

Twisted conjugacy in PL-homeomorphism groups of the circle

Daciberg Lima Gonçalves¹ · Parameswaran Sankaran²

Received: 14 September 2018 / Accepted: 30 November 2018
© Springer Nature B.V. 2018

Abstract

Given an automorphism $\phi : \Gamma \rightarrow \Gamma$ of a group, one has a left action of Γ on itself defined as $g.x = gx\phi(g^{-1})$. The orbits of this action are called the Reidemeister classes or ϕ -twisted conjugacy classes. We denote by $R(\phi) \in \mathbb{N} \cup \{\infty\}$ the Reidemeister number of ϕ , namely, the cardinality of the orbit space $\mathcal{R}(\phi)$ if it is finite and $R(\phi) = \infty$ if $\mathcal{R}(\phi)$ is infinite. The group Γ is said to have the R_∞ -property if $R(\phi) = \infty$ for all automorphisms $\phi \in \text{Aut}(\Gamma)$. We show that the generalized Thompson group $T(r, A, P)$ has the R_∞ -property when the slope group $P \subset \mathbb{R}_{>0}^\times$ is not cyclic.

Keywords R. Thompson's groups · PL-homeomorphisms of the circle · Twisted conjugacy · Reidemeister number · R_∞ -property

Mathematics Subject Classification (2010) 20E45 · 20E36

1 Introduction

Let $P \subset \mathbb{R}_{>0}^\times$ be a nontrivial subgroup of the multiplicative group of positive reals and let $A \subset \mathbb{R}$ be a nontrivial subgroup of the additive group of reals which is also a P -module, i.e., $t.A = A \ \forall t \in P$. Note that $A \subset \mathbb{R}$ is dense since P is nontrivial. Let $r \in A$ be positive. We shall denote by S_r the circle $\mathbb{R}/r\mathbb{Z}$. Let $T(r, A, P)$ denote the group of all PL-homeomorphisms of S_r which have slopes in P and break points (i.e., points of non-differentiability) in $A/r\mathbb{Z}$. Also let $G(r, A, P)$ denote the group of all PL-homeomorphisms of the interval $[0, r]$ with slopes in P and break points in A . We regard $G(r, A, P)$ as the subgroup of $T(r, A, P)$ consisting of elements which fix the trivial coset $r\mathbb{Z} =: \bar{0} \in S_r$. The family of groups $G(r, A, P)$, $T(r, A, P)$ were introduced by Bieri and Strebel [1], as a generalization of the

✉ Parameswaran Sankaran
sankaran@imsc.res.in

Daciberg Lima Gonçalves
dlgoncal@ime.usp.br

¹ Department of Mathematics - IME, Universidade de São Paulo, Rua do Matão 1010 05508-090, São Paulo, SP, Brazil

² The Institute of Mathematical Sciences, (HBNI), CIT Campus, Taramani, Chennai 600113, India

Richard Thompson groups $\mathbf{G} = G(1, \mathbb{Z}[1/2], (2))$ and $\mathbf{T} = T(1, \mathbb{Z}[1/2], 2)$. The group $G(r, A, P)$ was denoted $G(I, A, P)$, where $I = [0, r]$, by Bieri and Strebel, who also considered similarly defined groups $G(I, A, P)$ where $I \subset \mathbb{R}$ is any interval, not necessarily compact.

When $P = \langle n_1, \dots, n_k \rangle$ where n_1, \dots, n_k are multiplicatively independent integers (i.e., the subgroup generated by n_1, \dots, n_k is free abelian of rank k) and $A = \mathbb{Z}[1/n]$ where $n = \text{lcm}\{n_j \mid 1 \leq j \leq k\}$, the group $T(r, A, P)$ is denoted by $T(r; n_1, \dots, n_k)$. Stein [14] showed that $T(r; n_1, \dots, n_k)$ are finitely presented groups, extending the same result for the groups $T(r; n)$ by Brown [4].

The R_∞ -property for the Thompson's group \mathbf{G} was established by Bleak et al. [2]. See also [6]. The same property for the groups $G(I, A, P)$, among others, was established in [9]. The case of the Thompson group \mathbf{T} was settled by Burillo et al. [5] and also independently by Gonçalves and Sankaran [7]; see also [8, Sect. 4]. The following is the main result of this paper. The analogous result for $G(r, A, P)$ (among others) was established in [9].

Theorem 1.1 *Suppose that P is not cyclic, A is a non-zero P -module, $r \in A$ positive. Then $T(r, A, P)$ has the R_∞ -property.*

We now outline the major steps in the proof. It is easy to see that $T(r, A, P)$ has infinitely many (untwisted) conjugacy classes and so the Reidemeister number of every inner automorphism is infinite. Hence it suffices to show that the Reidemeister number is infinite for a complete set of representatives of the outer automorphism group of $T(r, A, P)$. A basic result is that the automorphism group of $T(r, A, P)$ equals the normalizer of $T(r, A, P)$ in the group of all homeomorphisms of the circle S_r . Using this result, we show that the representative automorphisms $\{\alpha\}$ can always be chosen so that they restrict to automorphisms of $G(r, A, P)$. Denote by α_0 the restriction of the automorphism α to $G(r, A, P)$. The rest of the proof depends on two cases, depending on whether the homeomorphism of S_r that induces a given automorphism α is orientation preserving or reversing. In each case we show that, by appropriate construction of elements $\{f_n\}_{n \geq 1}$ of $G(r, A, P)$ belonging to distinct α_0 -twisted conjugacy classes, the f_n belong to pairwise distinct Reidemeister classes of α . An important ingredient of the proof is the description of the automorphism group of $T(r, A, P)$, when P is not cyclic, as the normalizer of $T(r, A, P)$ in the group of all *piecewise linear* homeomorphisms of S_r . When P is cyclic, in general, there are *exotic automorphisms*—those which cannot be represented by PL homeomorphisms and our proof fails for such automorphisms.

