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Abstract

Given an automorphism ¢ : I' — T of a group, one has a left action of I" on itself defined as
g.x = gxq’)(g_l). The orbits of this action are called the Reidemeister classes or ¢-twisted
conjugacy classes. We denote by R(¢) € N U {oo} the Reidemeister number of ¢, namely,
the cardinality of the orbit space R(¢) if it is finite and R(¢) = oo if R(¢) is infinite. The
group I' is said to have the Ru.-property if R(¢) = oo for all automorphisms ¢ € Aut(I").
We show that the generalized Thompson group 7' (r, A, P) has the R..-property when the
slope group P C ]R;O is not cyclic.

Keywords R. Thompson’s groups - PL-homeomorphisms of the circle - Twisted
conjugacy - Reidemeister number - R,-property

Mathematics Subject Classification (2010) 20E45 - 20E36

1 Introduction

Let P C RZ, be anontrivial subgroup of the multiplicative group of positive reals and let A C
R be a nontrivial subgroup of the additive group of reals which is also a P-module, i.e.,t.A =
AVt € P. Note that A C R is dense since P is nontrivial. Let » € A be positive. We shall
denote by S, the circle R/rZ. Let T (r, A, P) denote the group of all PL-homeomorphisms
of S, which have slopes in P and break points (i.e., points of non-differentiability) in A /rZ.
Also let G(r, A, P) denote the group of all PL-homeomorphisms of the interval [0, r] with
slopes in P and break points in A. We regard G(r, A, P) as the subgroup of T(r, A, P)
consisting of elements which fix the trivial coset rZ =: 0 € S,. The family of groups
G(r, A, P), T(r, A, P) were introduced by Bieri and Strebel [1], as a generalization of the
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Richard Thompson groups G = G(1, Z[1/2],(2)) and T = T(1,7Z[1/2],2). The group
G(r, A, P) was denoted G(I, A, P), where I = [0, r], by Bieri and Strebel, who also
considered similarly defined groups G(I, A, P) where I C R is any interval, not necessarily
compact.

When P = (ny, ..., ng) where ny, ..., ny are multiplicatively independent integers (i.e.,
the subgroup generated by ny, ..., ny is free abelian of rank k) and A = Z[1/n] where
n=Ilemf{n; | 1 < j <k}, the group T(r, A, P) is denoted by T (r; ny, ..., ny). Stein [14]
showed that 7'(r; ny, ..., ny) are finitely presented groups, extending the same result for the
groups T (r; n) by Brown [4].

The Ro-property for the Thompson’s group G was established by Bleak et al. [2]. See
also [6]. The same property for the groups G(I, A, P), among others, was established in [9].
The case of the Thompson group T was settled by Burillo et al. [S] and also independently
by Gongalves and Sankaran [7]; see also [8, Sect. 4]. The following is the main result of this
paper. The analogous result for G(r, A, P) (among others) was established in [9].

Theorem 1.1 Suppose that P is not cyclic, A is a non-zero P-module, r € A positive. Then
T (r, A, P) has the Ro-property.

We now outline the major steps in the proof. It is easy to see that 7' (r, A, P) has infinitely
many (untwisted) conjugacy classes and so the Reidemeister number of every inner auto-
morphism is infinite. Hence it suffices to show that the Reidemeister number is infinite for
a complete set of representatives of the outer automorphism group of 7'(r, A, P). A basic
result is that the automorphism group of 7'(r, A, P) equals the normalizer of T'(r, A, P) in
the group of all homeomorphisms of the circle S,. Using this result, we show that the repre-
sentative automorphisms {«} can always be chosen so that they restrict to automorphisms of
G(r, A, P).Denote by o the restriction of the automorphism « to G(r, A, P). The rest of the
proof depends on two cases, depending on whether the homeomorphism of S, that induces a
given automorphism « is orientation preserving or reversing. In each case we show that, by
appropriate construction of elements { f, },>1 of G(r, A, P) belonging to distinct op-twisted
conjugacy classes, the f; belong to pairwise distinct Reidemeister classes of «. An important
ingredient of the proof is the description of the automorphism group of 7'(r, A, P), when P
is not cyclic, as the normalizer of T'(r, A, P) in the group of all piecewise linear homeomor-
phisms of S,. When P is cyclic, in general, there are exotic automorphisms—those which
cannot be represented by PL homeomorphisms and our proof fails for such automorphisms.

