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Abstract
Given an automorphism φ : � → � of a group, one has a left action of � on itself defined as
g.x = gxφ(g−1). The orbits of this action are called the Reidemeister classes or φ-twisted
conjugacy classes. We denote by R(φ) ∈ N ∪ {∞} the Reidemeister number of φ, namely,
the cardinality of the orbit space R(φ) if it is finite and R(φ) = ∞ if R(φ) is infinite. The
group � is said to have the R∞-property if R(φ) = ∞ for all automorphisms φ ∈ Aut(�).
We show that the generalized Thompson group T (r , A, P) has the R∞-property when the
slope group P ⊂ R

×
>0 is not cyclic.

Keywords R. Thompson’s groups · PL-homeomorphisms of the circle · Twisted
conjugacy · Reidemeister number · R∞-property
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1 Introduction

Let P ⊂ R
×
>0 be a nontrivial subgroup of themultiplicative group of positive reals and let A ⊂

R be a nontrivial subgroup of the additive group of reals which is also a P-module, i.e., t .A =
A ∀t ∈ P . Note that A ⊂ R is dense since P is nontrivial. Let r ∈ A be positive. We shall
denote by Sr the circle R/rZ. Let T (r , A, P) denote the group of all PL-homeomorphisms
of Sr which have slopes in P and break points (i.e., points of non-differentiability) in A/rZ.
Also let G(r , A, P) denote the group of all PL-homeomorphisms of the interval [0, r ] with
slopes in P and break points in A. We regard G(r , A, P) as the subgroup of T (r , A, P)

consisting of elements which fix the trivial coset rZ =: 0̄ ∈ Sr . The family of groups
G(r , A, P), T (r , A, P) were introduced by Bieri and Strebel [1], as a generalization of the
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Richard Thompson groups G = G(1,Z[1/2], 〈2〉) and T = T (1,Z[1/2], 2). The group
G(r , A, P) was denoted G(I , A, P), where I = [0, r ], by Bieri and Strebel, who also
considered similarly defined groups G(I , A, P)where I ⊂ R is any interval, not necessarily
compact.

When P = 〈n1, . . . , nk〉 where n1, . . . , nk are multiplicatively independent integers (i.e.,
the subgroup generated by n1, . . . , nk is free abelian of rank k) and A = Z[1/n] where
n = lcm{n j | 1 ≤ j ≤ k}, the group T (r , A, P) is denoted by T (r; n1, . . . , nk). Stein [14]
showed that T (r; n1, . . . , nk) are finitely presented groups, extending the same result for the
groups T (r; n) by Brown [4].

The R∞-property for the Thompson’s group G was established by Bleak et al. [2]. See
also [6]. The same property for the groups G(I , A, P), among others, was established in [9].
The case of the Thompson group T was settled by Burillo et al. [5] and also independently
by Gonçalves and Sankaran [7]; see also [8, Sect. 4]. The following is the main result of this
paper. The analogous result for G(r , A, P) (among others) was established in [9].

Theorem 1.1 Suppose that P is not cyclic, A is a non-zero P-module, r ∈ A positive. Then
T (r , A, P) has the R∞-property.

We now outline the major steps in the proof. It is easy to see that T (r , A, P) has infinitely
many (untwisted) conjugacy classes and so the Reidemeister number of every inner auto-
morphism is infinite. Hence it suffices to show that the Reidemeister number is infinite for
a complete set of representatives of the outer automorphism group of T (r , A, P). A basic
result is that the automorphism group of T (r , A, P) equals the normalizer of T (r , A, P) in
the group of all homeomorphisms of the circle Sr . Using this result, we show that the repre-
sentative automorphisms {α} can always be chosen so that they restrict to automorphisms of
G(r , A, P). Denote byα0 the restriction of the automorphismα toG(r , A, P). The rest of the
proof depends on two cases, depending on whether the homeomorphism of Sr that induces a
given automorphism α is orientation preserving or reversing. In each case we show that, by
appropriate construction of elements { fn}n≥1 of G(r , A, P) belonging to distinct α0-twisted
conjugacy classes, the fn belong to pairwise distinct Reidemeister classes of α. An important
ingredient of the proof is the description of the automorphism group of T (r , A, P), when P
is not cyclic, as the normalizer of T (r , A, P) in the group of all piecewise linear homeomor-
phisms of Sr . When P is cyclic, in general, there are exotic automorphisms—those which
cannot be represented by PL homeomorphisms and our proof fails for such automorphisms.

