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and satellite imaging. With the deteriorating quality of the IR cameras and challenges in using
other sources, we propose a new method. We use continuous detector monitoring measurements to
build a large database of night sky background fluxes for each pixel across 27 telescopes. Using this
database, we generate the expected background flux and define cloud rejection thresholds. Through
a straightforward analysis we construct boolean cloud-contamination masks. We demonstrate some
results of the analysis, including comparisons with cloud detected using infra-red observations.
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1. Introduction

The Pierre Auger Observatory uses the atmosphere as a calorimeter to detect ultra-high energy
cosmic rays (UHECR). The Fluorescence Detector (FD) observes the fluorescence light emitted by
nitrogen molecules excited by a cosmic ray-induced Extensive Air Shower (EAS). The Observatory
hosts four FD sites on the boundary of a 3000 km2 array of surface detectors. A total of 27
fluorescence telescopes view the atmosphere above the array. Each telescope consists of a 3.8m2

entrance aperture containing a near-UV glass filter, a 13m2 spherical mirror and a 440-pixel camera,
each pixel viewing a 1.5◦ diameter section of the sky [1].

Clouds in the atmosphere can obscure the fluorescence light from EAS, resulting in erroneous
measurements. So far, our primary cloud detection instruments have been infra-red (IR) cameras
(providing pixel-by-pixel cloud information for the FD cameras), augmented by GOES weather
satellites and local lidars [2]. Given that the aging IR cameras and their steering mechanisms have
become unreliable, we demonstrate a new method for cloud detection.

During its operation, the FD runs a continuous calibration process that samples the variance of
the baseline trace for every pixel every 30 seconds, and these data are available over the life of the
Observatory. The baseline variance can be converted to a measurement of Night-Sky Background
(NSB) photon flux, as described below. The presence of cloud can then be inferred from a sky
brightness that is dimmer than expected for a given sidereal time and direction.

2. Conversion of variances to NSB photon flux

Due to the AC coupling of the FD photomultiplier tubes (PMTs), a direct measurement of the
baseline flux is impossible. It can be obtained indirectly through the statistical analysis of the PMT
current fluctuations. Sampling of the signal variance for each pixel is done every 30 s for a duration
of 6.5ms in bins of 100 ns. Conversion of the baseline variance data to NSB photon fluxes requires
the absolute calibration of the each FD pixel, as well as characteristics of the electronics for that
channel [4]. The NSB photon flux (in 365 nm-equivalent photons/m2/sr/s) is given by

 =
[2

ADC]NSB  FD

ΩΔ
(1)

where [2
ADC]NSB is the baseline NSB variance (in units of ADC2), FD is the pixel calibration

constant (in units of 365nm-equivalent photons at the telescope aperture per ADC count),  is the
effective telescope area, Ω is the pixel solid-angle, and Δ is the time-bin width. The factor  is
measured nightly through a calibration process for every pixel. It is defined as the mean current
during the calibration light pulse divided by the variance in the signal during the pulse,

V =
ADC

2
ADC

=
1

 (1 + )

2

(2)

where the current is measured in ADC counts, and the variance in squared-ADC counts. While
an experimental measurement,  can be interpreted in terms of PMT/electronics parameters as
shown the right-hand part of Eq. (2) [5]. There,  is the combined PMT/electronics gain (ADC
counts per photo-electron),  is the PMT gain variance (the contribution to the signal variance
due to inefficiencies in photo-electron collection within the PMT),  is the digitization sampling
frequency, and  is the cut-off frequency of the low-pass filter ahead of the digitizer.
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3. Contributions to the Night Sky Background

Typical values of the NSB flux are ∼ 5 photons/m2/deg2/(100 ns), or approximately 40 photons
per 100 ns integration period for a pixel, but with obvious departures due to the presence of bright
stars or intervening cloud. The sources of NSB in the relevant wavelength band (∼ 300 to 440 nm)
include stars and airglow. While the star field is predictable, the airglow is highly variable. Night-
time airglow (sometimes called nightglow) occurs when atoms or molecules that were photo-ionised
or dissociated during the day participate in reactions that release photons [6]. The spectrum is shown
in Fig. 1 (left). The intensity of the nightglow lingers in the west for several hours after sunset
and appears in the east several hours before sunrise (Fig. 1 right), reflecting the availability of
dissociated oxygen atoms necessary for the production of the light.

The elevation-angle dependence of star light and airglow is different. Stars become dimmer
at lower elevations due to atmospheric attenuation, while the airglow is stronger at low elevations
because the thickness of the emitting layer is enhanced. In the latter case, the (upper) atmosphere
is the source of the emission, not the medium attenuating it.

The expected NSB image for a clear sky will depend on the positions of the stars at a particular
local sidereal time (LST) and the level of airglow present. There will be a small dependence on the
aerosol conditions.

Figure 1: Near-UV nightglow. Left: the spectrum from Ref. [6] showing the Herzberg I molecular oxygen
bands in the near-UV. Right: the temporal variation of the near-UV nightglow with respect to local midnight,
showing the mean strength and the one-sigma variation [7].