2 The automorphism group of T(r, A, P)

McCleary and Rubin [12, Theorem 3] obtained a very general result concerning the auto-
morphism group of a group G of orientation preserving homeomorphisms of a dense subset
X of S!. Their result, applied to the case X = S!, states that if G (i) contains a nontrivial
element whose support is not dense, and (ii) satisfies a certain interval-transitivity property—
the O — 3-transitivity on a dense subset—then the automorphism of the group G is equal to
the normalizer of G in the group Homeo(S') of all homeomorphisms of S!. Bieri and Strebel
[1, Sect. 16-17] had shown earlier an analogous result when G is a subgroup of G(r, A, P)
satisfying certain axioms. (See also McCleary [11].) Applying these two results, Bieri and
Strebel obtained the following.

Theorem 2.1 (Bieri-Strebel [1, Theorem N3.6]) Suppose that A C R and P C Rio are
non-trivial groups. Assume that r € A is positive. Let o be any automorphism of T (r, A, P).
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Then there exists a unique homeomorphism ¢ : S, — Sy suchthata(f) = ¢o fop~ !, Vf €
T(r, A, P). Also ¢ (A/rZ) = AJrZ.

Definition 2.2 An automorphism « of 7' (r, A, P) is said to be orientation preserving (resp.
orientation reversing) if ¢ is orientation preserving (resp. orientation reversing).

When P is not a cyclic group, it is dense in R.o. We have the following theorem
which guarantees that the homeomorphism ¢ in Theorem 2.1 is piecewise linear. Denote
by Autg(A) C Rzo the subgroup {s > 0 | sA = A}. Since P C Autp(A), we have
T(r,A,P) C T(r,A,Autg(A)). In fact, T(r, A, Autg(A)) normalises T (r, A, P) (by the
chain rule); that is, gxg_1 e T(r,A,P), Vg € T(r, A, Autg(A)), Vx € T(r, A, P). It
is easily seen that the only element of 7' (r, A, Autg(A)) that commutes with every ele-
ment of T'(r, A, P) is the identity element. Thus, the homomorphism 7 (r, A, Autg(A)) —
Aut(T (r, A, P)) defined as g — (g, the (restriction of) conjugation by g, is a monomor-
phism. Denote by p, : [0, r] — [0, r] the reflection ¢ + r — ¢ and by the same symbol the
induced reflection of the circle S;.

We have the following result, which had been obtained in the special case of
T(r;ny,...,ng), k>3, by Liousse [10].

Theorem 2.3 (Bieri-Strebel [1, Theorem N3.10]) Suppose that P is not cyclic. Then the group
Aut(T (r, A, P)) is isomorphic, via conjugation, to the subgroup of all homeomorphisms of
Sy generated by T (r, A, Autg(A)) and the reflection p; .

In particular, under the hypotheses of the theorem, there are no exotic automorphisms of
T(r, A, P), that is, every automorphism is realised as conjugation by a PL-homeomorphism
of S,. This is not the case in general when P is cyclic.

The group T (n—1, Z[1/n], (n)) = T (n—1; n) is known to contain exotic automorphisms
by the work of Brin and Guzmadn [3] when n > 2 is an integer. The case n = 2 is the classical
Richard Thompson group 7 and it is known that every automorphism of 7 is represented
by a PL-homeomorphism—in fact Out(T) is cyclic of order 2, generated by the class of the
reflection pj.