2 The automorphism group of T(r,A,P)

McCleary and Rubin [12, Theorem 3] obtained a very general result concerning the auto-
morphism group of a group G of orientation preserving homeomorphisms of a dense subset
X of S1. Their result, applied to the case X = S

1, states that if G (i) contains a nontrivial
element whose support is not dense, and (ii) satisfies a certain interval-transitivity property—
the O − 3-transitivity on a dense subset—then the automorphism of the group G is equal to
the normalizer of G in the group Homeo(S1) of all homeomorphisms of S1. Bieri and Strebel
[1, Sect. 16-17] had shown earlier an analogous result when G is a subgroup of G(r , A, P)

satisfying certain axioms. (See also McCleary [11].) Applying these two results, Bieri and
Strebel obtained the following.

Theorem 2.1 (Bieri-Strebel [1, Theorem N3.6]) Suppose that A ⊂ R and P ⊂ R
×
>0 are

non-trivial groups. Assume that r ∈ A is positive. Let α be any automorphism of T (r , A, P).
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Then there exists a unique homeomorphism φ : Sr → Sr such that α( f ) = φ◦ f ◦φ−1, ∀ f ∈
T (r , A, P). Also φ(A/rZ) = A/rZ.

Definition 2.2 An automorphism α of T (r , A, P) is said to be orientation preserving (resp.
orientation reversing) if φ is orientation preserving (resp. orientation reversing).

When P is not a cyclic group, it is dense in R>0. We have the following theorem
which guarantees that the homeomorphism φ in Theorem 2.1 is piecewise linear. Denote
by Aut0(A) ⊂ R

×
>0 the subgroup {s > 0 | s A = A}. Since P ⊂ Aut0(A), we have

T (r , A, P) ⊂ T (r , A,Aut0(A)). In fact, T (r , A,Aut0(A)) normalises T (r , A, P) (by the
chain rule); that is, gxg−1 ∈ T (r , A, P), ∀g ∈ T (r , A,Aut0(A)), ∀x ∈ T (r , A, P). It
is easily seen that the only element of T (r , A,Aut0(A)) that commutes with every ele-
ment of T (r , A, P) is the identity element. Thus, the homomorphism T (r , A,Aut0(A)) →
Aut(T (r , A, P)) defined as g 
→ ιg , the (restriction of) conjugation by g, is a monomor-
phism. Denote by ρr : [0, r ] → [0, r ] the reflection t 
→ r − t and by the same symbol the
induced reflection of the circle Sr .

We have the following result, which had been obtained in the special case of
T (r; n1, . . . , nk), k ≥ 3, by Liousse [10].

Theorem 2.3 (Bieri-Strebel [1, TheoremN3.10]) Suppose that P is not cyclic. Then the group
Aut(T (r , A, P)) is isomorphic, via conjugation, to the subgroup of all homeomorphisms of
Sr generated by T (r , A,Aut0(A)) and the reflection ρr .

In particular, under the hypotheses of the theorem, there are no exotic automorphisms of
T (r , A, P), that is, every automorphism is realised as conjugation by a PL-homeomorphism
of Sr . This is not the case in general when P is cyclic.

The group T (n−1,Z[1/n], 〈n〉) = T (n−1; n) is known to contain exotic automorphisms
by the work of Brin and Guzmán [3] when n > 2 is an integer. The case n = 2 is the classical
Richard Thompson group T and it is known that every automorphism of T is represented
by a PL-homeomorphism—in fact Out(T ) is cyclic of order 2, generated by the class of the
reflection ρ1.