2 The automorphism group of $T(r, A, P)$

McClarey and Rubin [12, Theorem 3] obtained a very general result concerning the automorphism group of a group G of orientation preserving homeomorphisms of a dense subset X of \mathbb{S}^1 . Their result, applied to the case $X = \mathbb{S}^1$, states that if G (i) contains a nontrivial element whose support is not dense, and (ii) satisfies a certain interval-transitivity property—the \mathcal{O} —3-transitivity on a dense subset—then the automorphism of the group G is equal to the normalizer of G in the group $\text{Homeo}(\mathbb{S}^1)$ of all homeomorphisms of \mathbb{S}^1 . Bieri and Strebel [1, Sect. 16–17] had shown earlier an analogous result when G is a subgroup of $G(r, A, P)$ satisfying certain axioms. (See also McClarey [11].) Applying these two results, Bieri and Strebel obtained the following.

Theorem 2.1 (Bieri-Strebel [1, Theorem N3.6]) *Suppose that $A \subset \mathbb{R}$ and $P \subset \mathbb{R}_{>0}^\times$ are non-trivial groups. Assume that $r \in A$ is positive. Let α be any automorphism of $T(r, A, P)$.*

Then there exists a unique homeomorphism $\phi : S_r \rightarrow S_r$ such that $\alpha(f) = \phi \circ f \circ \phi^{-1}$, $\forall f \in T(r, A, P)$. Also $\phi(A/r\mathbb{Z}) = A/r\mathbb{Z}$.

Definition 2.2 An automorphism α of $T(r, A, P)$ is said to be *orientation preserving* (resp. *orientation reversing*) if ϕ is orientation preserving (resp. orientation reversing).

When P is not a cyclic group, it is dense in $\mathbb{R}_{>0}$. We have the following theorem which guarantees that the homeomorphism ϕ in Theorem 2.1 is piecewise linear. Denote by $\text{Aut}_0(A) \subset \mathbb{R}_{>0}^\times$ the subgroup $\{s > 0 \mid sA = A\}$. Since $P \subset \text{Aut}_0(A)$, we have $T(r, A, P) \subset T(r, A, \text{Aut}_0(A))$. In fact, $T(r, A, \text{Aut}_0(A))$ normalises $T(r, A, P)$ (by the chain rule); that is, $g x g^{-1} \in T(r, A, P)$, $\forall g \in T(r, A, \text{Aut}_0(A))$, $\forall x \in T(r, A, P)$. It is easily seen that the only element of $T(r, A, \text{Aut}_0(A))$ that commutes with every element of $T(r, A, P)$ is the identity element. Thus, the homomorphism $T(r, A, \text{Aut}_0(A)) \rightarrow \text{Aut}(T(r, A, P))$ defined as $g \mapsto \iota_g$, the (restriction of) conjugation by g , is a monomorphism. Denote by $\rho_r : [0, r] \rightarrow [0, r]$ the reflection $t \mapsto r - t$ and by the same symbol the induced reflection of the circle S_r .

We have the following result, which had been obtained in the special case of $T(r; n_1, \dots, n_k)$, $k \geq 3$, by Lioussse [10].

Theorem 2.3 (Bieri-Strebel [1, Theorem N3.10]) *Suppose that P is not cyclic. Then the group $\text{Aut}(T(r, A, P))$ is isomorphic, via conjugation, to the subgroup of all homeomorphisms of S_r generated by $T(r, A, \text{Aut}_0(A))$ and the reflection ρ_r .*

In particular, under the hypotheses of the theorem, there are no *exotic* automorphisms of $T(r, A, P)$, that is, every automorphism is realised as conjugation by a PL-homeomorphism of S_r . This is not the case in general when P is cyclic.

The group $T(n-1, \mathbb{Z}[1/n], \langle n \rangle) = T(n-1; n)$ is known to contain exotic automorphisms by the work of Brin and Guzmán [3] when $n > 2$ is an integer. The case $n = 2$ is the classical Richard Thompson group T and it is known that every automorphism of T is represented by a PL-homeomorphism—in fact $\text{Out}(T)$ is cyclic of order 2, generated by the class of the reflection ρ_1 .

We give a brief outline of the proof of Theorem 2.3, referring the reader to [1, Sect. N] for further details. Suppose that $\alpha \in \text{Aut}(T(r, A, P))$ is represented by a homeomorphism $\phi : S_r \rightarrow S_r$ as in Theorem 2.1. Let $u = \phi(\bar{0}) \in A/r\mathbb{Z}$. Then the rotation map $\tau = \tau_{-u}$ defined as $t \mapsto t - u$ of S_r is piecewise linear and belongs to $T(r, A, P)$ as $u \in A/r\mathbb{Z}$ and has constant slope 1 $\in P$. Note that τ maps u to $\bar{0}$ and so $\psi := \tau \circ \phi$ fixes $\bar{0}$. It follows that the automorphism $\iota_\tau \circ \alpha =: \beta$, represented by ψ , stabilizes the subgroup $G(r, A, P) \hookrightarrow T(r, A, P)$. (This assertion holds even if P is infinite cyclic.) Note that β is orientation preserving if and only if α is. It suffices to show that either ψ or $\psi \circ \rho_r$ is a PL-homeomorphism in $T(r, A, \text{Aut}_0(P))$. Let $\tilde{\beta} \in \text{Aut}(G(r, A, P))$ be the restriction of β to $G(r, A, P)$. Then $\tilde{\psi} : [0, r] \rightarrow [0, r]$, the ‘lift’ of ψ , represents the automorphism $\tilde{\beta}$ (i.e., $\tilde{\beta} = \iota_{\tilde{\psi}}$). We observe that $\tilde{\psi}(0) = 0$ or $\tilde{\psi}(0) = r$ according as ψ is orientation preserving or not. Under the hypothesis that P is dense, Bieri and Strebel [1, Corollary E17.8] showed that $\tilde{\psi}$ is piecewise linear and in fact either $\tilde{\psi}$ or $\tilde{\psi} \circ \rho_r$ is in $G(r, A, \text{Aut}_0(A))$ according as whether $\tilde{\psi}$ is orientation preserving or not. It follows that ψ or $\psi \circ \rho_r$ belongs to $T(r, A, \text{Aut}_0(A))$ as was to be shown.