We give a brief outline of the proof of Theorem 2.3, referring the reader to [1, Sect. N] for
further details. Suppose that « € Aut(7 (r, A, P)) is represented by a homeomorphism ¢ :
S, — S, asin Theorem 2.1. Letu = ¢(0) € A /rZ. Then the rotation map T = 7_, defined
ast — t—uof S, is piecewise linear and belongs to 7'(r, A, P) asu € A/rZ andhas constant
slope 1 € P.Note that T maps u to 0 and so ¥ := To¢ fixes 0. It follows that the automorphism
i oa =: B, represented by ¥, stabilizes the subgroup G(r, A, P) — T(r, A, P). (This
assertion holds even if P is infinite cyclic.) Note that f is orientation preserving if and only if
«a is. It suffices to show that either ¥ or ¥ o p, is a PL-homeomorphismin 7' (r, A, Autg(P)).
Let ,5 € Aut(G(r, A, P)) be the restriction of 8 to G(r, A, P). Then 1} [0, r] — [0, r],
the ‘lift” of i, represents the automorphism 3 (.e., ,3 = LJ/). We observe that 1}(0) =0or
¥ (0) = r according as v is orientation preserving or not. Under the hypothesis that P is
dense, Bieri and Strebel [1, Corollary E17.8] showed that v/ is piecewise linear and in fact
either 1,0 or w o prisin G(r, A, Autg(A)) according as whether w is orientation preserving
or not. It follows that ¥ or ¥ o p, belongs to T'(r, A, Autg(A)) as was to be shown.

We record below an observation made in the course of the above discussion.

Theorem 2.4 Ler P C RZ, be any nontrivial subgroup and A C R be any non-zero
P-submodule. Let r € A~g. Any outer automorphism of T (r, A, P) is represented by
an automorphism B : T(r, A, P) — T(r, A, P) which restricts to an automorphism
of G(r, A, P). (]
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3 Twisted conjugacy classes in G(r, A, P) and T(r, A, P)

We shall continue to assume that P C Rio is a nontrivial subgroup, possibly infinite cyclic,
and that A C R is a nontrivial P-submodule. Also we assume that r € A is positive. We
regard S, as the quotient space [0, r]/{0, r}. Observe that T (r, A, P) contains infinitely
many (untwisted) conjugacy classes. For example, this may be seen by noting that, for each
n > 2, there exist elements of 7'(r, A, P) whose support is a union of n pairwise disjoint
open arcs in S,. (Recall that the support of a homeomorphism f : X — X is defined as
supp(f) i= {x € X | f(x) # x}.)

Suppose that @ € Aut(T(r, A, P)) is induced by a homeomorphism ¢ : S, — S, and
that ', g € T(r, A, P) are ¢-twisted conjugates. Let z € T(r, A, P) be such that

f=zga@z H=zg¢z ¢ (1
This implies that
fé=z(gp)z". )

Therefore f¢ and g¢ are conjugates in Homeo(S)).

Suppose that f,,,n > 1, is a sequence of elements in 7'(r, A, P) such that f,¢ are in
pairwise distinct conjugacy classes of Homeo(S, ). Then it follows from (2) that R («) = oo.

For example, it is easy to see that there is an element f;,, € T (r, A, P) whose support is a
disjoint union of n arcs. Evidently the f,,, n > 1, are in pairwise distinct conjugacy classes
of Homeo(S; ). Taking « to be identity, we have ¢ = id and so we conclude that R(id) = co.
It follows that R(8) = oo for any inner automorphism g of T'(r, A, P).

More generally, let @ be any automorphism of a group I and let 8 = 1goa where g € I' and
tg is the inner automorphism £ +—> ghg~!. One has a well-defined bijection R(B8) — R(x)
defined as [x]g +> [xg]s Where [x], denotes the a-twisted conjugacy class of x € I". Hence
R(a) = oo if and only if R(B8) = oo. (See [7, Sect. 3].)

It follows that, in order to show the R.-property for 7'(r, A, P), it suffices to show that
that R(«) = oo for a set of coset representatives for Out(7 (r, A, P)).

