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Abstract. We prove that any C1+BV degree d ≥ 2 circle covering h having
all periodic orbits weakly expanding, is conjugate by a C1+BV diffeomorphism

to a metrically expanding map. We use this to connect the space of parabolic

external maps (coming from the theory of parabolic-like maps) to metrically
expanding circle coverings.

1. Introduction. In this paper we provide a connection between the worlds of
real and complex dynamics by proving theorems on degree d ≥ 2 circle coverings
which are interesting in the world of real dynamics per se and interesting in the
world of complex dynamics through quasi-conformal surgery. The main theorem
states that any C1+BV degree d ≥ 2 circle covering h (where h ∈ C1+BV means
Dh is continuous and of bounded variation), all of whose periodic orbits are weakly
expanding, is conjugate in the same smoothness class to a metrically expanding map.
Here weakly expanding means that for any periodic point p of period s there exists
a punctured neighborhood of p on which Dhs(x) > 1. And metrically expanding
means Dh(x) > 1 holds everywhere, except at parabolic points. This theorem
strengthens a theorem by Mañé [6] who proved the same conclusion holds under
the stronger assumption that h is C2 with all periodic points hyperbolic repelling.

The real analytic version of the above theorem, which comes for the same price,
provides a missing link between the space of parabolic external maps from the
theory of parabolic-like maps and metrically expanding circle coverings. For an
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enlargement on the theory of parabolic-like maps and the role of parabolic external
maps in this theory see the introduction to Section 4 and the paper by the first
author [4].

2. Setting and statement of the results. Recall that a smooth covering map
(this is, a local diffeomorphism which is a covering map) h : S1 → S1 has degree
d 6= 0 if and only if h(ei2πx) lifts to the exponential ei2πx as a diffeomorphism
H : R → R with H(x + 1) = H(x) + d. It will be convenient to work mostly with
H and the induced map also denoted H : T → T := R/Z. Denote by Par(h) the
set of parabolic periodic points for h, and note that for d > 0 the multiplier of any
parabolic orbit is 1.

We denote by F1+BV
d the set of smooth covering maps h : S1 → S1 of degree

d > 0 with h ∈ C1+BV (i.e. writing Dh for the derivative of h, the function Dh

is continuous and of bounded variation). We set also F r+ε
d := F1+BV

d ∩ Cr+ε with
r = 2, 3, . . . ,∞, ω, and 0 < ε ≤ 1, where Cr+ε are the maps which have an ε-Hölder
r-th derivative.

On the other hand, let us call orbit expanding and denote by O1+BV
d ⊂ F1+BV

d

(see Figure 1) the set of maps h for which for every periodic point p say of period
s, there is a neighborhood U(p) of p such that for all x ∈ U(p) \ {p} we have
Dhs(x) > 1. This is, h is a degree d smooth covering of the circle, with continuous
derivative of bounded variation, and with all periodic points either repelling or
parabolic-repelling.

Finally a map h ∈ F1+BV
d is called metrically expanding if for all x in S1 \Par(h),

Dh(x) > 1. We shall see that for such maps Par(h) is a finite set. We denote by

M1+BV
d ⊂ O1+BV

d ⊂ F1+BV
d (see Figure 1) the sub-class of metrically expanding

maps.
In this paper we will prove the following result (see Section 3):

Theorem 2.1. For each map h ∈ O1+BV
d , the set Par(h) is finite and h is conjugate

to a map h̃ ∈M1+BV
d via a C1+BV diffeomorphism.

Moreover, if h is Cr+ε for some r = 2, 3, . . . ,∞, ω, and 0 < ε ≤ 1, we can take
the conjugacy map to be Cr+ε.

A degree d circle map h : S1 → S1 is topologically expanding, if every interval even-
tually expands onto the entire circle or equivalently the map is topologically conju-
gate to the map Pd(z) = zd. We denote by T 1+BV

d = {h ∈ F1+BV
d | h is topologically

expanding}. Theorem 2.1 implies the following:

Corollary 2.2. We have O1+BV
d = T 1+BV

d and for all h ∈ M1+BV
d the set Par(h)

is a finite set.

We now restrict our attention to real analytic coverings maps with at least one
parabolic orbit. So let us denote by Fd ⊂ F1+BV

d the set of all real analytic smooth

covering maps h : S1 → S1 of degree d, by Td = Fd ∩T 1+BV
d , by Td,∗ ⊂ Td the set of

maps h ∈ Fd topologically expanding and for which Par(h) 6= ∅, and by Td,1 ⊂ Td,∗
the set of such h with Par(h) a singleton. Similarly, denote byMd =M1+BV

d ⊂ Fd
the set of degree d real analytic metrically expanding coverings h : S1 → S1, by
Md,∗ = Md ∩ Td,∗ the set of such h for which Par(h) 6= ∅, and by Md,1 ⊂ Md,∗
the set of such h with precisely one parabolic point.

An external map is a map h ∈ Fd with the following properties:

• h : S1 → S1 is a degree d ≥ 2 real analytic covering of the unit circle, with a
finite set Par(h) of parabolic points p of multiplier 1,
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Figure 1. A map of the maps we consider. F1+BV
d is the set of

degree d smooth covering h : S1 → S1 with h ∈ C1+BV;O1+BV
d

is the set of maps h ∈ F1+BV
d for which for every periodic point

p say of period s, there is a neighborhood U(p) of p such that

for all x ∈ U(p) \ {p} we have Dhs(x) > 1; while M1+BV
d and

T 1+BV
d are the class of respectively metrically and topologically

expanding h ∈ F 1+BV
d . Fd is the class of real analytic degree d cir-

cle coverings, Td and Md the set of respectively topologically and
metrically expanding h ∈ Fd, and Td,∗ andMd,∗ the set of respec-
tively topologically and metrically expanding h ∈ Fd for which
Par(h) 6= ∅. Also, Pd is the class of extenal maps and Pd,∗ the
class of parabolic external maps. Finally, Hd,1 = {h ∈ Fd| h ∼qs
hd(z) = zd+(d−1)/(d+1)

(d−1)zd/(d+1)+1
}. By Corollary 2.2, O1+BV

d = T 1+BV
d , and

by Theorem 2.4, Md ⊂ Pd = Td, Md,∗ ⊂ Pd,∗ = Td,∗ and
Md,1 ⊂ Pd,1 = Hd,1 = Td,1.