We give a brief outline of the proof of Theorem 2.3, referring the reader to [1, Sect. N] for
further details. Suppose that α ∈ Aut(T (r , A, P)) is represented by a homeomorphism φ :
Sr → Sr as in Theorem 2.1. Let u = φ(0̄) ∈ A/rZ. Then the rotation map τ = τ−u defined
as t 
→ t−u of Sr is piecewise linear and belongs to T (r , A, P) as u ∈ A/rZ and has constant
slope 1 ∈ P .Note that τ mapsu to 0̄ and soψ := τ◦φ fixes 0̄. It follows that the automorphism
ιτ ◦ α =: β, represented by ψ , stabilizes the subgroup G(r , A, P) ↪→ T (r , A, P). (This
assertion holds even if P is infinite cyclic.) Note that β is orientation preserving if and only if
α is. It suffices to show that eitherψ orψ ◦ρr is a PL-homeomorphism in T (r , A,Aut0(P)).
Let β̃ ∈ Aut(G(r , A, P)) be the restriction of β to G(r , A, P). Then ψ̃ : [0, r ] → [0, r ],
the ‘lift’ of ψ , represents the automorphism β̃ (i.e., β̃ = ιψ̃ ). We observe that ψ̃(0) = 0 or

ψ̃(0) = r according as ψ is orientation preserving or not. Under the hypothesis that P is
dense, Bieri and Strebel [1, Corollary E17.8] showed that ψ̃ is piecewise linear and in fact
either ψ̃ or ψ̃ ◦ ρr is in G(r , A,Aut0(A)) according as whether ψ̃ is orientation preserving
or not. It follows that ψ or ψ ◦ ρr belongs to T (r , A,Aut0(A)) as was to be shown.

We record below an observation made in the course of the above discussion.

Theorem 2.4 Let P ⊂ R
×
>0 be any nontrivial subgroup and A ⊂ R be any non-zero

P-submodule. Let r ∈ A>0. Any outer automorphism of T (r , A, P) is represented by
an automorphism β : T (r , A, P) → T (r , A, P) which restricts to an automorphism
of G(r , A, P). �
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3 Twisted conjugacy classes inG(r,A,P) and T(r,A,P)

We shall continue to assume that P ⊂ R
×
>0 is a nontrivial subgroup, possibly infinite cyclic,

and that A ⊂ R is a nontrivial P-submodule. Also we assume that r ∈ A is positive. We
regard Sr as the quotient space [0, r ]/{0, r}. Observe that T (r , A, P) contains infinitely
many (untwisted) conjugacy classes. For example, this may be seen by noting that, for each
n ≥ 2, there exist elements of T (r , A, P) whose support is a union of n pairwise disjoint
open arcs in Sr . (Recall that the support of a homeomorphism f : X → X is defined as
supp( f ) := {x ∈ X | f (x) �= x}.)

Suppose that α ∈ Aut(T (r , A, P)) is induced by a homeomorphism φ : Sr → Sr and
that f , g ∈ T (r , A, P) are φ-twisted conjugates. Let z ∈ T (r , A, P) be such that

f = z.g.α(z−1) = z.g.φz−1φ−1. (1)

This implies that

f φ = z(gφ)z−1. (2)

Therefore f φ and gφ are conjugates in Homeo(Sr ).
Suppose that fn, n ≥ 1, is a sequence of elements in T (r , A, P) such that fnφ are in

pairwise distinct conjugacy classes of Homeo(Sr ). Then it follows from (2) that R(α) = ∞.
For example, it is easy to see that there is an element fn ∈ T (r , A, P) whose support is a

disjoint union of n arcs. Evidently the fn, n ≥ 1, are in pairwise distinct conjugacy classes
of Homeo(Sr ). Taking α to be identity, we have φ = id and so we conclude that R(id) = ∞.
It follows that R(β) = ∞ for any inner automorphism β of T (r , A, P).

More generally, letα be any automorphismof a group� and letβ = ιg◦αwhere g ∈ � and
ιg is the inner automorphism h 
→ ghg−1. One has a well-defined bijection R(β) → R(α)

defined as [x]β 
→ [xg]α where [x]α denotes the α-twisted conjugacy class of x ∈ �. Hence
R(α) = ∞ if and only if R(β) = ∞. (See [7, Sect. 3].)

It follows that, in order to show the R∞-property for T (r , A, P), it suffices to show that
that R(α) = ∞ for a set of coset representatives for Out(T (r , A, P)).

In view of Theorem 2.4, we may choose a representative automorphism α that restricts to
an automorphism α0 of G(r , A, P). This is equivalent to the requirement that φ(0̄) = 0̄.