In view of Theorem 2.4, we may choose a representative automorphism « that restricts to
an automorphism «g of G(r, A, P). This is equivalent to the requirement that ¢ (0) = 0.

3.1 Strategy of proof

Since G(r, A, P) has the R-property by [9], we are guaranteed of a sequence of elements
fosn>1,in G(r, A, P) C T(r, A, P) which are in pairwise distinct op-twisted conjugacy
classes. Suppose that « is induced by ¢ € Homeo(S,) (via conjugation). Then f,¢,n > 1,
are in pairwise distinct G(r, A, P)-conjugacy classes, that is, the f,;¢ are in pairwise distinct
orbits for the conjugacy action of G(r, A, P) on Homeo(S,). We shall choose f, so that
when P is not cyclic, the elements f,¢,n > 1, remain in pairwise distinct 7' (r, A, P)-
conjugacy classes. Indeed, we shall choose our f;, € G(r, A, P) so that f,¢,n > 1, are in
pairwise distinct Homeo(S,)-conjugacy classes. Our choice of the sequence { f;,} will depend
on whether « is orientation preserving or orientation reversing.

Assume that ¢(0) = 0 and let (fb : [0,7] — [0, r]. Suppose that « is orientable. Then
#(0) = 0. Evaluating both sides of (2) at z(0) we obtain f.¢(z(0)) = z(0). Thus z(0) is
a fixed point of f o ¢. By appropriate choices for f, g, if one can arrange so that 0 is the
only fixed point of f o ¢, then we can conclude that z(0) = 0. This would force z to be
in G(r, A, P) since z is orientation preserving. Hence f, g must be in the same o-twisted
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conjugacy class. This will be our strategy of proof when ¢ is orientation preserving. We will
achieve this assuming that ¢ has non-vanishing one-sided derivative at 0. This assumption is
always valid when P is not cyclic in view of Theorem 2.3.

In the case when ¢ is orientation reversing, we consider the squares f¢ f¢ = fa(f).¢>
and gpgd = ga(g).¢>. It is immediate from (2) that fa(f)p> and ga(g)¢p? are conju-
gates. Note that ¢ is orientation preserving. Again we will choose f, € G(r, A, P) so that
ot (f2)@? are in pairwise distinct conjugacy classes in Homeo(S, ). There will be two cases
to consider, depending on whether ¢> fixes point-wise a non-degenerate interval or not. It
will be assumed that ¢ is piecewise linear. This is not a restriction when P is non-cyclic in
view of Theorem 2.3.

3.2 Orientation preserving automorphisms

Let « be an orientation preserving automorphism of 7' (r, A, P) represented by a homeomor-
phism ¢ : S, — S,. We assume that ¢ has non-vanishing one-sided derivatives at a point
a € A/rZ. Since A is dense in R, this is automatically valid when ¢ is piecewise linear; this
is so when P is non-cyclic by Theorem 2.3.

Denote by 7. : S, — S, the rotationt +— t +c¢ € S,. If c € A, thent. € T(r, A, P).
Also, by Theorem 2.1, ¢ maps A/rZ to itself. Therefore conjugation by ¢ :=7_p 0@ o 7,
where b = ¢ (a) defines an automorphism of 7'(r, A, P). Moreover we have ¥ (0) = 0 and
Y has non-vanishing one-sided derivative at 0. Note that since 7,, _p € T(r, A, P), both ¢
and ¥ determine the same outer automorphism of 7' (v, A, P). Thus we may (and do) assume,
without loss of generality, that ¢ (0) = 0 and that ¢ has non-vanishing one sided derivatives
at 0. We shall denote by the same symbol ¢ its lift ¢ : [0,7] — [0, r]. The (one-sided)
derivatives at the end points will be denoted ¢’ (0), ¢'(r).

Let f5 : [0, r] — [0, r] be the unique PL-homeomorphism with exactly one break-point
£, in (0, r) and having slopes A and A~! at the end points 0 and r respectively. Explicitly,
& =r/(A+1),and,

[ O<t=<r/(x+1),
BO= 34—, /a4 <t <

Ifx,y :[0,r] — [0, r] we declare that x < y if x(#) < y(¢t) forall 0 < ¢t < r. Thus
fr> fuifd > .