• the map h extends to a holomorphic covering map h : W ′ → W of degree
d, where W ′, W are reflection symmetric annular neighborhoods of S1. We
write W+ := W \ D, and W ′+ := W ′ \ D,

• for each p ∈ Par(h) there exists a dividing arc γp satisfying :

– p ∈ γp ⊂W \ D and γp is smooth except at p,
– γp ∩ γp′ = ∅ for p 6= p′,
– h : γp ∩W ′ → γh(p) is a diffeomorphism,
– γp divides W and W ′ into Ωp, ∆p and Ω′p, ∆′p respectively, all connected,

and such that h : ∆′p → ∆h(p) is an isomorphism and D ∪ Ω′p ⊂ D ∪ Ωp,
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Figure 2. A parabolic external map in Pd,1.

– calling Ω =
⋂
p Ωp and Ω′ =

⋂
p Ω′p, we have Ω′ ∪ D ⊂⊂W ∪ D.

We denote by Pd ⊂ Fd the set of external maps, by Pd,∗ ⊂ Pd the set of parabolic
external maps h ∈ Pd with Par(h) 6= ∅, and by Pd,1 ⊂ Pd the set of h ∈ Pd for
which Par(h) is a singleton (see Figure 2).

To emphasize the geometric properties of maps h ∈ Pd we shall also write
(h,W ′,W, γ) for such maps, where γ =

⋃
p γp, though neither the domain, range

or dividing arcs are unique or in any way canonical. An external map for any
parabolic-like map belongs to Pd,∗ (see Section 4.2). Note that the set Pd is in-
variant under conjugacy by a real analytic diffeomorphism: for any h ∈ Pd and
φ ∈ F1, φ ◦ h ◦ φ−1 ∈ Pd. It is easy to see that Pd ⊂ Td and Pd,∗ ⊂ Td,∗ (see
Proposition 4.2). In particular, Pd,1 ⊂ Td,1, and so any two maps h1, h2 ∈ Pd,1 are
topologically conjugate by a unique orientation preserving homeomorphism sending
the parabolic point to the parabolic point.

Consider the map hd(z) = zd+(d−1)/(d+1)
(d−1)zd/(d+1)+1

. It has a parabolic fixed point at

z = 1 of multiplier 1, and critical points at z = 0 and at z = ∞. Both D and

Ĉ \ D are basins of attraction of the parabolic fixed point, while S1 is the Julia set
for hd. The map hd plays in the parabolic-like map theory the same role the map
z → zd plays in the theory of polynomial-like maps; in particular, in degree 2 it is
the external map for any member of the model family PA(z) = z+ 1/z+A, A ∈ C,
(see Proposition 4.2 in [4]). Define Hd,1 = {h ∈ Fd| h ∼qs hd} (where h ∼qs hd
means that h is quasi-symmetrically conjugate to the map hd). It is rather easy to
see that hd ∈ Pd,1, see Lemma 4.2. Moreover, clearly hd ∈ Td,1, so that Hd,1 ⊆ Td,1.
In Section 4.3 we prove:

Proposition 2.3. Suppose h1, h2 ∈ Pd,∗ are topologically conjugate by an orien-
tation preserving homeomorphism φ, which preserves parabolic points. Then φ is
quasi-symmetric. In particular Pd,1 ⊆ Hd,1 ⊆ Td,1.
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Let F̂d := Fd/F1 denote the set of conjugacy classes of maps in Fd under real

analytic diffeomorphism, and call πd : Fd → F̂d the natural projection. As a
consequence of the above we have (see also page 5100):

Theorem 2.4. For every d ≥ 2 we have

Md ⊂ Pd = Td, Md,∗ ⊂ Pd,∗ = Td,∗ and Md,1 ⊂ Pd,1 = Hd,1 = Td,1
Moreover

πd(Md) = πd(Pd) = πd(Td),
πd(Md,∗) = πd(Pd,∗) = πd(Td,∗), and

πd(Md,1) = πd(Pd,1) = πd(Hd,1) = πd(Td,1).

3. Proof of Theorem 2.1. Recall that for each integer d ≥ 2, the set O1+BV
d

denotes the collection of all orientation preserving covering maps h : S1 → S1 with
the following properties:

1. h has degree d;
2. h is a C1 local diffeomorphism and the derivative Dh has bounded variation;
3. If p is a periodic point of h with period s, then there is a neighborhood U(p)

of p such that Dhs(x) > 1 holds for all x ∈ U(p) \ {p}.
In the next section 3.1 we will prove the following

Theorem 3.1. For each map h ∈ O1+BV
d , Par(h) is finite. Moreover, there exists

a positive integer N and a real analytic function ρ : S1 → R+ such that

|DhN (x)|ρ :=
ρ(hN (x))

ρ(x)
DhN (x) > 1

holds for all x ∈ S1 \ Par(h).

In particular, the theorem claims that a map h ∈ O1+BV
d without neutral cycles

is uniformly expanding on the whole phase space S1, a result proved by Mañé [6]
under a stronger assumption that h is C2. Some partial result on the validity of
Mañé’s theorem under the C1+BV condition was obtained in [5].

Recall that a map h ∈ O1+BV
d is called metrically expanding if Dh(x) > 1 holds

for x ∈ S1 \ Par(h). Theorem 3.1 implies the following

Theorem 3.2. Each map h ∈ O1+BV
d is conjugate to a metrically expanding map

via a C1+BV diffeomorphism. Moreover, if h is Cr+ε, r = 2, 3, . . . ,∞, ω, 0 < ε ≤ 1,
we can take the conjugacy map to be Cr+ε.

Proof. Let ρ and N be given by Theorem 3.1 and set

ρ∗(x) =

N−1∑
j=0

ρ(hj(x))Dhj(x)

which is a continuous function with bounded variation. Then a computation shows
that

|Dh(x)|ρ∗ = Dh(x) · ρ∗(h(x))

ρ∗(x)
=
DhN (x)ρ(hN (x)) +

∑N−1
j=1 Dhj(x)ρ(hj(x))

ρ(x) +
∑N−1
j=1 Dhj(x)ρ(hj(x))

which is strictly greater than 1 for x ∈ S1 \ Par(h).
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Let us complete the proof. Identify S1 with R/Z via ei2πx 7→ x mod 1. Then
the map

φ(x) :=

∫ x

0

Cρ∗dx = C

∫ x

0

ρ∗dx, with
1

C
=

∫ 1

0

ρ∗dx

defines a C1+BV diffeomorphism of S1, and setting g := φ ◦ h ◦ φ−1, we obtain that
Dg(φ(x)) = |Dh(x)|ρ∗ > 1 for all x ∈ S1 \ Par(h).