We record below an observation made in the course of the above discussion.

Theorem 2.4 *Let $P \subset \mathbb{R}_{>0}^\times$ be any nontrivial subgroup and $A \subset \mathbb{R}$ be any non-zero P -submodule. Let $r \in A_{>0}$. Any outer automorphism of $T(r, A, P)$ is represented by an automorphism $\beta : T(r, A, P) \rightarrow T(r, A, P)$ which restricts to an automorphism of $G(r, A, P)$. \square*

3 Twisted conjugacy classes in $G(r, A, P)$ and $T(r, A, P)$

We shall continue to assume that $P \subset \mathbb{R}_{>0}^\times$ is a nontrivial subgroup, possibly infinite cyclic, and that $A \subset \mathbb{R}$ is a nontrivial P -submodule. Also we assume that $r \in A$ is positive. We regard S_r as the quotient space $[0, r]/\{0, r\}$. Observe that $T(r, A, P)$ contains infinitely many (untwisted) conjugacy classes. For example, this may be seen by noting that, for each $n \geq 2$, there exist elements of $T(r, A, P)$ whose support is a union of n pairwise disjoint open arcs in S_r . (Recall that the support of a homeomorphism $f : X \rightarrow X$ is defined as $\text{supp}(f) := \{x \in X \mid f(x) \neq x\}$.)

Suppose that $\alpha \in \text{Aut}(T(r, A, P))$ is induced by a homeomorphism $\phi : S_r \rightarrow S_r$ and that $f, g \in T(r, A, P)$ are ϕ -twisted conjugates. Let $z \in T(r, A, P)$ be such that

$$f = z \cdot g \cdot \alpha(z^{-1}) = z \cdot g \cdot \phi z^{-1} \phi^{-1}. \quad (1)$$

This implies that

$$f\phi = z(g\phi)z^{-1}. \quad (2)$$

Therefore $f\phi$ and $g\phi$ are conjugates in $\text{Homeo}(S_r)$.

Suppose that $f_n, n \geq 1$, is a sequence of elements in $T(r, A, P)$ such that $f_n\phi$ are in pairwise distinct conjugacy classes of $\text{Homeo}(S_r)$. Then it follows from (2) that $R(\alpha) = \infty$.

For example, it is easy to see that there is an element $f_n \in T(r, A, P)$ whose support is a disjoint union of n arcs. Evidently the $f_n, n \geq 1$, are in pairwise distinct conjugacy classes of $\text{Homeo}(S_r)$. Taking α to be identity, we have $\phi = id$ and so we conclude that $R(id) = \infty$. It follows that $R(\beta) = \infty$ for any inner automorphism β of $T(r, A, P)$.

More generally, let α be any automorphism of a group Γ and let $\beta = \iota_g \circ \alpha$ where $g \in \Gamma$ and ι_g is the inner automorphism $h \mapsto ghg^{-1}$. One has a well-defined bijection $\mathcal{R}(\beta) \rightarrow \mathcal{R}(\alpha)$ defined as $[x]_\beta \mapsto [xg]_\alpha$ where $[x]_\alpha$ denotes the α -twisted conjugacy class of $x \in \Gamma$. Hence $R(\alpha) = \infty$ if and only if $R(\beta) = \infty$. (See [7, Sect. 3].)

It follows that, in order to show the R_∞ -property for $T(r, A, P)$, it suffices to show that that $R(\alpha) = \infty$ for a set of coset representatives for $\text{Out}(T(r, A, P))$.

In view of Theorem 2.4, we may choose a representative automorphism α that restricts to an automorphism α_0 of $G(r, A, P)$. This is equivalent to the requirement that $\phi(\bar{0}) = \bar{0}$.

3.1 Strategy of proof

Since $G(r, A, P)$ has the R_∞ -property by [9], we are guaranteed of a sequence of elements $f_n, n \geq 1$, in $G(r, A, P) \subset T(r, A, P)$ which are in pairwise distinct α_0 -twisted conjugacy classes. Suppose that α is induced by $\phi \in \text{Homeo}(S_r)$ (via conjugation). Then $f_n\phi, n \geq 1$, are in pairwise distinct $G(r, A, P)$ -conjugacy classes, that is, the $f_n\phi$ are in pairwise distinct orbits for the conjugacy action of $G(r, A, P)$ on $\text{Homeo}(S_r)$. We shall choose f_n so that when P is not cyclic, the elements $f_n\phi, n \geq 1$, remain in pairwise distinct $T(r, A, P)$ -conjugacy classes. Indeed, we shall choose our $f_n \in G(r, A, P)$ so that $f_n\phi, n \geq 1$, are in pairwise distinct $\text{Homeo}(S_r)$ -conjugacy classes. Our choice of the sequence $\{f_n\}$ will depend on whether α is orientation preserving or orientation reversing.