3.1 Strategy of proof

Since G(r , A, P) has the R∞-property by [9], we are guaranteed of a sequence of elements
fn, n ≥ 1, in G(r , A, P) ⊂ T (r , A, P) which are in pairwise distinct α0-twisted conjugacy
classes. Suppose that α is induced by φ ∈ Homeo(Sr ) (via conjugation). Then fnφ, n ≥ 1,
are in pairwise distinct G(r , A, P)-conjugacy classes, that is, the fnφ are in pairwise distinct
orbits for the conjugacy action of G(r , A, P) on Homeo(Sr ). We shall choose fn so that
when P is not cyclic, the elements fnφ, n ≥ 1, remain in pairwise distinct T (r , A, P)-
conjugacy classes. Indeed, we shall choose our fn ∈ G(r , A, P) so that fnφ, n ≥ 1, are in
pairwise distinct Homeo(Sr )-conjugacy classes. Our choice of the sequence { fn}will depend
on whether α is orientation preserving or orientation reversing.

Assume that φ(0̄) = 0̄ and let φ̃ : [0, r ] → [0, r ]. Suppose that α is orientable. Then
φ̃(0) = 0. Evaluating both sides of (2) at z(0̄) we obtain f .φ(z(0̄)) = z(0̄). Thus z(0̄) is
a fixed point of f ◦ φ. By appropriate choices for f , g, if one can arrange so that 0̄ is the
only fixed point of f ◦ φ, then we can conclude that z(0̄) = 0̄. This would force z to be
in G(r , A, P) since z is orientation preserving. Hence f , g must be in the same α0-twisted
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conjugacy class. This will be our strategy of proof when φ is orientation preserving. We will
achieve this assuming that φ has non-vanishing one-sided derivative at 0̄. This assumption is
always valid when P is not cyclic in view of Theorem 2.3.

In the case when φ is orientation reversing, we consider the squares f φ f φ = f α( f ).φ2

and gφgφ = gα(g).φ2. It is immediate from (2) that f α( f )φ2 and gα(g)φ2 are conju-
gates. Note that φ2 is orientation preserving. Again we will choose fn ∈ G(r , A, P) so that
fnα( fn)φ2 are in pairwise distinct conjugacy classes in Homeo(Sr ). There will be two cases
to consider, depending on whether φ2 fixes point-wise a non-degenerate interval or not. It
will be assumed that φ is piecewise linear. This is not a restriction when P is non-cyclic in
view of Theorem 2.3.

3.2 Orientation preserving automorphisms

Let α be an orientation preserving automorphism of T (r , A, P) represented by a homeomor-
phism φ : Sr → Sr . We assume that φ has non-vanishing one-sided derivatives at a point
a ∈ A/rZ. Since A is dense in R, this is automatically valid when φ is piecewise linear; this
is so when P is non-cyclic by Theorem 2.3.

Denote by τc : Sr → Sr the rotation t 
→ t + c ∈ Sr . If c ∈ A, then τc ∈ T (r , A, P).
Also, by Theorem 2.1, φ maps A/rZ to itself. Therefore conjugation by ψ := τ−b ◦ φ ◦ τa
where b = φ(a) defines an automorphism of T (r , A, P). Moreover we have ψ(0̄) = 0̄ and
ψ has non-vanishing one-sided derivative at 0̄. Note that since τa, τ−b ∈ T (r , A, P), both φ

andψ determine the same outer automorphism of T (r , A, P). Thus wemay (and do) assume,
without loss of generality, that φ(0̄) = 0̄ and that φ has non-vanishing one sided derivatives
at 0̄. We shall denote by the same symbol φ its lift φ : [0, r ] → [0, r ]. The (one-sided)
derivatives at the end points will be denoted φ′(0), φ′(r).

Let fλ : [0, r ] → [0, r ] be the unique PL-homeomorphism with exactly one break-point
ξλ in (0, r) and having slopes λ and λ−1 at the end points 0 and r respectively. Explicitly,
ξλ = r/(λ + 1), and,

fλ(t) =
{

λt, 0 ≤ t ≤ r/(λ + 1),
λ−1t + r(1 − λ−1), r/(1 + λ) ≤ t ≤ r .