Clearly, if h is Cr then so is φ.

The condition that Dh has bounded variation is used to control the distortion.
Recall that the distortion of h on an interval J ⊂ S1 is defined as

Dist(h, J) = sup
x,y∈J

log
|Dh(x)|
|Dh(y)|

.

For proving Theorem 3.1 we will use the following

Lemma 3.1. There exists a C0 > 0 such that, for any interval J ⊂ S1 and n ≥ 1,
if J, h(J), .., hn−1(J) are intervals with pairwise disjoint interiors, then

Dist(hn, J) ≤ C0.

Proof. Since h is a C1 covering and Dh has bounded variation, logDh also has
bounded variation. For each x, y ∈ J ,∣∣∣∣log

Dhn(x)

Dhn(y)

∣∣∣∣ ≤ n−1∑
i=0

∣∣∣∣log
Dh(hi(x))

Dh(hi(y))

∣∣∣∣ ≤ n−1∑
i=0

Var(logDh, hi(J))

is bounded from above by the total variation of logDh.

3.1. Proof of Theorem 3.1. The main step is to prove that a map h ∈ O1+BV
d

has the following expanding properties, which we will assume first, and prove in the
next subsection 3.1.1.

Proposition 3.3. For each h ∈ O1+BV
d the following properties hold:

(a) Par(h) is a finite set.
(b) There exists a constant K0 > 0 such that Dhk(x) ≥ K0 holds for each x ∈ S1

and k ≥ 1.
(c) For each x 6∈

⋃∞
k=0 h

−k(Par(h)), Dhn(x)→∞ as n→∞.
(d) Let p be a fixed point and let δ0 > 0, K > 0 be constants. Then there exists

δ = δ(p, δ0,K) > 0 such that if

d(x, p) < δ and
k

max
j=1

d(hj(x), p) ≥ δ0,

then Dhk(x) ≥ K.
(e) For any K > 0, there exists a positive integer n0 such that for each n > n0

and x ∈ h−n(Par(h)) \ h−n+1(Par(h)), we have Dhn(x) ≥ K.

Proof of Theorem 3.1 assuming Proposition 3.3 Replacing h by an iterate if
necessary, we may assume that all points in Par(h) are fixed points (since Par(h)
is finite). We say that a function ρ : S1 → (0,∞) is admissible if the following
properties are satisfied:

(A1) there is δ0 > 0 such that whenever x ∈ B(p, δ0) \ {p} for some p ∈ Par(h), we
have ρ(h(x)) > ρ(x);

(A2) for any x ∈ S1 \ Par(h) and s ≥ 1 with hs(x) ∈ Par(h), we have

|Dhs(x)|ρ ≥ 2.
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We will first prove the existence of an admissible function ρ (Lemma 3.2) real
analytic (Lemma 3.2 together with Lemma 3.3), and then we will prove that every
x0 ∈ S1 has a neighborhood U(x0) such that for all x ∈ U(x0) \ Par(h), we have
|Dhk(x)|ρ > 1, where k = k(U(x0)) > 0 (see Completion of proof of Theorem 3.1).
By compactness, this gives us Theorem 3.1.

Lemma 3.2. There exists a real analytic admissible function ρ.

Proof. Let X0 = Par(h) and Xk = h−k(Par(h))\h−k+1(Par(h)) for each k ≥ 1. By
Proposition 3.3 (e), there exists n0 such that Dhn(x) ≥ 4 holds for x ∈ Xn, n > n0.
Let ρ0 = min{Dhk(x) : x ∈ Xk for some k = 1, 2, . . . , n0}. Let π : R → S1 be the
universal covering π(t) = e2πit. Let ρ̂ : R → (0,∞) be a real analytic function of
period 1 with the following properties:

(i) ρ̂(p̂) = 1, ρ̂′(p̂) = 0 and ρ̂′′(p̂) > 0 for each p̂ ∈ π−1(Par(h));
(ii) ρ̂(x̂) < ρ0/2 holds for each x̂ ∈ π−1(X1 ∪X2 ∪ · · · ∪Xn0);

(iii) 0 < ρ̂(x̂) < 2 for all x̂ ∈ R.

It is easy to see that there is a smooth function ρ̌ satisfying all the requirements. To
get a real analytic one, choose ε > 0 such that (ii) holds for ρ̌ on a 2ε-neighbourhood
of π−1(X1 ∪X2 ∪ · · · ∪Xn0

) and ρ̌′′(x) > 0 on a 2ε-neighbourhood of π−1(Par(h)).
Write π−1(Par(h)) ∩ [0, 1[:= {p̂1 < . . . < p̂n} and let δ > 0 be given by Lemma 3.3
below. And let ρ̃ be a partial sum of the Fourier series of ρ̌ satisfying ρ̃′(yj) = 0 for
some yj with |yj−p̂j | < δ for each j, ρ̃′′(x) > 0 on a ε-neighbourhood of π−1(Par(h))
and ρ̃ < ρ0/2 on an ε-neighbourhood of π−1(X1 ∪ X2 ∪ · · · ∪ Xn0

). Let φ be the
corresponding real analytic diffeomorphism given by Lemma 3.3. Then ρ̂ = ρ̃ ◦ φ is
the desired real analytic function.

The function ρ̂ induces a function ρ : S1 → R by the formula ρ(e2πt) = ρ̂(t). The
property (A1) follows from (i) immediately. Let us check the property (A2). Of
course it suffices to show |Dhn(x)|ρ ≥ 2 for each x ∈ Xn, n ≥ 1. If n ≤ n0, then
Dhn(x) ≥ ρ0, ρ(x) ≤ ρ0/2 and ρ(hn(x)) = 1, hence |Dhn(x)|ρ ≥ 2. If n > n0, then
Dhn(x) ≥ 4, ρ(x) < 2 and ρ(hn(x)) = 1, hence again |Dhn(x)|ρ ≥ 2.

The following Lemma completes the previous one, expliciting the details used for
obtaining the admissible function ρ (induced by ρ̂ = ρ̃ ◦ φ) real analytic.

Lemma 3.3. Given ε > 0 and n ≥ 1 distinct x1 < . . . < xn < x1 + 1 there
exists δ > 0 such that for any set of n points y1, . . . , yn with |yj − xj | < δ for each
j, 1 ≤ j ≤ n there exists a real analytic diffeomorphism φ : R → R, satisfying for
all x ∈ R: φ(x+ 1) = φ(x) + 1, |φ(x)− x| < ε, and |φ′(x)− 1| < ε and for each j :
φ(xj) = yj.