Assume that $\phi(\bar{0}) = \bar{0}$ and let $\tilde{\phi} : [0, r] \rightarrow [0, r]$. Suppose that α is orientable. Then $\tilde{\phi}(0) = 0$. Evaluating both sides of (2) at $z(\bar{0})$ we obtain $f \cdot \phi(z(\bar{0})) = z(\bar{0})$. Thus $z(\bar{0})$ is a fixed point of $f \circ \phi$. By appropriate choices for f, g , if one can arrange so that $\bar{0}$ is the only fixed point of $f \circ \phi$, then we can conclude that $z(\bar{0}) = \bar{0}$. This would force z to be in $G(r, A, P)$ since z is orientation preserving. Hence f, g must be in the same α_0 -twisted

conjugacy class. This will be our strategy of proof when ϕ is orientation preserving. We will achieve this assuming that ϕ has non-vanishing one-sided derivative at $\bar{0}$. This assumption is always valid when P is not cyclic in view of Theorem 2.3.

In the case when ϕ is orientation reversing, we consider the squares $f\phi f\phi = f\alpha(f).\phi^2$ and $g\phi g\phi = g\alpha(g).\phi^2$. It is immediate from (2) that $f\alpha(f)\phi^2$ and $g\alpha(g)\phi^2$ are conjugates. Note that ϕ^2 is orientation preserving. Again we will choose $f_n \in G(r, A, P)$ so that $f_n\alpha(f_n)\phi^2$ are in pairwise distinct conjugacy classes in $\text{Homeo}(S_r)$. There will be two cases to consider, depending on whether ϕ^2 fixes point-wise a non-degenerate interval or not. It will be assumed that ϕ is piecewise linear. This is not a restriction when P is non-cyclic in view of Theorem 2.3.

3.2 Orientation preserving automorphisms

Let α be an orientation preserving automorphism of $T(r, A, P)$ represented by a homeomorphism $\phi : S_r \rightarrow S_r$. We assume that ϕ has non-vanishing one-sided derivatives at a point $a \in A/r\mathbb{Z}$. Since A is dense in \mathbb{R} , this is automatically valid when ϕ is piecewise linear; this is so when P is non-cyclic by Theorem 2.3.

Denote by $\tau_c : S_r \rightarrow S_r$ the rotation $t \mapsto t + c \in S_r$. If $c \in A$, then $\tau_c \in T(r, A, P)$. Also, by Theorem 2.1, ϕ maps $A/r\mathbb{Z}$ to itself. Therefore conjugation by $\psi := \tau_{-b} \circ \phi \circ \tau_a$ where $b = \phi(a)$ defines an automorphism of $T(r, A, P)$. Moreover we have $\psi(\bar{0}) = \bar{0}$ and ψ has non-vanishing one-sided derivative at $\bar{0}$. Note that since $\tau_a, \tau_{-b} \in T(r, A, P)$, both ϕ and ψ determine the same outer automorphism of $T(r, A, P)$. Thus we may (and do) assume, without loss of generality, that $\phi(\bar{0}) = \bar{0}$ and that ϕ has non-vanishing one-sided derivatives at $\bar{0}$. We shall denote by the same symbol ϕ its lift $\phi : [0, r] \rightarrow [0, r]$. The (one-sided) derivatives at the end points will be denoted $\phi'(0), \phi'(r)$.

Let $f_\lambda : [0, r] \rightarrow [0, r]$ be the unique PL-homeomorphism with exactly one break-point ξ_λ in $(0, r)$ and having slopes λ and λ^{-1} at the end points 0 and r respectively. Explicitly, $\xi_\lambda = r/(\lambda + 1)$, and,

$$f_\lambda(t) = \begin{cases} \lambda t, & 0 \leq t \leq r/(\lambda + 1), \\ \lambda^{-1}t + r(1 - \lambda^{-1}), & r/(\lambda + 1) \leq t \leq r. \end{cases}$$

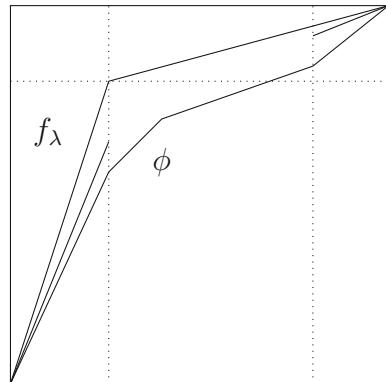
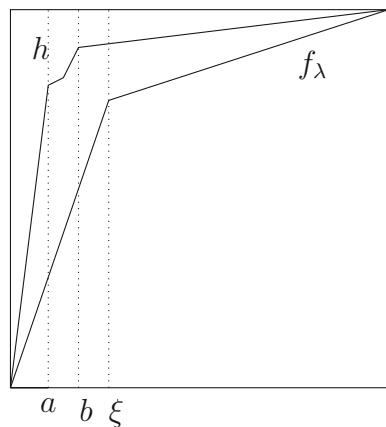
If $x, y : [0, r] \rightarrow [0, r]$ we declare that $x < y$ if $x(t) < y(t)$ for all $0 < t < r$. Thus $f_\lambda > f_\mu$ if $\lambda > \mu$.

Lemma 3.1 *Suppose that $\phi : [0, r] \rightarrow [0, r]$ is an orientation preserving homeomorphism with non-vanishing derivatives at end points. Then, for any $p \in P$ sufficiently large, there exists an $h \in G(r, A, \langle p \rangle)$ such that $\phi < h$ with $h'(0) = p$.*

Proof First we show the existence of a $\lambda > 1$ such that $\phi < f_\lambda$. Then we shall show that, for $p > \lambda$ in P , there exists an $h = h_p \in G(r, A, \langle p \rangle)$ such that $f_\lambda < h$ and $h'(0) = p$.