If x, y : [0, r ] → [0, r ] we declare that x < y if x(t) < y(t) for all 0 < t < r . Thus
fλ > fμ if λ > μ.

Lemma 3.1 Suppose that φ : [0, r ] → [0, r ] is an orientation preserving homeomorphism
with non-vanishing derivatives at end points. Then, for any p ∈ P sufficiently large, there
exists an h ∈ G(r , A, 〈p〉) such that φ < h with h′(0) = p.

Proof First we show the existence of a λ > 1 such that φ < fλ. Then we shall show that, for
p > λ in P , there exists an h = h p ∈ G(r , A, 〈p〉) such that fλ < h and h′(0) = p.

Since φ is orientation preserving, one-sided derivatives, when they exist, are positive if
non-zero. Choose μ > max{1, φ′(0), 1/φ′(1)}. Then, for some 0 < ε < min{r/μ, r/2}, we
have φ(t) < μt, for 0 < t ≤ ε and φ(t) < μ−1t + (1 − μ−1)r for η := r − ε ≤ t < r .
We choose λ ≥ μ sufficiently large so that λr/(λ + 1) > μ−1η + r(1− μ−1) > φ(η). Then
φ < fλ for all 0 < t < r (Fig. 1).

Let ξ = ξλ = r/(λ + 1) be the break point of fλ. Choose p ∈ P, p > λ + 1 so that
pξ > r . We pick an a ∈ A such that λξ/p < a < r/p < ξ . Let k be sufficiently large
so that, writing q := p−k , we have (r − ap)/(r − a) > q so that ap < aq + r(1 − q).
Finally, choose b ∈ A such that a < b < ξ . Then the slope of the straight line joining the
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Fig. 1 Choice of fλ

fλ
φ

Fig. 2 Choice of h

a b ξ

fλ
h

points (b, ap) and (r , r) is less than that of the line joining (ξ, λξ) and (r , r). Moreover,
ap < aq + r(1−q) < bq + r(1−q) < r . So the slope of the straight line joining the points
(b, bq + r(1 − q)) and (r , r) is less than that of the line joining (b, ap) and (r , r), which in
turn implies that the slope of the straight line joining the points (b, bq + r(1− q)) and (r , r)
is less than that of the line joining (ξ, λξ) and (r , r) (Fig. 2).

We claim that there is a PL-homeomorphism h1 : [a, b] → [ap, bq + r(1 − q)] with
slopes in the cyclic group P0 := 〈p〉 ⊂ P and break-points in A. In view of [1, Theo-
remA4.1], such a homeomorphism exists if a − b ≡ ap − bq + r(1 − q) mod I P0.A.
Indeed, ap − a, bq − b, r(1 − q) ∈ I P0.A, and so such a h1 exists. Pasting this with the
linear isomorphisms [0, a] → [0, ap] and [b, r ] → [bq + r(1 − q), r ] fixing end points,
yields a PL-homeomorphism h ∈ G(r , A, P0). By the very construction, it is clear that φ < h
and that h′(0) = p. ��

3.3 Orientation reversing automorphisms

Let α ∈ T (r , A, P) be orientation reversing, represented by a homeomorphism φ : Sr → Sr .
Again, as already observed in Sect. 2, we may (and do) assume without loss of generality
that φ(0̄) = 0̄. Then its lift to [0, r ], also denoted φ, satisfies φ(0) = r , φ(r) = 0. It is clear
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that φ ◦ ρr and φ2 are orientation preserving. (Recall that ρr (t) = r − t is the reflection of
[0, r ] about the midpoint r/2.)

We assume that φ : [0, r ] → [0, r ] is piecewise linear.
Since φ is orientation reversing, there is a unique t0 ∈ (0, r) such that φ(t0) = t0. Suppose

that f ∈ G(r , A, P) ⊂ T (r , A, P) has support supp( f ) ⊂ (0, t0). Then φ f φ−1 has support
in (t0, r). It follows that each of the homeomorphisms φ2, f , φ f φ−1, u := f φ f φ−1 maps
[0, t0] =: J0 (resp. [t0, r ] = J1) to itself, fixing the end points. Also φ(Ji ) = J1−i and so, if
z ∈ T (r , A, P), then zuφ2z−1(z(Ji )) = z(Ji ).