4. Determining the threshold for cloud assignment

In our method, cloud is detected by its dimming effect on the expected night-sky background.
We have produced a set of threshold templates for all FD telescopes that change as a function of
LST. We set thresholds pixel by pixel, an update of our previous work [3] where we defined only
elevation-dependent thresholds for each telescope. The pixel-based threshold can take into account
the very common NSB variations with azimuth at a given elevation.

The variability of the airglow can mean that the clear-sky brightness is not constant in a
particular direction, even at the same sidereal time, but we determine the threshold based on the
lowest clear-sky brightness at a particular LST. An extra-bright sky is then interpreted as the absence

3
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Figure 2: 2D histograms of NSB flux as a function of local sidereal time for five years of data (2017-21)
from Coihueco FD site telescope 4 pixel 210, a pixel close to the centre of the telescope field of view. Left:
for all observations with the moon and sun at least 18◦ below the horizon. The red lines show the median,
and the 16th and 84th percentiles, of the NSB flux as a function of LST. The solid horizontal line at a low
flux level represents the typical closed-shutter signal. Right: with an additional requirement of minimum
hourly cloud-base height > 8000m, determined by our bi-static lidars.

of cloud. This assumption may break in the presence of the moon, where moonlight can illuminate
clouds, making them appear brighter than expected thresholds (see discussion in Section 6).

As mentioned, NSBmeasurements are taken for every pixel every 30 seconds during operation.
In Fig. 2 (left) we show a summary of all measurements for a particular pixel over a five-year period,
in the form of a 2D histogram of NSB flux vs. sidereal time. A cut has been applied to ensure that
the sun and moon are at least 18◦ below the horizon, and the red lines show (from the bottom) the
16th percentile, the median, and the 84th percentile of the NSB flux. One can see obvious variation
with LST caused by a changing star-field, as well as variations at any given LST caused by airglow
activity and cloud. For the right-hand plot in the same figure, we have applied an additional cut
based on measurements from bi-static lidars of the minimum cloud-base height in each hour. A
close comparison of the two figures reveals fewer low-flux measurements in the right-hand plot,
especially at 13 hours, where a commonly occurring cloud obscures a passing star, changing the
16th percentile curve. This cut produces a better estimate of the dimmest clear-sky flux.

The choice of the 8000m cloud base height cut is a compromise between eliminating cloudy
nights and retaining a sufficiently large data set to construct a valid 16th percentile threshold. We
assume that some thin, high-altitude cloud contributes to NSB flux measurements below the 16th
percentile thresholds. However, any effects of high, thin cloud on EASmeasurements are considered
minimal, as the bulk of shower development occurs in the lower 5 km of the atmosphere.

5. Producing the cloud mask

Our choice for a cloud threshold is the 16th percentile NSB flux. We note that a stable
estimation of this threshold requires several years of data shown in Fig. 2, particularly in the LST
range observed during short summer nights and in the range with strong airglow variability. Once
defined, the threshold is the minimum NSB flux to be associated with a clear sky for a pixel at a
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Figure 3: Examples of the full distribution of the graded cloud index. The negative entries refer to pixel
fluxes brighter than the 16th percentile NSB flux, and for these graded is set to zero. The positive values
represent cloudy pixels. The cloudy fraction in a plot title refers to the fraction of histogram entries that are
positive i.e. cloudy. Left: Coihueco Telescope 4 for 2017. Right: The same telescope in 2018.

given LST. We define a graded cloud index as a number between 0 and 1,

graded =


0 ; if flux  ≥ 16 (clear sky)
(16 − )/(16 − shutter) ; otherwise (cloudy)

, (3)

given a pixel flux , a cloud-threshold 16 and the closed-shutter flux shutter. The latter is non-zero
because of PMT and electronic noise (see the horizontal lines in Fig. 2). To produce graded cloud
masks, smoothing is performed - the graded index of a pixel is averaged with the indices of the
pixel’s nearest neighbours.

The distributions of the graded cloud index function (16 − )/(16 − shutter) are shown in
Fig. 3 for a telescope in 2017 and 2018. Negative values represent a clear sky and are set to 0
in cloud masks. Thus in Fig. 3, blue-shaded regions correspond to a clear sky, and green areas
represent cloud. Finally, we define a binary cloud indexbinary. We replace all values ofgraded > 0
with unity. Some smoothing ofbinary is also done within a telescope by flipping the state of isolated
cloudy or clear pixels.

6. Application and Performance

An example of a particular snapshot of the sky for Coihueco is shown in Fig. 4 (top panel).
The second panel shows a map of cloud thresholds (16th percentile) for the sidereal time of the
observation, and the third panel shows the derived graded cloud indices for that snapshot, including
the smoothing described above. The fourth panel shows the binary cloud indices, after smoothing
to remove isolated clear/cloudy pixels. A time-series set of images of this type are available in an
animation [8], where one can clearly see cloud moving through the field of view of the telescopes.