Since ϕ is orientation preserving, one-sided derivatives, when they exist, are positive if non-zero. Choose $\mu > \max\{1, \phi'(0), 1/\phi'(1)\}$. Then, for some $0 < \epsilon < \min\{r/\mu, r/2\}$, we have $\phi(t) < \mu t$, for $0 < t \leq \epsilon$ and $\phi(t) < \mu^{-1}t + (1 - \mu^{-1})r$ for $\eta := r - \epsilon \leq t < r$. We choose $\lambda \geq \mu$ sufficiently large so that $\lambda r/(\lambda + 1) > \mu^{-1}\eta + r(1 - \mu^{-1}) > \phi(\eta)$. Then $\phi < f_\lambda$ for all $0 < t < r$ (Fig. 1).

Let $\xi = \xi_\lambda = r/(\lambda + 1)$ be the break point of f_λ . Choose $p \in P, p > \lambda + 1$ so that $p\xi > r$. We pick an $a \in A$ such that $\lambda\xi/p < a < r/p < \xi$. Let k be sufficiently large so that, writing $q := p^{-k}$, we have $(r - ap)/(r - a) > q$ so that $ap < aq + r(1 - q)$. Finally, choose $b \in A$ such that $a < b < \xi$. Then the slope of the straight line joining the

Fig. 1 Choice of f_λ **Fig. 2** Choice of h 

points (b, ap) and (r, r) is less than that of the line joining $(\xi, \lambda\xi)$ and (r, r) . Moreover, $ap < aq + r(1 - q) < bq + r(1 - q) < r$. So the slope of the straight line joining the points $(b, bq + r(1 - q))$ and (r, r) is less than that of the line joining (b, ap) and (r, r) , which in turn implies that the slope of the straight line joining the points $(b, bq + r(1 - q))$ and (r, r) is less than that of the line joining $(\xi, \lambda\xi)$ and (r, r) (Fig. 2).

We claim that there is a PL-homeomorphism $h_1 : [a, b] \rightarrow [ap, bq + r(1 - q)]$ with slopes in the cyclic group $P_0 := \langle p \rangle \subset P$ and break-points in A . In view of [1, Theorem A4.1], such a homeomorphism exists if $a - b \equiv ap - bq + r(1 - q) \pmod{IP_0.A}$. Indeed, $ap - a, bq - b, r(1 - q) \in IP_0.A$, and so such a h_1 exists. Pasting this with the linear isomorphisms $[0, a] \rightarrow [0, ap]$ and $[b, r] \rightarrow [bq + r(1 - q), r]$ fixing end points, yields a PL-homeomorphism $h \in G(r, A, P_0)$. By the very construction, it is clear that $\phi < h$ and that $h'(0) = p$. \square

3.3 Orientation reversing automorphisms

Let $\alpha \in T(r, A, P)$ be orientation reversing, represented by a homeomorphism $\phi : S_r \rightarrow S_r$. Again, as already observed in Sect. 2, we may (and do) assume without loss of generality that $\phi(\bar{0}) = \bar{0}$. Then its lift to $[0, r]$, also denoted ϕ , satisfies $\phi(0) = r, \phi(r) = 0$. It is clear

that $\phi \circ \rho_r$ and ϕ^2 are orientation *preserving*. (Recall that $\rho_r(t) = r - t$ is the reflection of $[0, r]$ about the midpoint $r/2$.)

We assume that $\phi : [0, r] \rightarrow [0, r]$ is piecewise linear.

Since ϕ is orientation reversing, there is a *unique* $t_0 \in (0, r)$ such that $\phi(t_0) = t_0$. Suppose that $f \in G(r, A, P) \subset T(r, A, P)$ has support $\text{supp}(f) \subset (0, t_0)$. Then $\phi f \phi^{-1}$ has support in (t_0, r) . It follows that each of the homeomorphisms $\phi^2, f, \phi f \phi^{-1}, u := f \phi f \phi^{-1}$ maps $[0, t_0] =: J_0$ (resp. $[t_0, r] =: J_1$) to itself, fixing the end points. Also $\phi(J_i) = J_{1-i}$ and so, if $z \in T(r, A, P)$, then $z u \phi^2 z^{-1}(z(J_i)) = z(J_i)$.

Let $b_0(X)$ denote the 0-th Betti number of X . Note that if $\psi : [0, r] \rightarrow [0, r]$ is a PL-homeomorphism then $b_0(\text{supp}(\psi)), b_0(\text{Fix}(\psi))$ are finite. We will construct a sequence of elements $f_m \in G(r, A, P)$ such that $\{b_0(\text{supp}(f_m \alpha(f_m) \phi^2))\}_{m \geq 1}$ (resp. $\{b_0(\text{Fix}(f_m \alpha(f_m) \phi^2))\}_{m \geq 1}$) is an unbounded sequence, when $\text{supp}(\phi^2)$ is not dense (resp. when $\text{supp}(\phi^2)$ is dense).

Case 1. Suppose that ϕ^2 is identity in an interval J . If $t \in \phi(J)$, write $t = \phi(s)$, $s \in J$. Now $\phi^2(t) = \phi^3(s) = \phi(\phi^2(s)) = \phi(s) = t$. So $\phi^2 \upharpoonright \phi(J)$ is also identity. Let $J = (a, b)$, where $0 < a < b \leq t_0$. Thus ϕ^2 is identity in $J \cup \phi(J) = (a, b) \cup (\phi(b), \phi(a))$. We choose $f_m \in G(r, A, P)$ to have support a union of m pairwise disjoint intervals I_1, \dots, I_m contained in J . Then $u_m = f_m \cdot \phi f_m \phi^{-1}$ has support $U_m := \text{supp}(f_m) \cup \phi(\text{supp}(f_m))$ and moreover, $\text{supp}(u_m \phi^2)$ equals $U_m \cup \text{supp}(\phi^2)$. Note that $\text{supp}(\phi^2)$ is a disjoint union of *finitely many*—say k —intervals, in view of our assumption that ϕ is a PL-homeomorphism. Since $J \cup \phi(J)$ is disjoint from the support of ϕ^2 , the support of $u_m \phi^2$ is a disjoint union of exactly $2m + k$ intervals.