Proof. If n = 1 set δ = ε and φ(x) = x+ y1 − x1. Otherwise set

m = min{(x2 − x1), . . . (xn − xn−1), (1 + x1 − xn)}
and define gj(x) := sin2(π(x − xj)) for each j, 1 ≤ j ≤ n. Then gj is 1-periodic,
0 ≤ gj(x) ≤ 1 for all x with gj(x) = 0 only at xj , and the absolute value of
g′j(x) = π sin(2π(x− xj)) is bounded by π. Set

Gj(x) :=
∏
i,i 6=j

gi(x)

So that 0 ≤ Gj(x) ≤ 1, Gj(xi) = 0 for i 6= j, |G′j(x)| ≤ π(n− 1) and

Gj(xj) =
∏
i,i6=j

gi(xj) ≥ K(m)
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where K(m) is a constant depending only on m. Define

φ(x) = x+

n∑
j=1

(yj − xj)
Gj(x)

Gj(xj)

so that φ(xj) = yj for each j. Then for δ = mε/n2 and for each j : |yj − xj | < δ
the map φ is the desired diffeomorphism.

Fix an admissible function ρ as above and let

η = inf
y∈S1

ρ(y)/ sup
y∈S1

ρ(y) (1)

Note that |Dhk(x)|ρ ≥ ηDhk(x) holds for any x ∈ S1 and any k ≥ 1.
We say that a set U is eventually expanding if there exists a positive integer k(U)

such that whenever k ≥ k(U) and x ∈ U \ Par(h), we have |Dhk(x)|ρ > 1. The
assertion of Theorem 3.1 is that S1 is eventually expanding.

Completion of proof of Theorem 3.1. By compactness, it suffices to show that each
x0 ∈ S1 has an eventually expanding neighborhood U(x0).

Case 1. Assume hk(x0) 6∈ Par(h) for each k ≥ 0. Then by Proposition 3.3 (c),
Dhk(x0) → ∞ as k → ∞, so by continuity, there exists a k0 and a neighborhood
U(x0) of x0 such that, for x ∈ U(x0), Dhk0(x) ≥ 2

K0η
. By Proposition 3.3 (b), for

all k ≥ k0 and x ∈ U(x0),

Dhk(x) = Dhk0(x)Dhk−k0(hk0(x)) ≥ K0Dh
k0(x) ≥ 2

η
,

hence

|Dhk(x)|ρ ≥ ηDhk(x) ≥ 2.

Thus U(x0) is eventually expanding.

Case 2. Assume that hk(x0) ∈ Par(h) for some k ≥ 0. By (A2), it suffices to
consider the case x ∈ Par(h0). Reducing δ0 in (A1) if necessary, we may assume
that Dh(x) > 1 holds on B(x0, δ0)\{x0}. Let K = 2/η and let δ = δ(x0, δ0,K) > 0
be a small constant given by Proposition 3.3 (d). Let us prove that |Dhk(x)|ρ > 1
holds for all x ∈ B(x0, δ) \ {x0} and k ≥ 1, so in particular, B(x0, δ) is eventually
expanding. Indeed, if x, h(x), . . . , hk(x) ∈ B(x0, δ0), then ρ(hk(x)) > ρ(x) and
Dhk(x) > 1, hence |Dhk(x)|ρ > 1. Otherwise, we have Dhk(x) > 2/η which
implies that |Dhk(x)|ρ ≥ ηDhk(x) ≥ 2.

3.1.1. Geometric expanding properties of maps in O1+BV
d :

Proof of Proposition 3.3. This section is devoted to the proof of Proposition 3.3.
Throughout, fix h ∈ O1+BV

d . We shall first establish lower bounds on the derivative
of first return maps to small nice intervals.

Recall an open interval A ⊂ S1 is nice if hn(∂A) ∩A = ∅ for all n ≥ 0. Let

D(A) = {x ∈ S1 : ∃k ≥ 1 such that hk(x) ∈ A}.

For each x ∈ D(A), the first entry time k(x) is the minimal positive integer such
that hk(x)(x) ∈ A. The first entry map RA : D(A)→ A is defined by x 7→ hk(x)(x).
For x ∈ D(A) ∩ A, the entry time is also called the first return time and the map
RA|D(A)∩A is called the first return map. For a nice interval A and any component J
of D(A), the entry time k(x) is independent of x ∈ J , and if we denote the common
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entry time by k, then the intervals J, h(J), . . . , hk−1(J) are pairwise disjoint and
hk : J → A is a diffeomorphsim.

In order to prove Proposition 3.3, we will first prove lower bounds for the deriv-
ative of the first entry map on small nice intervals around periodic points (Lemma
3.4). We will then use it for proving that for any K ≥ 1, there is a s0 such that
Dhs(p) ≥ K for any p periodic point of period at least s0 (Lemma 3.5). This im-
plies that Par(h) is finite, which is the first statement of Proposition 3.3. Then,
we will prove the existence of a lower bound λ0 > 1 for the derivative of the first
return map on small nice intervals about any point x ∈ S1 \ Par(h) (Lemma 3.6).
Finally, we will prove Proposition 3.3 using these properties, Lemma 3.1 and the
compactness of S1.

Before proceeding with the plan described above, note that there is an arbitrarily
small nice interval around any point z0 ∈ S1. Indeed, let O be an arbitrary periodic
orbit such that hk(z0) 6∈ O for all k ≥ 0. Then for any n, any component of
S1 \ h−n(O) is a nice interval. By [7], h has no wandering interval which implies
that h−n(O) is dense in S1. The statement follows.

Lemma 3.4. For any periodic point p and any constant K > 0, there exists an
arbitrarily small nice interval A 3 p with the following property. Denote by A′ the
component of D(A) which contains p. Then

DRA(x) > 1 for all x ∈ A′ \ {p}

and

DRA(x) ≥ K for all x ∈ D(A) ∩ (A \A′).

Proof. Let s0 be the period of p. Let B0 3 p be an arbitrary nice interval such that
B ∩ orb(p) = {p}. For each n ≥ 1, define inductively Bn to be the component of
h−s0(Bn−1) which contains p. Then Bn is a nice interval for each n and |Bn| → 0
as n→∞. Let

εn = sup{|J | : J is a component of h−i(Bn) for some i ≥ 0}.

Since h has no wandering intervals, εn → 0 as n→∞.
Let δ0 be the minimum of the length of the components of B0 \ B1. Choose n

large enough such that

• εn ≤ e−2C0δ0/K; (where C0 is the total variation of logDh.)