Let b0(X) denote the 0-th Betti number of X . Note that if ψ : [0, r ] → [0, r ]
is a PL-homeomorphism then b0(supp(ψ)), b0(Fix(ψ)) are finite. We will construct a
sequence of elements fm ∈ G(r , A, P) such that {b0(supp( fmα( fm)φ2))}m≥1 (resp.
{b0(Fix( fmα( fm)φ2))}m≥1) is an unbounded sequence, when supp(φ2) is not dense (resp.
when supp(φ2) is dense).

Case 1. Suppose that φ2 is identity in an interval J . If t ∈ φ(J ), write t = φ(s), s ∈ J .
Now φ2(t) = φ3(s) = φ(φ2(s)) = φ(s) = t . So φ2 � φ(J ) is also identity. Let J = (a, b),
where 0 < a < b ≤ t0. Thus φ2 is identity in J ∪ φ(J ) = (a, b) ∪ (φ(b), φ(a)). We
choose fm ∈ G(r , A, P) to have support a union of m pairwise disjoint intervals I1, . . . , Im
contained in J . Then um = fm .φ fmφ−1 has support Um := supp( fm) ∪ φ(supp( fm)) and
moreover, supp(umφ2) equals Um ∪ supp(φ2). Note that supp(φ2) is a disjoint union of
finitely many—say k—intervals, in view of our assumption that φ is a PL-homeomorphism.
Since J ∪ φ(J ) is disjoint from the support of φ2, the support of umφ2 is a disjoint union of
exactly 2m + k intervals.

Case 2. Suppose that supp(φ2) is a dense open subset of (0, r). Since φ2 is piecewise linear
it follows that Fix(φ2) is a finite set.

First we make a preliminary observation.

Lemma 3.2 Suppose that ψ : [a, b] → [a, c] is the affine isomorphism fixing a, namely,
ψ(t) = λ(t − a) + a where λ = (c − a)/(b − a) �= 1. Let m ≥ 1. Then there exists a
PL-homeomorphism f : [a, c] → [a, c] such that (i) f is identity near the end points and
2m ≤ #Fix( f ◦ ψ) < ∞,

(ii) slopes of f are in P and break points of f are in A.

Proof Wewill assume that λ > 1; the case when λ < 1 being similar. Thus we have t < ψ(t)
for a < t < b.

Step 1 First we prove the lemma for m = 1. The required f will have support equal
to an interval (a0, c0) ⊂ (a, b) and will map a sub interval (a0, b0) into an interval
(a0, b1) by an affine map with sufficiently small slope so that b1 < ψ−1(b0). Then
f ◦ ψ([ψ−1(a0), ψ−1(b0)]) = f ([a0, b0]) = [a0, b1] ⊂ [ψ−1(a0), ψ−1(b0)] and so f ◦ ψ

fixes a point in (a, ψ−1(b0)).
Choose a0 ∈ A ∩ (a, b) so that a < a0 < ψ(a0) < c. Choose b0, c0 ∈ A such that

a0 < b0 < c0 < ψ(a0). Choose p ∈ P, p > λ; we shall presently refine our choice of p. Set
b1 := p−1(b0 − a0) + a0 ∈ A. Then t 
→ a0 + p−1(t − a0) defines a PL-homeomorphism
h0 : [a0, b0] → [a0, b1]. We choose p so large that a + (b0 − a)/λ = ψ−1(b0) > b1—in
fact any p ∈ P such that p > b0−a0

ψ−1(b0)−a0
will do. Now we choose a PL-homeomorphism

h1 : [b0, c0] → [b1, c0] with slopes in P0 := 〈p〉 ⊂ P and break-points in A. The existence
of such a homeomorphism follows from [1, TheoremA4.1] in view of the fact that c0 − b1 =
c0 − b0 + (1 − p−1)(b0 − a0) ∈ I P0.A.
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We piece together the two homeomorphisms h0, h1 to obtain f : [a, c] → [a, c] with
support in (a0, c0) slopes in P0 = 〈p〉, break points in A. Explicitly, we define as follows:
f � [a0, b0] = h0, f � [b0, c0] = h1 and is identity on [a, a0]∪[c0, c].Weclaim that f ◦ψ has
at least two fixed points: one in I0 := (ψ−1(a0), ψ−1(b0)) and one in I1 := (ψ−1(b0), a0).
This is because f ◦ ψ(I0) ⊂ [ f (a0), f (b0)] ⊂ [a0, b1] ⊂ [ψ−1(a0), ψ−1(b0)] = I0.
Similarly, f ◦ ψ(I1) ⊂ f ([b0, ψ(a0)]) = [b1, ψ(a0)] ⊂ [ψ−1(b0), a0] = I1. Thus f ◦ ψ