Case 2. Suppose that $\text{supp}(\phi^2)$ is a dense open subset of $(0, r)$. Since ϕ^2 is piecewise linear it follows that $\text{Fix}(\phi^2)$ is a finite set.

First we make a preliminary observation.

Lemma 3.2 Suppose that $\psi : [a, b] \rightarrow [a, c]$ is the affine isomorphism fixing a , namely, $\psi(t) = \lambda(t - a) + a$ where $\lambda = (c - a)/(b - a) \neq 1$. Let $m \geq 1$. Then there exists a PL-homeomorphism $f : [a, c] \rightarrow [a, c]$ such that (i) f is identity near the end points and $2m \leq \#\text{Fix}(f \circ \psi) < \infty$,
(ii) slopes of f are in P and break points of f are in A .

Proof We will assume that $\lambda > 1$; the case when $\lambda < 1$ being similar. Thus we have $t < \psi(t)$ for $a < t < b$.

Step 1 First we prove the lemma for $m = 1$. The required f will have support equal to an interval $(a_0, c_0) \subset (a, b)$ and will map a sub interval (a_0, b_0) into an interval (a_0, b_1) by an affine map with sufficiently small slope so that $b_1 < \psi^{-1}(b_0)$. Then $f \circ \psi([\psi^{-1}(a_0), \psi^{-1}(b_0)]) = f([a_0, b_0]) = [a_0, b_1] \subset [\psi^{-1}(a_0), \psi^{-1}(b_0)]$ and so $f \circ \psi$ fixes a point in $(a, \psi^{-1}(b_0))$.

Choose $a_0 \in A \cap (a, b)$ so that $a < a_0 < \psi(a_0) < c$. Choose $b_0, c_0 \in A$ such that $a_0 < b_0 < c_0 < \psi(a_0)$. Choose $p \in P$, $p > \lambda$; we shall presently refine our choice of p . Set $b_1 := p^{-1}(b_0 - a_0) + a_0 \in A$. Then $t \mapsto a_0 + p^{-1}(t - a_0)$ defines a PL-homeomorphism $h_0 : [a_0, b_0] \rightarrow [a_0, b_1]$. We choose p so large that $a + (b_0 - a)/\lambda = \psi^{-1}(b_0) > b_1$ —in fact any $p \in P$ such that $p > \frac{b_0 - a_0}{\psi^{-1}(b_0) - a_0}$ will do. Now we choose a PL-homeomorphism $h_1 : [b_0, c_0] \rightarrow [b_1, c_0]$ with slopes in $P_0 := \langle p \rangle \subset P$ and break-points in A . The existence of such a homeomorphism follows from [1, Theorem A4.1] in view of the fact that $c_0 - b_1 = c_0 - b_0 + (1 - p^{-1})(b_0 - a_0) \in I P_0 A$.

We piece together the two homeomorphisms h_0, h_1 to obtain $f : [a, c] \rightarrow [a, c]$ with support in (a_0, c_0) slopes in $P_0 = \langle p \rangle$, break points in A . Explicitly, we define as follows: $f \upharpoonright [a_0, b_0] = h_0$, $f \upharpoonright [b_0, c_0] = h_1$ and is identity on $[a, a_0] \cup [c_0, c]$. We claim that $f \circ \psi$ has at least two fixed points: one in $I_0 := (\psi^{-1}(a_0), \psi^{-1}(b_0))$ and one in $I_1 := (\psi^{-1}(b_0), a_0)$. This is because $f \circ \psi(I_0) \subset [f(a_0), f(b_0)] \subset [a_0, b_1] \subset [\psi^{-1}(a_0), \psi^{-1}(b_0)] = I_0$. Similarly, $f \circ \psi(I_1) \subset f([b_0, \psi(a_0)]) = [b_1, \psi(a_0)] \subset [\psi^{-1}(b_0), a_0] = I_1$. Thus $f \circ \psi$ has at least 2 fixed points in $[a, b]$. The slopes of $f \circ \psi$ are all in λP_0 . Since $1 < \lambda < p$ we have $1 \notin \lambda P_0$, (as $\lambda \notin P_0$) and we see that $f \psi$ has only *finitely* many fixed points in $[a, b]$.

Step 2 Let m be any positive integer. Consider the points a_j , $1 \leq j \leq m$ in $A \cap (a, b)$ such that $a_{j+1} < \psi(a_{j+1}) < a_j$ for all j . Choose $b_j, c_j \in A$ such that $a_j < b_j < c_j < \psi(a_j)$. Proceeding as in step 1, we obtain a PL-homeomorphism $f_j : [a, b] \rightarrow [a, c]$ with support in (a_j, c_j) such that $f_j \circ \psi$ has (at least) two fixed points. Since the f_j have disjoint support we see that $f := f_1 \circ \dots \circ f_m : [a, c] \rightarrow [a, c]$ is identity near the end points and $f \circ \psi$ has finitely many fixed points, the number of fixed points being at least $2m$. \square

We are now ready to construct, in the lemma below, a sequence $\{f_m\}_{m \geq 1}$ in $G(r, A, P)$ with the asserted property.

