creates 
semantic confusion. In Brazilian Portuguese, ‘Pimenta’ refers to the reddish or yellowish (sometimes green 
when collected unripe) berries from plants of the genus Capsicum. Examples include ‘Pimenta malagueta’ 
(Capsicum frutescens), ‘Pimenta cumari’ (Capsicum baccatum var. praetermissum), and ‘Pimenta dedo-de-
moça’ (Capsicum baccatum).
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In resources such as Agrovoc [65] and Agrotermos [66], the concept of ‘Pimenta’ is translated into 
English as ‘pepper’ and associated with the species Piper nigrum. In Brazil, however, Piper nigrum refers 
explicitly to the plant that produces black pepper, known locally as ‘Pimenta-do-reino.’

In Agrotermos, Capsicum sp. is listed as a related concept to ‘Pimenta,’ but there is also a relationship 
indicating that ‘Pimenta’ is produced by Piper nigrum. This misrepresentation creates confusion, as the 
term ‘Pimenta’ in Brazil is predominantly associated with Capsicum sp., while ‘Pimenta-do-reino’ refers to 
Piper nigrum (black pepper), as previously mentioned.

Despite being a common mistake, the organisms represented by these concepts are biologically distinct. 
Table 8 shows the biological classification of both species, highlighting their differences. Capsicum sp. and 
Piper nigrum are only related at the class level (Magnoliopsida), underscoring their distinct evolutionary 
and biological characteristics.

The accurate English equivalent of the Brazilian concept ‘Pimenta’ is ‘chili pepper.’ However, 
in Agrovoc [67] and Agrotermos [68], the concept of ‘chili pepper’ is incorrectly matched with the 
Portuguese term ‘Condimento picante’, which translates to ‘spicy condiment’ in English. This translation 
conflates two distinct concepts from different hierarchical levels, treating them as semantic equivalents 
when they are not.

This issue is not limited to Agrotermos and AGROVOC. On Wikipedia, a search for ‘Pimenta’ in 
Portuguese retrieves an article describing ‘Pimentas’ derived from Capsicum sp., as shown in Figure 5a. 
However, switching the article’s language to English leads to an article about ‘pepper,’ which refers to 
Piper nigrum, as illustrated in Figure 5b.

Table 8.  Classification of Piper nigrum and Capsicum sp., based on the GBIF Backbone 
Taxonomy [49].

Taxon rank Piper nigrum Capsicum sp.

Kingdom Plantae Plantae

Phylum Tracheophyta Tracheophyta

Class Magnoliopsida Magnoliopsida

Order Piperales Solanales

Family Piperaceae Solanaceae

Genus Piper L. Capsicum L.

Species Piper nigrum L. —
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This translation is problematic because the term ‘Pimentas chili’ is not even used in Brazil, leading 
to further confusion. These examples highlight how a single incorrect association can trigger a series of 
ontological inconsistencies across different terminology systems and languages.

To address this issue in APTO, we created two distinct classes, each explicitly linked to the correct 
biological classification:

•	 Pepper: ‘member of taxon’ exactly 1 Piper nigrum
•	 Chili pepper: ‘member of taxon’ some Capsicum

Multilingual vocabularies often face ontological challenges due to the complexity of modeling 
concepts across diverse regions and languages. However, such issues are not exclusive to global contexts: 
regionalisms can also create significant ontological challenges at the local level. A prominent example is 
apto:Cheiro_verde, a concept representing a commonly used culinary herb mixture in Brazil. The term, 
which literally translates to ‘green smell’ in English, is a staple in Brazilian cuisine, enhancing the flavor of 
soups, stews, and meats.

The composition of ‘Cheiro verde’ varies significantly across Brazil’s regions, as illustrated in Figure 6. 
In the Southeast, South, and Midwest, it typically consists of parsley and chives. In the Northeast, parsley 
is replaced by coriander; in the North, the mixture expands to include chives, coriander, and fitweed. This 
regional variation is particularly important for traditional Amazonian dishes such as ‘Pato no tucupi’ (duck 
in tucupi) and ‘Tacacá’ [69-70].

In APTO, the variations of this concept have been modeled as shown in Listing 7. This approach allows 
even non-Portuguese speakers to understand the basic semantics of the concept despite its lack of a direct 

Figure 5.  ‘Pimenta’ and its translation as Black pepper in Wikipediao.

o  Wikipedia sources: https://pt.wikipedia.org/wiki/Pimenta, https://en.wikipedia.org/wiki/Black_pepper
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English translation. The class Cheiro_verde is defined as a combination of Coriander and Chives, Parsley 
and Chives, or Coriander and Chives and Fitweed, with each ingredient linked to its corresponding 
species. These combinations should ideally be associated with the specific Brazilian regions to refine this 
modeling further.

Figure 6.  Herbs included in ‘cheiro verde’ by Brazilian regions. Parsley image source: [71]; Coriander image 
source: [72]; Chives image source: [73]; Fitweed image source: [74]. All images reused in this figure are licensed 
under the public domain on Wikimedia Commons.
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8.  FINAL CONSIDERATIONS

This study explored two approaches for integrating taxonomic data into APTO, leveraging ChatGPT 
with the BrowserOP plugin (Approach 1) and a Python algorithm developed with Chat-GPT’s assistance 
(Approach 2). Each approach demonstrated specific strengths and weaknesses, highlighting the potential 
and challenges of integrating Artificial Intelligence and automation in ontology development.

Approach 1 utilized ChatGPT for direct interaction with the GBIF API, demonstrating its capability to 
handle complex queries, retrieve taxonomic information, and verify synonym relationships. However, 
scalability limitations became evident as the dataset size increased, leading to longer processing times and 
issues such as non-existing URIs and incomplete tasks. The subsequent discontinuation of GPT plugins 
further limited the reproducibility of this approach.

In contrast, Approach 2 addressed these limitations by employing a Python algorithm to process more 
extensive lists of species names efficiently. This approach successfully handled a list of 74 plant species in 
just over 2.5 minutes while maintaining consistent class-subclass relationships and avoiding redundancy 
in taxonomic hierarchies. However, it was sensitive to typographical errors, requiring a pre-processing 
step with ChatGPT for name validation.

The study underscores the complementary strengths of generative AI and algorithmic methods in 
ontology development. ChatGPT proved effective for tasks such as synonym detection, taxonomic 
hierarchy generation, and OWL code generation. Its ability to learn from errors and refine subsequent 
outputs demonstrates its potential for interactive and adaptive ontology design. In contrast, the Python 
algorithm provided the scalability and robustness required for handling larger datasets, demonstrating the 
practicality of combining AI-driven tools with structured programming techniques.

Challenges remain, particularly regarding dependency on external tools like ChatGPT, which may 
evolve unpredictably, as seen with the discontinuation of GPT plugins. Additionally, addressing semantic 
variations, such as those exemplified by the concepts ‘Pimenta’ and ‘Cheiro Verde,’ requires contextual 
modeling that goes beyond simple automation.

The workflow developed in this study is adaptable beyond the agricultural domain and can be applied 
to fields such as biodiversity informatics, ecological modeling, and conservation planning. Future work 
should explore fully automated solutions for error detection and validation, potentially incorporating 
machine learning models to reduce reliance on manual intervention. A complementary algorithm should 
be developed to periodically verify all species names in the ontology and update them in alignment with 
the latest version of the GBIF Backbone Taxonomy, for each new ontology version release.

In conclusion, this paper demonstrates how combining AI-driven tools can streamline ontology 
engineering, address domain-specific challenges, and enhance scalability and efficiency.
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