has at least 2 fixed points in [a, b]. The slopes of f ◦ ψ are all in λP0. Since 1 < λ < p we
have 1 /∈ λP0, (as λ /∈ P0) and we see that f ψ has only finitely many fixed points in [a, b].
Step 2 Let m be any positive integer. Consider the points a j , 1 ≤ j ≤ m in A ∩ (a, b) such
that a j+1 < ψ(a j+1) < a j for all j . Choose b j , c j ∈ A such that a j < b j < c j < ψ(a j ).
Proceeding as in step 1, we obtain a PL-homeomorphism f j : [a, b] → [a, c] with support
in (a j , c j ) such that f j ◦ ψ has (at least) two fixed points. Since the f j have disjoint support
we see that f := f1 ◦ · · · ◦ fm : [a, c] → [a, c] is identity near the end points and f ◦ ψ has
finitely many fixed points, the number of fixed points being at least 2m. ��

We are now ready to construct, in the lemma below, a sequence { fm}m≥1 in G(r , A, P)

with the asserted property.

Lemma 3.3 Let φ : Sr → Sr be an orientation reversing PL-homeomorphism that fixes 0̄
and induces an automorphism α ∈ T (r , A, P). Suppose that support of φ2 : [0, r ] → [0, r ]
is dense. Then there exist a sequence of elements { fm}m≥1 in G(r , A, P) such that 2m ≤
b0(Fix(um ◦ φ2)) < ∞ where um = fmα( fm) = fmφ fmφ−1.

Proof Clearly φ has a unique fixed point, denoted t0, in (0, r). Our assumption on φ2 implies
that t0 is an isolated fixed point of φ2. Let t1 > t0 be sufficiently close to t0 so that φ2(t) =
λ(t − t0)+ t0 for t0 ≤ t ≤ t1. Taking ψ := φ2 � [t0, t1] we are in the situation of Lemma 3.2
and we obtain PL-homeomorphisms gm : [t0, λt1] → [t0, λt1] which is supported in (t0, t1)
has break points in A, slopes in P , such that gm ◦ ψ has at least 2m fixed points in [t0, t1].
We extend gm to an element fm ∈ G(r , A, P) with support the same as that of gm . Then the
support of φ fmφ−1 equals φ(supp( fm)) ⊂ (0, t0) and hence disjoint from supp( fm). Now
let um = fm .φ fmφ−1 = φ fmφ−1 fm . Then umφ2 has at least 2m isolated fixed points in
(t0, t1). It follows that b0(Fix(umφ2)) ≥ 2m. ��

4 Proof of Theorem 1.1

Letα be an automorphismof T (r , A, P). It is represented by a homeomorphismφ : Sr → Sr .
As already observed in Sect. 1, it suffices to show that R(α) = ∞ when α restricts to an
automorphism α0 of G([0, r ], A, P). So we assume that φ(0̄) = 0̄. Our hypothesis P is
non-cyclic implies, by Theorem 2.3, that φ is piecewise linear.

Suppose thatφ is orientation preserving. For each p ∈ P sufficiently large, we constructed
in Lemma 3.1 an element h p ∈ G(r , A, P) with slope p ∈ P near 0 and such that φ < h p

(that is, φ(t) < h p(t), 0 < t < r ). Let f p = h−1
p . Then f pφ < id for all p sufficiently large.