Lemma 3.1 Suppose that ¢ : [0, r] — [0, r] is an orientation preserving homeomorphism
with non-vanishing derivatives at end points. Then, for any p € P sufficiently large, there
existsan h € G(r, A, (p)) such that ¢ < h with h’(0) = p

Proof First we show the existence of a A > 1 such that ¢ < f3. Then we shall show that, for
p > Ain P, there exists an i = i, € G(r, A, (p)) such that f; < h and h'(0) = p.

Since ¢ is orientation preserving, one-sided derivatives, when they exist, are positive if
non-zero. Choose . > max{l, ¢’(0), 1/¢’(1)}. Then, for some 0 < ¢ < min{r/u, r/2}, we
have ¢(t) < pt, forO <t <eandp(t) < u 't + (1 —p Drforn:=r—e<t<r.
We choose A >  sufficiently large so that Ar/(A 4+ 1) > u~'n+r(1 — ™) > ¢ (). Then
¢ < foforall 0 <t < r (Fig. 1).

Let £ = &, = r/(A + 1) be the break point of f;. Choose p € P, p > A 4+ 1 so that
pE > r. We pick ana € A such that A(/p < a < r/p < &. Let k be sufficiently large
so that, writing g := p~k we have (r — ap)/(r —a) > g so that ap < aq + r(1 — q).
Finally, choose b € A such that a < b < &. Then the slope of the straight line joining the
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Fig.1 Choice of fj

I

Fig.2 Choice of &

Cng

points (b, ap) and (r, r) is less than that of the line joining (&£, A£) and (r, r). Moreover,
ap <aq+r(1—gq) <bg+r(1—q) < r.So the slope of the straight line joining the points
(b,bg +r(1 —q)) and (r, r) is less than that of the line joining (b, ap) and (r, r), which in
turn implies that the slope of the straight line joining the points (b, bg +r(1 —q)) and (r, r)
is less than that of the line joining (&, A&) and (r, r) (Fig. 2).

We claim that there is a PL-homeomorphism h; : [a, b] — [ap, bq + r(1 — q)] with
slopes in the cyclic group Py := (p) C P and break-points in A. In view of [1, Theo-
remA4.1], such a homeomorphism exists if a — b = ap — bg + r(1 — g) mod I Py.A.
Indeed, ap — a,bq — b, r(1 — q) € I Py.A, and so such a h; exists. Pasting this with the
linear isomorphisms [0, a] — [0, ap] and [b, r] — [bg + r(1 — q), r] fixing end points,
yields a PL-homeomorphism/ € G(r, A, Pp). By the very construction, itis clear that¢ < h
and that 4’ (0) = p. O

3.3 Orientation reversing automorphisms
Leta € T(r, A, P) be orientation reversing, represented by a homeomorphism ¢ : S, — S,.

Again, as already observed in Sect. 2, we may (and do) assume without loss of generality
that ¢ (0) = 0. Then its lift to [0, r], also denoted ¢, satisfies ¢ (0) = r, ¢ (r) = 0. It is clear
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that ¢ o p, and ¢? are orientation preserving. (Recall that p,.(t) = r — ¢ is the reflection of
[0, r] about the midpoint r/2.)

We assume that ¢ : [0, r] — [0, r] is piecewise linear:

Since ¢ is orientation reversing, there is a unique ty € (0, r) such that ¢ (#p) = fo. Suppose
that f € G(r, A, P) C T(r, A, P) has support supp(f) C (0, 79). Then ¢f¢’1 has support
in (tp, r). It follows that each of the homeomorphisms O foofo L u=fofet maps
[0, to] =: Jo (resp. [to, r] = J1) to itself, fixing the end points. Also ¢ (J;) = J1—; and so, if
z € T(r, A, P), then zug?z ' (z(J;)) = z(J;).