Lemma 3.3 *Let $\phi : S_r \rightarrow S_r$ be an orientation reversing PL-homeomorphism that fixes $\bar{0}$ and induces an automorphism $\alpha \in T(r, A, P)$. Suppose that support of $\phi^2 : [0, r] \rightarrow [0, r]$ is dense. Then there exist a sequence of elements $\{f_m\}_{m \geq 1}$ in $G(r, A, P)$ such that $2m \leq b_0(\text{Fix}(u_m \circ \phi^2)) < \infty$ where $u_m = f_m \alpha(f_m) = f_m \phi f_m \phi^{-1}$.*

Proof Clearly ϕ has a unique fixed point, denoted t_0 , in $(0, r)$. Our assumption on ϕ^2 implies that t_0 is an isolated fixed point of ϕ^2 . Let $t_1 > t_0$ be sufficiently close to t_0 so that $\phi^2(t) = \lambda(t - t_0) + t_0$ for $t_0 \leq t \leq t_1$. Taking $\psi := \phi^2 \upharpoonright [t_0, t_1]$ we are in the situation of Lemma 3.2 and we obtain PL-homeomorphisms $g_m : [t_0, \lambda t_1] \rightarrow [t_0, \lambda t_1]$ which is supported in (t_0, t_1) has break points in A , slopes in P , such that $g_m \circ \psi$ has at least $2m$ fixed points in $[t_0, t_1]$. We extend g_m to an element $f_m \in G(r, A, P)$ with support the same as that of g_m . Then the support of $\phi f_m \phi^{-1}$ equals $\phi(\text{supp}(f_m)) \subset (0, t_0)$ and hence disjoint from $\text{supp}(f_m)$. Now let $u_m = f_m \cdot \phi f_m \phi^{-1} = \phi f_m \phi^{-1} f_m$. Then $u_m \phi^2$ has at least $2m$ isolated fixed points in (t_0, t_1) . It follows that $b_0(\text{Fix}(u_m \phi^2)) \geq 2m$. \square

4 Proof of Theorem 1.1

Let α be an automorphism of $T(r, A, P)$. It is represented by a homeomorphism $\phi : S_r \rightarrow S_r$. As already observed in Sect. 1, it suffices to show that $R(\alpha) = \infty$ when α restricts to an automorphism α_0 of $G([0, r], A, P)$. So we assume that $\phi(\bar{0}) = \bar{0}$. Our hypothesis P is non-cyclic implies, by Theorem 2.3, that ϕ is piecewise linear.

Suppose that ϕ is orientation preserving. For each $p \in P$ sufficiently large, we constructed in Lemma 3.1 an element $h_p \in G(r, A, P)$ with slope $p \in P$ near 0 and such that $\phi < h_p$ (that is, $\phi(t) < h_p(t)$, $0 < t < r$). Let $f_p = h_p^{-1}$. Then $f_p \phi < id$ for all p sufficiently large. This implies that $\bar{0}$ is the *only* fixed point of $f_p \phi : S_r \rightarrow S_r$.

Suppose that $R(\alpha) < \infty$. Choose $p, q \in P$ sufficiently large and distinct such that f_p and f_q must be α -twisted conjugates. From Equation (2), we have that $f_q \phi = z f_p \phi z^{-1}$ for some $z = z_{p,q} \in T(r, A, P)$. Evaluating at $z(\bar{0})$ we obtain $f_q \phi(z(\bar{0})) = z(\bar{0})$. This forces that $z(\bar{0}) = 0$ since $f_q \phi$ fixes no other point of S_r . Hence $z \in G(r, A, P)$ and f_p, f_q are α_0 conjugates where $\alpha_0 : G(r, A, P) \rightarrow G(r, A, P)$ is the restriction of α .

On the other hand, by [9, Sect. 3], the homomorphism $\sigma_\ell : G(r, A, P) \rightarrow P$ defined as $f \mapsto f'(0)$ is invariant under α_0 , that is, $\sigma_\ell = \sigma_\ell \circ \alpha_0$ (since ϕ is orientation preserving). So $\sigma_\ell(h_p) = p$ and we have $q^{-1} = \sigma_\ell(f_q) = \sigma_\ell(zf_p\alpha_0(z^{-1})) = \sigma_\ell(z)\sigma_\ell(f_p)\sigma_\ell(\alpha_0(z^{-1})) = \sigma_\ell(z)\sigma_\ell(f_p)\sigma_\ell(z^{-1}) = \sigma_\ell(f_p) = p^{-1}$. Therefore $p = q$ which contradicts our choice.

Next assume that ϕ is orientation reversing. There are two cases to consider depending on whether $\text{supp}(\phi^2)$ is dense or not.

Suppose that $\text{supp}(\phi^2)$ is not dense. In Sect. 3.3 we constructed a sequence of elements $f_m, m \geq 1$, in $G(r, A, P)$ such that, denoting by u_M the element $f_m\alpha(f_m) = f_m \cdot \phi f_m \phi^{-1}$, the sequence $\{b_0(\text{supp}(u_m\phi^2))\}, m \geq 1$, is an unbounded sequence of natural numbers. (Recall that $b_0(X)$ is the number of path components of X .) By passing to a subsequence we may assume that the sequence $b_m := b_0(u_m\phi^2), m \geq 1$, consists of pairwise *distinct* positive integers.

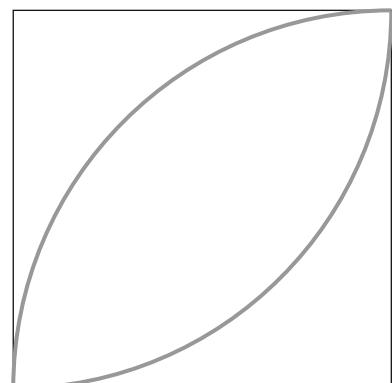
If $R(\alpha) < \infty$, then, by (2), there would be some pairs of distinct integers $m, n \geq 1$, and elements $z = z_{m,n} \in T(r, A, P)$ such that $u_m\phi^2 = z \cdot u_n\phi^2 \cdot z^{-1}$. This means that $\text{supp}(u_m\phi^2)$ and $\text{supp}(u_n\phi^2)$ are homeomorphic. Therefore $b_m = b_0(\text{supp}(u_m\phi^2)) = b_0(\text{supp}(u_n\phi^2)) = b_n$, a contradiction since b_n are pairwise distinct and $m \neq n$ by our choice.