This implies that 0̄ is the only fixed point of f pφ : Sr → Sr .
Suppose that R(α) < ∞. Choose p, q ∈ P sufficiently large and distinct such that f p

and fq must be α-twisted conjugates. From Equation (2), we have that fqφ = z f pφz−1 for
some z = z p,q ∈ T (r , A, P). Evaluating at z(0̄) we obtain fqφ(z(0̄)) = z(0̄). This forces
that z(0̄) = 0̄ since fqφ fixes no other point of Sr . Hence z ∈ G(r , A, P) and f p, fq are α0

conjugates where α0 : G(r , A, P) → G(r , A, P) is the restriction of α.
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On the other hand, by [9, Sect. 3], the homomorphism σ� : G(r , A, P) → P defined as
f 
→ f ′(0) is invariant under α0, that is, σ� = σ� ◦ α0 (since φ is orientation preserving). So
σ�(h p) = p and we have q−1 = σ�( fq) = σ�(z f pα0(z−1)) = σ�(z)σ�( f p)σ�(α0(z−1)) =
σ�(z)σ�( f p)σ�(z−1) = σ�( f p) = p−1. Therefore p = q which contradicts our choice.

Next assume that φ is orientation reversing. There are two cases to consider depending
on whether supp(φ2) is dense or not.

Suppose that supp(φ2) is not dense. In Sect. 3.3 we constructed a sequence of elements
fm,m ≥ 1, in G(r , A, P) such that, denoting by uM the element fmα( fm) = fm .φ fmφ−1,
the sequence {b0(supp(umφ2))},m ≥ 1, is an unbounded sequence of natural numbers.
(Recall that b0(X) is the number of path components of X .) By passing to a subsequence
we may assume that the sequence bm := b0(umφ2),m ≥ 1, consists of pairwise distinct
positive integers.

If R(α) < ∞, then, by (2), there would be some pairs of distinct integers m, n ≥ 1, and
elements z = zm,n ∈ T (r , A, P) such that umφ2 = z.unφ2.z−1. Thismeans that supp(umφ2)

and supp(unφ2) are homeomorphic. Therefore bm = b0(supp(umφ2)) = b0(supp(unφ2)) =
bn , a contradiction since bn are pairwise distinct and m �= n by our choice.

Finally suppose that supp(φ2) is dense. Consider the sequence of elements fm,m ≥ 1
in G(r , A, P) constructed in Lemma 3.3 with the property that b0(Fix(umφ2)) is an
unbounded sequence of natural numbers. We proceed exactly as in the previous case, replac-
ing b0(supp(umφ2)) by b0(Fix(umφ2)) throughout, we arrive at a contradiction in case
R(α) < ∞.

Thus we conclude that R(α) = ∞ and so T (r , A, P) has the R∞-property.

Remark 4.1 Suppose that P is cyclic and that φ ∈ Homeo(Sr ) represents a given automor-
phism α of T (r , A, P). A basic fact is that the set of singular points of φ (where the derivative
does not exist) has Lebesgue measure 0. However if A is countable (eg. A = Z[1/p] where
P = 〈p〉) it could so happen that every point of A is singular and it is not possible to replace
φ by xφy for any x, y ∈ T (r , A, P) so as to make the resulting homeomorphism to fix 0̄
and to have (non-vanishing) one-sided derivative there. In the case when φ is orientable,
Lemma 3.1 can be extended to the case when φ : [0, r ] → [0, r ] has finite non-vanishing
(one-sided) Dini numbers D+(φ; 0), D+(φ; 0), D−(φ; r), D−(φ; r) at the end points. (See
[13, Sect. 3, Chapter 3].) But it is possible that D+(φ; 0) = ∞, D+(φ, 0) = 0 and in such
a case it is impossible to find a λ > 0 such that φ < fλ or fλ < φ. For example, if the
graph of φ meets both arcs as in Fig. 3 below arbitrarily close to 0. The arcs are tangential to
horizontal (resp. vertical) axis at 0.

Fig. 3 Non-existence of fλ
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When φ : [0, r ] → [0, r ] is orientation reversing, we used the fact that supp(φ2) has
only finitely many components for PL-homeomorphisms. This is evidently false even if
the restriction of φ to (0, r) is piecewise linear. Also the topology of Fix(φ) is possibly
very complicated, containing infinitely many disjoint intervals and infinitely many discrete
points. There is some room for improvement in our results of Sect. 3.3 since any Fix(uφ2) and
Fix(zuφ2z−1) are order isomorphic as subspaces of [0, r ]. This is a much stronger statement
than the equality of their 0-th Betti numbers. But the general situation is too complex that
we have not been able to exploit this.
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