Let bo(X) denote the O-th Betti number of X. Note that if v : [0,r] — [0,r]
is a PL-homeomorphism then bo(supp(¥)), bo(Fix(y)) are finite. We will construct a
sequence of elements f,, € G(r, A, P) such that {bo(supp(fma(fm)ci)z))}mzl (resp.
{bo (Fix( fma(ﬁn)qﬁz))}mz]) is an unbounded sequence, when supp(¢2) is not dense (resp.
when supp(¢2) is dense).

Case 1. Suppose that % is identity in an interval J. If t € ¢ (J), write t = ¢ (s),s € J.
Now ¢2(t) = $3(s) = ¢ (p%(s)) = ¢ (s) = 1. So @2 | ¢ (J) is also identity. Let J = (a, b),
where 0 < a < b < fy. Thus ¢? is identity in J U ¢(J) = (a,b) U (¢ (b), p(a)). We
choose f,, € G(r, A, P) to have support a union of m pairwise disjoint intervals I, ..., I,
contained in J. Then u,, = f,.¢ fu¢~" has support U,, := supp(f,n) U ¢ (supp(fn)) and
moreover, supp(u,$>) equals U,, U supp(¢?). Note that supp(¢?) is a disjoint union of
finitely many—say k—intervals, in view of our assumption that ¢ is a PL-homeomorphism.
Since J U ¢ (J) is disjoint from the support of ¢, the support of u,,¢? is a disjoint union of
exactly 2m + k intervals.

Case 2. Suppose that supp(¢?) is a dense open subset of (0, ). Since ¢ is piecewise linear
it follows that Fix(¢?) is a finite set.
First we make a preliminary observation.

Lemma 3.2 Suppose that  : [a, b] — la, c] is the affine isomorphism fixing a, namely,
Y(t) = At —a) + a where . = (c —a)/(b —a) # 1. Let m > 1. Then there exists a
PL-homeomorphism f : [a,c] — [a, c] such that (i) f is identity near the end points and
2m < #Fix(f oY) < o0,

(ii) slopes of f are in P and break points of f are in A.

Proof We will assume that .. > 1; the case when A < 1 being similar. Thus we have ¢t < (1)
fora <t < b.

Step 1 First we prove the lemma for m = 1. The required f will have support equal
to an interval (ag,co) C (a,b) and will map a sub interval (ag, bp) into an interval
(ag, b1) by an affine map with sufficiently small slope so that b; < ¥~ 1(bp). Then
fo vy ao), v (b)) = f(lao. bol) = [ao, b1] C [¥ ' (ao), ¥~ ' (bo)] and so f o ¥
fixes a point in (a, v H(bo)).

Choose ay € AN (a,b) sothata < ay < Y(ag) < c. Choose by, co € A such that
ap < by < cg < Y(ap). Choose p € P, p > A; we shall presently refine our choice of p. Set
b1 :=p~Y(bg —ap) +ag € A. Then t — ag + p~ ' (t — ap) defines a PL-homeomorphism
ho : [ao, bo] — [ao, b1]. We choose p so large that a + (bg — a) /1 = 1//_1(170) > b;—in
fact any p € P such that p > % will do. Now we choose a PL-homeomorphism
hy : [bo, col = [b1, co] with slopes in Py := (p) C P and break-points in A. The existence
of such a homeomorphism follows from [1, TheoremA4.1] in view of the fact that co — b =
co—bo+ 1 —p~H(bo—ag) € IPy.A.