• Dhs0 > 1 on Bn+1 \ {p} (according to the third property defining O1+BV
d ) .

Let us verify that A := Bn satisfies the desired properties. So let x ∈ A \ A′ =
Bn \Bn+1 and let k ≥ 1 be the first return time of x into A. We need to prove that
Dhk(x) ≥ K.

To this end, let T be the component of Bn \Bn+1 which contains x and let J be
the component of h−k(Bn) which contains x. Then J ⊂ T and k > ns0. Note that
hjs0(T ) is a component of Bn−j \Bn−j+1 for each 0 ≤ j ≤ n. Since the first return
time of p to B0 is equal to s0, the intervals B1, h(B1), . . . , hs0−1(B1) are pairwise
disjoint. Therefore, the intervals hj(T ), 0 ≤ j < ns0, are pairwise disjoint. By
Lemma 3.1, hs0n|T has distortion bounded by C0. Since hns0(J) is a component of
h−k+s0n(Bn), we have |hns0(J)| ≤ εn. Therefore,

|J |
|T |
≤ eC0εn/δ0.
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Since J, h(J), . . . , hk−1(J) are pairwise disjoint, by Lemma 3.1 again, we obtain

Dhk(x) ≥ e−C0
|Bn|
|J |
≥ e−C0

|T |
|J |
≥ K.

Lemma 3.5. For any K ≥ 1, there exists s0 such that if p is a periodic point with
period s ≥ s0 then Dhs(p) ≥ K. In particular, Par(h) is finite.

Proof. Let p0 be an arbitrary fixed point of h and for each n = 1, 2, . . ., let

εn = min{|J | : J is a component of S1 \ h−n(p0)}.

Then εn → 0 as n→∞.
By Lemma 3.4, there is a small nice interval A 3 p0 such that DRA ≥ 1 holds

on A′ and DRA > K ≥ 1 holds on D(A) ∩ (A \ A′), where A′ is the component of
h−1(A) which contains p0. Let δ be the minimum of the length of the components
of A \ {p0} and let s0 ≥ 2 be so large that εs ≤ δ/(eC0K) for all s ≥ s0.

Now let p be a periodic point with period s ≥ s0. We shall prove that Dhs(p) ≥
K. Assume first that there exists p′ ∈ orb(p) ∩ A. Let 0 = t0 < t1 < t2 < · · · <
tn = s the consecutive returns of p′ into A. Note that there exists 0 ≤ i0 < n such
that hti0 (p′) ∈ A \A′, so

Dhs(p) = Dhs(p′) =

n−1∏
i=0

DRA(hti(p′)) ≥ K.

Now assume that orb(p) ∩ A = ∅. Let I be an open interval bounded by p0 and
some point p′ in orb(p) with the property that I ∩ orb(p) = ∅. Then I is a nice
interval and |I| ≥ δ. Let J be a component of h−s(I) which has p′ as a boundary
point. Then hj(J) ∩ I = ∅ for j = 1, 2, . . . , s − 1 and |J | ≤ εs. By Lemma 3.1, we
have

Dhs(p) = Dhs(p′) ≥ e−C0
|I|
|J |
≥ e−C0δ/εs ≥ K.

This proves the first statement. As fixed points of hn are isolated for each n ≥ 1, it
follows that Par(h) is finite.

Lemma 3.6. For each h ∈ O1+BV
d , there exists a constant λ0 > 1 such that for

any x ∈ S1 \ Par(h), if A is a sufficiently small nice interval containing x, then
DRA ≥ λ0 holds on D(A) ∩A.

Proof. By Lemma 3.5, there exists s0 such that if p is a periodic point with period
s > s0 then Dhs(p) ≥ 2eC0 . Let 1 < λ0 < λ1 < 2 be a constant such that if
p 6∈ Par(h) is a periodic point of period s ≤ s0, then Dhs(p) > λ1. Let δ > 0 be
a small constant such that |Dhs(x1) − Dhs(x2)| < λ1 − λ0 whenever s ≤ s0 and
dist(x1, x2) < δ.

Now let x ∈ S1 \ Par(h) and let A 3 x be a nice interval such that |A| < δ and
A ∩ Par(h) = ∅. Now consider y ∈ A with k ≥ 1 as the first return time of y to
A. Let J be the component of h−k(A) which contains y. Then hk : J → A is a
diffeomorphism with distortion bounded by C0 (by Lemma 3.1). Since J ⊂ A, there
is a fixed point p of hk in J . Note p 6∈ Par(h). Since hj |J is monotone increasing
for all 0 ≤ j ≤ k, k is equal to the period of p. If k ≤ n0 then Dhk(p) ≥ λ1, and
since |J | ≤ |A| < δ, we have Dhk(y) ≥ Dhk(p) − (λ1 − λ0) ≥ λ0. If k > n0, then
Dhk(p) ≥ 2eC0 , and hence Dhk(y) ≥ e−C0Dhk(p) ≥ 2 > λ0.
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Proof of Proposition 3.3. (a). This property was proved in Lemmas 3.5.
(b). By Lemmas 3.4 and 3.6, for any y ∈ S1 there is a nice interval A(y) 3 y such

that the derivative of the first return map is at least 1. By compactness, there exist
y1, y2, . . . , yr ∈ S1 such that

⋃r
i=1A(yi) = S1. Now consider an arbitrary x ∈ S1 and

k ≥ 1. Define a sequence {in} ⊂ {1, 2, . . . , r} and {kn} as follows. First let k0 = −1,
take i0 such that x ∈ A(yi0) and let k1 = max{1 ≤ j ≤ k : hj(x) ∈ A(yi0)}.
If k1 = k then we stop. Otherwise, take i1 ⊂ {1, 2, . . . , r} \ {i0} be such that
hk1+1(x) ∈ A(yi1) and let k2 = max{k1 < j ≤ k : hj(x) ∈ A(yi1)}. Repeat the
argument until we get kn = k. Then n ≤ r and Dhkj+1−kj−1(hkj+1(x)) ≥ 1. It
follows that

Dhk(x) ≥
n−1∏
i=1

Dh(hki(x)) ≥
(

min
y∈S1

Dh(y)

)r−1
.