Finally suppose that $\text{supp}(\phi^2)$ is dense. Consider the sequence of elements $f_m, m \geq 1$ in $G(r, A, P)$ constructed in Lemma 3.3 with the property that $b_0(\text{Fix}(u_m\phi^2))$ is an unbounded sequence of natural numbers. We proceed exactly as in the previous case, replacing $b_0(\text{supp}(u_m\phi^2))$ by $b_0(\text{Fix}(u_m\phi^2))$ throughout, we arrive at a contradiction in case $R(\alpha) < \infty$.

Thus we conclude that $R(\alpha) = \infty$ and so $T(r, A, P)$ has the R_∞ -property.

Remark 4.1 Suppose that P is cyclic and that $\phi \in \text{Homeo}(S_r)$ represents a given automorphism α of $T(r, A, P)$. A basic fact is that the set of singular points of ϕ (where the derivative does not exist) has Lebesgue measure 0. However if A is countable (eg. $A = \mathbb{Z}[1/p]$ where $P = \langle p \rangle$) it could so happen that every point of A is singular and it is not possible to replace ϕ by $x\phi y$ for any $x, y \in T(r, A, P)$ so as to make the resulting homeomorphism to fix $\bar{0}$ and to have (non-vanishing) one-sided derivative there. In the case when ϕ is orientable, Lemma 3.1 can be extended to the case when $\phi : [0, r] \rightarrow [0, r]$ has finite non-vanishing (one-sided) Dini numbers $D^+(\phi; 0), D_+(\phi; 0), D^-(\phi; r), D_-(\phi; r)$ at the end points. (See [13, Sect. 3, Chapter 3].) But it is possible that $D^+(\phi; 0) = \infty, D_+(\phi, 0) = 0$ and in such a case it is impossible to find a $\lambda > 0$ such that $\phi < f_\lambda$ or $f_\lambda < \phi$. For example, if the graph of ϕ meets both arcs as in Fig. 3 below arbitrarily close to 0. The arcs are tangential to horizontal (resp. vertical) axis at 0.

Fig. 3 Non-existence of f_λ



When $\phi : [0, r] \rightarrow [0, r]$ is orientation reversing, we used the fact that $\text{supp}(\phi^2)$ has only finitely many components for PL-homeomorphisms. This is evidently false even if the restriction of ϕ to $(0, r)$ is piecewise linear. Also the topology of $\text{Fix}(\phi)$ is possibly very complicated, containing infinitely many disjoint intervals and infinitely many discrete points. There is some room for improvement in our results of Sect. 3.3 since any $\text{Fix}(u\phi^2)$ and $\text{Fix}(zu\phi^2z^{-1})$ are *order isomorphic* as subspaces of $[0, r]$. This is a much stronger statement than the equality of their 0-th Betti numbers. But the general situation is too complex that we have not been able to exploit this.

Acknowledgements This work was concluded during the visit of the first author to the Institute of Mathematical Sciences, Chennai. He would like to thank the Institute for the great hospitality and work environment. He was partially supported by Projeto Temático Topologia Algébrica, Geométrica e Diferencial FAPESP No. 2016/24707-4. The second author was partially supported by a XII Plan Project, Department of Atomic Energy, Government of India.

References

1. Bieri, R., Strebel, R.: On Groups of PL-Homeomorphisms of the Real Line. Mathematical Surveys and Monographs, vol. 215. American Mathematical Society, Providence (2016)
2. Bleak, C., Fel'shtyn, A., Gonçalves, D.L.: Twisted conjugacy in R. Thompson's group F . *Pac. J. Math.* **238**(1), 1–6 (2008)
3. Brin, M.G., Guzmán, F.: Automorphisms of generalized Thompson groups. *J. Algebra* **203**, 285–348 (1998)
4. Brown, K.S.: Finiteness properties of groups. *J. Pure Appl. Algebra* **44**, 45–75 (1987)
5. Burillo, J., Matucci, F., Ventura, E.: The conjugacy problem in extensions of Thompson's group F . *Isr. J. Math.* **216**(1), 15–59 (2016)
6. Gonçalves, D.L., Kochloukova, D.H.: Sigma theory and twisted conjugacy classes. *Pac. J. Math.* **247**(2), 335–352 (2010)
7. Gonçalves, D.L., Sankaran, P.: Twisted Conjugacy in Richard Thompson's Group T . [arxiv:1309.2875v2](https://arxiv.org/abs/1309.2875v2) [math.GR]
8. Gonçalves, D.L., Sankaran, P.: Sigma theory and twisted conjugacy classes, II: Houghton groups and pure symmetric automorphism groups. *Pac. J. Math.* **280**(2), 349–369 (2016)
9. Gonçalves, D.L., Sankaran, P., Strebel, R.: Groups of PL homeomorphisms admitting non-trivial invariant characters. *Pac. J. Math.* **287**(1), 101–158 (2017)
10. Liousse, I.: Rotation numbers in Thompson–Stein groups and applications. *Geom. Dedicata* **131**, 49–71 (2008)
11. McCleary, S.: H Groups of homeomorphisms with manageable automorphism groups. *Commun. Algebra* **6**, 497–528 (1978)
12. McCleary, S., Rubin, M.: Locally moving groups and the reconstruction problems for chains and circles. Preprint, Bowling Green University, Bowling Green, Ohio, 1996. [arXiv:math/0510122v1](https://arxiv.org/abs/math/0510122v1), 6 Oct (2005)
13. Stein, E.M., Shakarchi, R.: Real Analysis. Princeton Lectures in Analysis, vol. 3. Princeton University, Princeton (2005)
14. Stein, M.: Groups of piecewise linear homeomorphisms. *Trans. Am. Math. Soc.* **332**(2), 477–514 (1992)