@ Springer



Geometriae Dedicata

We piece together the two homeomorphisms /g, /1 to obtain f : [a,c] — [a, c] with
support in (ag, co) slopes in Py = (p), break points in A. Explicitly, we define as follows:
f I lao, bo]l = ho, f | [bo, col = h1 andisidentity on[a, ag]U[cp, c¢]. We claim that f o1 has
at least two fixed points: one in [y := (w‘l (ap), w_l (bp)) and one in I := (w‘l (bo), ap).
This is because f o ¥(lo) C [f(ao), f(bo)] C lao, b1l C [¥~'(ao), ¥~ (bo)] = Io.
Similarly, f o y(I1) C f([bo, ¥ (ao)]) = [b1, ¥ (ap)] C [~ (bo), a0l = Ir. Thus f o
has at least 2 fixed points in [a, b]. The slopes of f o ¢ are all in L Py. Since 1| < A < p we
have 1 ¢ APy, (as A ¢ Pp) and we see that fi has only finitely many fixed points in [a, b].

Step 2 Let m be any positive integer. Consider the points a;, 1 < j < m in AN (a, b) such
thataji < Y¥(ajy1) < aj forall j. Choose bj,cj € Asuchthata; < bj < c; < ¥(aj).
Proceeding as in step 1, we obtain a PL-homeomorphism f; : [a, b] — [a, c] with support
in (a;, ¢j) such that f; o v has (at least) two fixed points. Since the f; have disjoint support
we see that f := fjo---0 fy, : [a, c] = [a, c] is identity near the end points and f o ¥ has
finitely many fixed points, the number of fixed points being at least 2m. m}

We are now ready to construct, in the lemma below, a sequence { f;;,},,>1 in G(r, A, P)
with the asserted property.

Lemma3.3 Let ¢ : S, — S, be an orientation reversing PL-homeomorphism that fixes 0
and induces an automorphism o € T (r, A, P). Suppose that support of ¢* : [0, 7] — [0, r]
is dense. Then there exist a sequence of elements { fi}m>1 in G(r, A, P) such that 2m <
bo(Fix(um 0 §%)) < 00 where uy = fua(fn) = fund fud™".

Proof Clearly ¢ has a unique fixed point, denoted 7o, in (0, r). Our assumption on ¢ implies
that 79 is an isolated fixed point of ¢2. Let 11 > 1o be sufficiently close to 7y so that ¢2 (1) =
At —19)+ 1o fortg <t < t1. Taking ¥ := ¢2 [ [t0, t1] we are in the situation of Lemma 3.2
and we obtain PL-homeomorphisms g, : [to, At1] — [fo, At1] which is supported in (7o, #1)
has break points in A, slopes in P, such that g, o ¥ has at least 2m fixed points in [#, #1].
We extend g, to an element f,, € G(r, A, P) with support the same as that of g,,. Then the
support of ¢ f,,¢ ! equals ¢ (supp(fin)) C (0, o) and hence disjoint from supp( f,,). Now
let u,, = fm.¢fm¢_1 = ¢fm¢_1fm. Then um¢2 has at least 2m isolated fixed points in
(t0, 11). It follows that b (Fix (it ¢2)) > 2m. O

4 Proof of Theorem 1.1

Leto be an automorphismof 7' (r, A, P).Itisrepresented by ahomeomorphism¢ : S, — S,.
As already observed in Sect. 1, it suffices to show that R(«) = co when « restricts to an
automorphism «g of G([0, r], A, P). So we assume that ¢((_)) = 0. Our hypothesis P is
non-cyclic implies, by Theorem 2.3, that ¢ is piecewise linear.

Suppose that ¢ is orientation preserving. For each p € P sufficiently large, we constructed
in Lemma 3.1 an element 2, € G(r, A, P) with slope p € P near 0 and such that ¢ < h,,
(thatis,¢(t) < hp(1),0 <t <r).Let ), = h;l. Then f,¢ < id forall p sufficiently large.
This implies that 0 is the only fixed point of fp®: S — S,

Suppose that R(a) < oo. Choose p, g € P sufficiently large and distinct such that f),
and f, must be a-twisted conjugates. From Equation (2), we have that f;¢ = z qubz‘l for
some z = zp4 € T(r, A, P). Evaluating at 2(0) we obtain qub(z((_))) = z(0). This forces
that z(0) = 0 since fq® fixes no other point of S,. Hence z € G(r, A, P) and f),, f; are ag
conjugates where o : G(r, A, P) — G(r, A, P) is the restriction of .
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On the other hand, by [9, Sect. 3], the homomorphism oy : G(r, A, P) — P defined as
f +— f/(0) is invariant under ay, that is, oy = oy o o (since ¢ is orientation preserving). So
o¢(hp) = p and we have ¢~' = 0y (f,) = 0v(zfpan(z™)) = oe(D)oe(fp)oe(ao(z™h)) =
o¢(z)oe(fp)oe @Y = ou( fp) = p‘l. Therefore p = g which contradicts our choice.