This proves the property (b).
(c). Assuming hk(x) 6∈ Par(h) for all k ≥ 0, let us prove that Dhk(x) → ∞

as k → ∞. By (b), it suffices to show that lim supk→∞Dhk(x) = ∞. Let y ∈
ω(x)\Par(h) (where ω(x) is the ω-limit set for x) and consider a small nice interval A
containing y for which the conclusion of Lemma 3.6 holds. Since y ∈ ω(x) there exist
n1 < n2 < · · · such that hnk(x) ∈ A. By Lemma 3.6, Dhnk+1−nk(hnk(x)) ≥ λ0 > 1
for all k. Thus Dhnk+1(x) ≥ Dhn1(x)λk0 →∞ as k →∞.

(d). The proof repeats part of the proof of Lemma 3.4. Let B0 be a nice interval
such that B0 ⊂ B(p, δ0), B0 ∩ orb(p) = {p}. Define Bn to be the component of
h−n(B0) which contains p. Let τ > 0 be the minimal length of the components of
B0 \ B1. Given K > 0 let n0 be so large that |Bn0

| < e−C0τK0/K. Choose δ > 0
such that B(p, δ) ⊂ Bn0

.
Now assuming that d(x, p) < δ and maxkj=1 d(hj(x), p) ≥ δ0, let us prove

Dhk(x) ≥ K. Let n ≥ n0 be such that x ∈ Bn\Bn+1. Note that k > n. Let J be the
component of Bn \Bn+1 which contains x, then the intervals J, h(J), . . . , h(n−1)(J)
are pairwise disjoint, hn(J) is a component of B0 \B1. Thus by Lemma 3.1,

Dhn(x) ≥ e−C0
|hn(J)|
|J |

≥ e−C0
τ

|Bn0
|
≥ K/K0.

By (b), it follows that Dhk(x) ≥ K0Dh
n(x) ≥ K.

(e). Without loss of generality, we may assume that all periodic points in Par(h)
are fixed points. Let X0 = Par(h) and for n ≥ 1, let Xn = h−n(Par(h)) \
h−n+1(Par(h)). So for each y ∈ Xn, n is the minimal integer such that hn(y) ∈
Par(h).

Let δ0 > 0 be a small constant such that h|B(p,δ0) is injective and B(p, δ0) ∩
Par(h) = {p} for each p ∈ Par(h). Note that this choice of δ0 implies the following:
if y ∈ B(p, δ0) ∩Xm for some m ≥ 1, then maxmj=1 d(hj(y), p) ≥ δ0. Thus by (d),
there is a constant δ > 0 with the following property: if y ∈ B(p, δ) ∩Xm for some
m ≥ 1, then Dhm(y) ≥ K/K0.

Now for each p ∈ Par(h), fix a nice interval Ap 3 p such that Ap ⊂ B(p, δ).
Given x ∈ Xn with n ≥ 1, we shall estimate Dhn(x) from below. Let p = fn(x).

Case 1. Assume that there exists 0 ≤ j < n such that y := hj(x) ∈ B(p, δ).
Then y ∈ Xn−j ∩ B(p, δ) and hence Dhn−j(x) ≥ K/K0. By (b), it follows that
Dhn(x) ≥ K0Dh

n−j(y) ≥ K.
Case 2. Assume now that hj(x) 6∈ B(p, δ) for all 0 ≤ j < n. Then n is the first
entry time of x into Ap. Let J be the component of h−n(Ap) which contains x. Then
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J, h(J), . . . , hn−1(J) are pairwise disjoint. By Lemma 3.1, Dhn(x) ≥ e−C0 |Ap|/|J |.
Provided that n is large enough, |J | is small so that Dhn(x) ≥ K.

4. Parabolic external maps. In this section we will prove Theorem 2.4, which
relates parabolic external maps to topologically expanding maps and to metrically
expanding maps, and which completes the theory of parabolic-like maps. We will
start by giving an introduction to parabolic-like maps. We will always assume the
degree d ≥ 2, if not specified otherwise.

4.1. Parabolic-like maps. The notion of parabolic-like maps is modeled on the
notion of polynomial-like maps and can be thought of as an extension of the later
theory. A polynomial-like map is an object which encodes the dynamics of a poly-
nomial on a neighborhood of its filled Julia set. We recall that the filled Julia set
for a polynomial is the complement of the basin of attraction of the superattract-
ing fixed point ∞, and therefore the dynamics of a polynomial is expanding on a
neighborhood of its filled Julia set.

A (degree d) polynomial-like mapping is a (degree d) proper holomorphic map f :
U ′ → U , where U ′, U ≈ D and U ′ ⊂ U . The filled Julia set for a polynomial-like map
(f, U ′, U) is the set of points which never leave U ′ under iteration. Any polynomial-
like map is associated with an external map, which encodes the dynamics of the
polynomial-like map outside of its filled Julia set, so that a polynomial-like map
is determined (up to holomorphic conjugacy) by its internal and external classes
together with their matching number in Z/(d−1)Z. By replacing the external map
of a degree d polynomial-like map with the map z → zd (which is an external map
of a degree d polynomial) via surgery, Douady and Hubbard proved that any degree
d polynomial-like map can be straightend (this is, hybrid conjugate) to a degree d
polynomial (see [3]).

On the other hand, in degree 2 a parabolic-like map is an object encoding the
dynamics of a member of the family PA(z) = z + 1/z +A ∈ Per1(1), where A ∈ C,
on a neighborhood of its filled Julia set KA. This family can be characterized as
the quadratic rational maps with a parabolic fixed point of multiplier 1 at ∞, and
critical points at ±1. The filled Julia set KA of PA is defined to be the complement
of the parabolic basin of attraction of ∞ (see [4]). So on a neighborhood of the
filled Julia set KA of a map PA there exist an attracting and a repelling direction.

A degree d parabolic-like map is a 4-tuple (f, U ′, U, γ) where U ′, U, U ∪ U ′,≈ D,
U ′ * U , f : U ′ → U is a degree d proper holomorphic map with a parabolic fixed

point at z = z0 of multiplier 1, and with a forward invariant arc γ : [−1, 1] → U ,
which we call dividing arc, emanating from z0 such that:

• γ is C1 on [−1, 0] and on [0, 1], and γ(±1) ∈ ∂U ,
• f(γ(t)) = γ(dt), ∀ − 1

d ≤ t ≤
1
d , and γ([ 1d , 1) ∪ (−1,− 1

d ]) ⊆ U \ U ′,
• it divides U ′, U into Ω′,∆′ and Ω,∆ respectively, such that Ω′ ⊂⊂ U (and

Ω′ ⊂ Ω) and f : ∆′ → ∆ is an isomorphism.