We have examined the performance of the method. As a simple cross-check, Fig. 5 shows
the monthly average of cloudiness in one telescope at each of the four FD sites in 2022. The four
telescopes are at widely dispersed locations and view distinct directions and different NSB fluxes,
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Figure 4: A snapshot of the sky from FD Coihueco on 20 September, 2017. The four panels show the NSB
flux for all pixels at 00:24 UTC, a local sidereal time of 19.71 h; the cloud thresholds for all pixels for the
0.1 h sidereal time interval centered on 19.7 h; the graded cloud mask graded; and the binary cloud mask
binary. At this time, the next sunrise was 10 hours away, and the sun and moon elevations were 23.2◦ and
27.2◦ below the horizon, respectively. An animation of these plots over a period of 2.5 hr is available [8].

and yet there is a consistency in the cloudiness detected. Perfect consistency is not expected because
the different telescopes view different directions in varying topography. Similar results are obtained
for other years, and different telescope choices.

The advantage of detecting cloud via the NSB is that the cloud information is available at all
times of FD operation. While similar in function, the infra-red cloud cameras situated at each FD
site [2] were unable to provide complete coverage in time due to hardware and software issues.
Additionally, the analysis of IR data was complicated by the non-uniformity in sensitivity across
an IR camera’s wide field of view (vignetting), and by its sensitivity to atmospheric water vapour
in addition to the observationally-important cloud. In Fig. 6 we show a comparison of cloudiness

6
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viewed by a telescope in a 5-hour period according to the NSB and the IR analyses. (This period
of time corresponds the plots in Fig. 4 and the animation in [8]. A brief rain-shower at  ∼ 180min
triggered an operator-shutdown of the FD for about an hour). The agreement is good, but not
perfect, with the NSB method seeing somewhat more cloud.

Figure 5: Cloudiness as a function of time for one
telescope at each site in 2022. For each telescope
we show the mean value of the binary cloud index
across the telescope, averaged over the lunar month.

Figure 6: Mean cloud across a telescope in a 5-hour
period, comparing infra-red and NSB methods. The
images in Fig. 4 correspond to  = 19min on this
plot, and the animation in [8] covers the first 2.5 hr.

Figure 7: For every 5 minutes of operation during
2017, we show a comparison of the cloudiness in
Telescope 2 at Coihueco as measured by the two
methods, NSB and IR. Bins on the 2D histogram are
labelled if the fraction of entries is 0.01 or more.

Figure 8: The effect of the moon. In blue, a mea-
sure of cloudiness (mean of the graded cloud index,
see Eq. (3)) as a function of moon elevation. The
histogram and the right-hand scale shows the distri-
bution of observations with moon elevation.

A comparison for the same telescope over a full year is shown in Fig. 7. We note that
independent of method, the distribution of cloudiness is rather bimodal, either clear or overcast.
This is expected, as periods of partly-cloudy conditions are short lived. Also note the bin at the
bottom-right, where 11% of images are identified as cloudy by the IR camera, but clear by the NSB
method. Through comparisons with bi-static lidar measurements, we have established that in these
cases the IR cameras are viewing high (> 9 km asl) cirrus cloud very unlikely to affect air shower

7
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observations. Thus in terms of relevant cloud, we see a high degree of agreement between the NSB
and infra-red methods.

Finally, we point out one small, and expected, deficiency in the NSB method. Fig. 8 shows
evidence for a decrease in the efficiency of cloud detection under a crescent moon. This is expected
for some relative positions of the moon, cloud and detector when cloud might be illuminated by the
moon, making it brighter than the clear-sky expectation. The figure shows a rather stable cloudiness
as a function of moon elevation when the moon is below the horizon, and a smaller mean cloudiness
when the moon has risen, indicating a reduced efficiency of cloud detection. We find from this
example, and generally from other telescopes and years, that the effectiveness of cloud detection
drops to 30% of its dark-sky efficiency during the 15% of FD operation time conducted with a
crescent moon. This is an acceptable level of impact, and during the times of reduced efficiency,
more weight is given to other cloud detection methods such as lidars and satellite observations.

7. Conclusions

At the Pierre Auger Observatory, cloud detection via IR cameras has been replaced by a method
using night-sky background light, measurements of which have been made routinely during the life
of the FD telescopes. These cloud detections are combinedwith information from other instruments,
including the height of the cloud base, to identify air-shower events affected by cloud [2]. The NSB
method takes advantage of existing well-calibrated FD telescopes designed for shower detection,
mitigating the need for separate instruments with their associated maintenance. Although the
method is somewhat less sensitive to cloud during the 15% of FD operations when moonlight
is present, this must be weighed against the significant inefficiencies suffered with the previous
technique using IR cameras, caused by hardware failures and the insensitivity of the IR technique
in times of high humidity1.

In general, the NSB cloud detection method is an excellent replacement for our IR cloud
cameras. For the type of cloud relevant to EAS observations, we find equally good performance in
the new method, with added advantages of increased sampling (every 30 seconds vs. 5 minutes for
the IR cameras) and the ability to fill gaps in the previous cloud database using historical NSB data.
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