Next assume that ¢ is orientation reversing. There are two cases to consider depending
on whether supp(¢?) is dense or not.

Suppose that supp(¢?) is not dense. In Sect. 3.3 we constructed a sequence of elements
fm,m > 1,1in G(r, A, P) such that, denoting by u the element f,,a(f,;) = fm.¢fm¢’1,
the sequence {bo(supp(um¢2))}, m > 1, is an unbounded sequence of natural numbers.
(Recall that by(X) is the number of path components of X.) By passing to a subsequence
we may assume that the sequence b, = bo(um¢2), m > 1, consists of pairwise distinct
positive integers.

If R(x) < oo, then, by (2), there would be some pairs of distinct integers m, n > 1, and
elementsz =z, , € T(r, A, P) such that um¢2 = z.up$?.z~ 1. This means that supp(um¢2)
and supp(unqbz) are homeomorphic. Therefore b,, = by (supp(um¢>2)) = by (supp(un¢2)) =
by, a contradiction since b,, are pairwise distinct and m 7 n by our choice.

Finally suppose that supp(¢?) is dense. Consider the sequence of elements f,,, m > 1
in G(r, A, P) constructed in Lemma 3.3 with the property that bo(Fix(um@?)) is an
unbounded sequence of natural numbers. We proceed exactly as in the previous case, replac-
ing bo(supp(um¢>2)) by bo(Fix(upmd?)) throughout, we arrive at a contradiction in case
R(a) < oo.

Thus we conclude that R(«) = oo and so T'(r, A, P) has the Ro,-property.

Remark 4.1 Suppose that P is cyclic and that ¢ € Homeo(S,) represents a given automor-
phisma of T'(r, A, P). A basic fact is that the set of singular points of ¢ (where the derivative
does not exist) has Lebesgue measure 0. However if A is countable (eg. A = Z[1/p] where
P = (p)) it could so happen that every point of A is singular and it is not possible to replace
¢ by x¢y for any x,y € T(r, A, P) so as to make the resulting homeomorphism to fix 0
and to have (non-vanishing) one-sided derivative there. In the case when ¢ is orientable,
Lemma 3.1 can be extended to the case when ¢ : [0, #r] — [0, r] has finite non-vanishing
(one-sided) Dini numbers D" (¢; 0), Dy (¢; 0), D™ (¢; r), D_(¢; r) at the end points. (See
[13, Sect. 3, Chapter 3].) But it is possible that DT (¢; 0) = oo, Dy (¢, 0) = 0 and in such
a case it is impossible to find a A > 0 such that ¢ < f; or f, < ¢. For example, if the
graph of ¢ meets both arcs as in Fig. 3 below arbitrarily close to 0. The arcs are tangential to
horizontal (resp. vertical) axis at 0.

Fig.3 Non-existence of fj
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When ¢ : [0,r] — [0, r] is orientation reversing, we used the fact that supp(¢2) has
only finitely many components for PL-homeomorphisms. This is evidently false even if
the restriction of ¢ to (0, r) is piecewise linear. Also the topology of Fix(¢) is possibly
very complicated, containing infinitely many disjoint intervals and infinitely many discrete
points. There is some room for improvement in our results of Sect. 3.3 since any Fix(u$?) and
Fix(zu¢?z ") are order isomorphic as subspaces of [0, r]. This is a much stronger statement
than the equality of their O-th Betti numbers. But the general situation is too complex that
we have not been able to exploit this.
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