The filled Julia set is defined in the parabolic-like case to be the set of points
which do not escape Ω′ ∪ γ under iteration. As for polynomial-like maps, any
parabolic-like map is associated with an external map (see [4]), so that a parabolic-
like map is determined (up to holomorphic conjugacy) by its internal and external
classes. By replacing the external map of a degree 2 parabolic-like map with the map

h2(z) = z2+1/3
z2/3+1 , (which is an external map of any member of the family Per1(1)(z) =

{[PA]|PA(z) = z + 1/z + A}, as shown in [4]) one can prove that any degree 2
parabolic-like map is hybrid equivalent to a member of the family Per1(1) (see [4]).
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The notion of parabolic-like map can be generalized to objects with a finite
number of parabolic cycles. More precisely, let us call simply parabolic-like maps the
objects defined before, which have a unique parabolic fixed point. Then a parabolic-
like map is a 4-tuple (f, U ′, U, γ) where U ′, U, U ∪U ′,≈ D, U ′ * U , f : U ′ → U is a
degree d proper holomorphic map with a finite set Par(f) of parabolic points p of
multiplier 1, such that for all p ∈ Par(h) there exists a dividing arc γp ⊂ U , p ∈ γp,
smooth except at p, γ =

⋃
p γp, and such that:

• for p 6= p′, γp ∩ γp′ = ∅ and f : γp ∩ U ′ → γf(p) is a diffeomorphism,
• it divides U and U ′ in Ωp, ∆p and Ω′p, ∆′p respectively, all connected, and

such that f : ∆′p → ∆f(p) is an isomorphism and Ω′p ⊂ Ωp,
• calling Ω =

⋂
p Ωp and Ω′ =

⋂
p Ω′p, we have Ω′ ⊂⊂ U .

The filled Julia set for a parabolic-like map (f, U ′, U, γ) is (again) the set of points
that never leave Ω′ ∪ γ under iteration.

4.2. External maps for parabolic-like maps. The construction of an external
map for a simply parabolic-like map (f, U ′, U, γ) with connected filled Julia set Kf

is relatively easy, and it shows that this map belongs to Pd,1. Indeed, consider the

Riemann map α : Ĉ \ Kf → Ĉ \ D, normalized by fixing infinity and by setting
α(γ(t)) → 1 as t → 0. Setting W+ = α(U \ Kf ) and W ′+ = α(U ′ \ Kf ), we
can define a degree d covering h+ := α ◦ f ◦ α−1 : W ′+ → W+, reflect the sets
and the map with respect to the unit circle, and the restriction to the unit circle
h : S1 → S1 is an external map for f . An external map for a parabolic-like map is
defined up to real analytic diffeomorphism. From the construction it is clear that
h ∈ Pd,1. The construction of an external map for a simply parabolic-like map with
disconnected filled Julia set is more elaborate (see [4]), and still produces a map
in Pd,1. Repeating the costructions handled in [4] for (generalized) parabolic-like
maps, one can see that the external map for a degree d parabolic-like map belongs
to Pd,∗.

On the other hand, it comes from the Straightening Theorem for parabolic-like
mappings (see [4]) that a map in Pd,1 is the external map for a parabolic-like map
(with a unique parabolic fixed point) of same degree (and the proof is analogous in
case of several parabolics fixed points and parabolic cycles).

While the space of external classes of polynomial-like mappings is easily char-
acterized as those circle coverings which are q-s.-conjugate to z 7→ zd for some
d ≥ 2, this is not the case for parabolic external classes. Theorem 2.4 gives a
characterization for these maps.

4.3. Proof of Theorem 2.4. The main technical difficulty for proving Theorem
2.4 is to prove the following property for maps in Md,∗:

Lemma 4.1. For any h ∈Md,∗ there is a map φ ∈ F1 such that the map ȟ := φ◦h◦
φ−1 also belongs toMd,∗ and in addition for every orbit p̌0, p̌1, . . . p̌s = p̌0 ∈ Par(Ȟ)

say of parabolic multiplicity 2n, the power series developments of Ȟ : T→ T at the
points p̌k, k ∈ Z/sZ, take the form

Ȟ(x) = p̌k+1 + (x− p̌k)(1 + (x− p̌k)2n · P̌ (x− p̌k) +O(x− p̌j)6n) (2)

for some fixed polynomial P̌ (i.e. P̌ depends on the cycle, but not on k) with non-
zero constant term and degree at most 4n− 1.

We will first prove the Theorem assuming the Lemma, which we will prove in
Subsection 4.3.1. In order to prove Theorem 2.4 (assuming Lemma 4.1), we will
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first prove that Md ⊂ Pd (Proposition 4.1), then that hd ∈ Pd,1 (Lemma 4.2), and
later that two maps in Pd,∗ topologically conjugate by a conjugacy preserving the
parabolic points are quasi-symmetrically conjugate (Proposition 2.3). Finally, we

will prove that Pd ⊆ O1+BV
d ∩Fd = Td (Proposition 4.2) and put together all these

bits for obtaining Theorem 2.4.

Proposition 4.1. For every h ∈ Md there exists ε0 > 0 such that for every 0 <
ε ≤ ε0 the map h has a holomorphic extension (h,W ′,W, γ) as an external map with
range W ⊆ {z : | log |z|| < ε}. In particular, a map h ∈ Md,∗ has a holomorphic
extension (h,W ′,W, γ) as a parabolic external map with range W ⊆ {z : | log |z|| <
ε}. So Md ⊂ Pd, Md,∗ ⊂ Pd,∗ and any map which is conjugate to h ∈ Md by
φ ∈ F1 also belongs to Pd.

Proof. If h ∈ Md \Md,∗ the result is obvious. So let us consider maps h ∈ Md,∗.

It suffices to consider maps h ∈ Md,∗ satisfying the properties of ȟ in the Lemma
above. Also it suffices to work with the representative H : T→ T of h. Since H is
a real analytic covering map, it extends to a holomorphic isomorphism H : V ′ → V
between reflection symmetric neighborhoods of R and satisfyingH(z+1) = H(z)+d.
Set E(x) := ei2πx. For each p ∈ P = E−1(Par(h)), choose a pair of repelling Fatou
cooordinates φ±p : Ξ±p → Hl := {z|<(z) < 0} such that each φ±p and each Ξ±p is

symmetric with respect to R, and φ±p+1(x) = φ±p (x − 1). Possibly restricting the

φ±p we can suppose all the domains Ξ±p , with p ranging over P , are disjoint for each

choice of sign, that H(Ξ±p ) ⊃ Ξ±h(p), and that Hs is univalent on Ξ±p , where s = sp
denotes the period of E(p).

For each orbit in Par(h) choose a representative pi ∈ P , and call 2ni the parabolic
multiplicity of the orbit. Define Sε := {x + iy||y| < ε} for ε > 0. For p in the
orbit of pi, call Cp the double cone, symmetric with respect to the real line, such
that Cp ∩ R = {p} and the angle between R and ∂Cp is 1/(16ni). Call Xε =
Sε \

⋃
p∈P Cp. By a compactness argument, since DH(z) > 1 for z ∈ R ∩ Xε,

and lim supz∈∂Xε,z→p |Arg(DH(z) − 1)| = π/4, there exists an ε0 > 0 such that,
for all z ∈ Xε0 , <(DH(z)) > 1. Possibly decreasing ε0, we can assume that for all
p, p′ ∈ P , Sε0∩Cp∩Cp′ = ∅. Since h satisfies the conclusion of Lemma 4.1, the curves
(φ±p )−1(∓a·i+R−) intersect the boundary of Cp at angle π/4 asymptotically as a→
∞, and moreover for E(p) and E(p′) in the same orbit this happens asymptotically
at the same imaginary height. Thus, possibly decreasing ε0 and fixing any ε, 0 <
ε < ε0, we may choose ai > 0 (depending on ε) such that, for all i and all p with
E(p) in the orbit of E(pi), the arcs γ±p = (φ±p )−1(∓ai · i + R−) exits Xε through
∂Sε transversally (see Figure 3).

Let ∆u
p be the closed connected component in Sε bounded by γp := γ−p ∪p∪γ+p and

containing Cp, and set ∆p = ∆u
p ∪ τ(∆u

p), where τ(z) = z. Define X̂ ′ε = Sε \
⋃
p ∆p

(note that X̂ ′ε ⊂ Xε), and X̂ε = Sε \
⋃
p ∆H(p).

Then, by construction H−1(X̂ε) ⊂ X̂ ′ε and H−1(X̂ε) ⊂ Sε. Thus, taking W :=
exp(Sε), W

′ := h−1(W ) and the multi arc γ as the family exp(γp), p ∈ P , we have
constructed an extension (h,W ′,W, γ) of h in Pd.

Lemma 4.2. The map hd is Möbius conjugate to a map in Md,1, so hd ∈ Pd,1.

Proof. For 0 < r < 1 define Mr(z) = (z+ r)/(1 + rz). Then, |M ′r(z)| is a monotone
decreasing function of <(z) with |M ′r(−1)| = (1 + r)/(1 − r) and |M ′r(1)| = (1 −
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Figure 3. Construction

r)/(1 + r). Note that for r = (d − 1)/(d + 1) we have hd = Mr(z
d). Thus M−1r ◦

hd ◦Mr = (Mr)
d and this map evidently belongs to Md,1.

Proposition 2.3: Suppose h1, h2 ∈ Pd,∗ are topologically conjugate by an orien-
tation preserving homeomorphism φ, which preserves parabolic points. Then φ is
quasi-symmetric.

Proof. Let (hi,W
′
i ,Wi, γ

i), i = 1, 2 be holomorphic extensions with W ′i and Wi

bounded by C1 Jordan curves intersecting γi transversely. The case hi ∈ P1
2 is

handled in Lomonaco, [4]. The general case is completely analogous, we include the
details for completeness. It suffices to construct a quasi-conformal extension, φ :

W
+

1 →W
+

2 , with φ(γ1p(t)) := γ2φ(p)(t) for each p ∈ Par(h1) and with φ ◦ h1 = h2 ◦φ
on Ω′1.

For each p ∈ Par(h1), extend φ so that φ(γ1p(t)) := γ2φ(p)(t). It is proved in

[4] that the arcs γ1p and γ2φ(p) are quasi-arcs, and that this extension, which is C1

for z 6= p, is quasi-symmetric. Next, extend φ as a diffeomorphism between the
outer boundary of W 1

+ and W 2
+ respecting the intersections with γi, i.e. besides

being a diffeomorphism it satisfies φ(γ1p(±1)) = γ2φ(p)(±1). Then φ is defined as a

quasi-symmetric homeomorphism from the quasi-circle boundary of ∆1
p to the quasi-

circle boundary of ∆2
φ(p) for each p ∈ Par(h1). We extend φ as a quasi-conformal

homeomorphism φ : ∆1
p → ∆2

φ(p). Next, consider the C1 lift φ̃ : ∂W ′1 → ∂W ′2 of

φ ◦ h1 to h2 respecting the dividing multi arcs. We next extend φ by φ̃ on ∂W ′1 ∩
W+

1 . For each i = 1, 2, the connected components of W+
i \W

′
i are quadrilaterals

Qip indexed by the p ∈ Par(hi), preceding Qip in the counter-clockwise ordering.

Moreover, φ thus defined restricts to a piecewise C1 and hence quasi-symmetric
homeomorphism from the boundary of Q1

p to the boundary of Q2
φ(p). Extend this

boundary homeomorphism to a quasi-conformal homeomorphism between Q1
p and

Q2
φ(p).

Call the thus extended map φ1 and its domain and range U1
1 and U1

2 respectively.
Define recursively, for i = 1, 2 and n ≥ 1:

Un+1
i := Uni ∪ (h−1i (Uni ) ∩ Ω′i).
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Moreover, define recursively φn+1 : Un+1
1 → Un+1

2 as the quasi-conformal extension
of φn which on h−11 (Un1 ) ∩ Ω′1 satisfies

φn ◦ h1 = h2 ◦ φn+1

(i.e. it is the lift of φn ◦ h1 to h2). Then, φn ∪ φ converges uniformly to a quasi-

conformal homeomorphism φ∞ : W
+

1 → W
+

2 , which conjugates dynamics except
on ∆′1. Thus, φ is the restriction to S1 of a quasi-conformal homeomorphism, and
thus it is a quasi-symmetric map.

Proposition 4.2. Pd ⊆ O1+BV
d ∩ Fd = Td, and in particular Pd,∗ ⊂ Td,∗.

Proof. Let h ∈ Pd and let (h,W ′,W, γ) be a degree d holomorphic extension of h as a
parabolic external map with dividing multi arc γ and associated sets ∆′ and ∆. We
shall first redefine Ω and Ω′ so as to be reflection-symmetric: Ω = W \∆ ∪ τ(∆) and

Ω′ = W ′ \∆′ ∪ τ(∆′) (where τ(z) = 1/z), then Ω′′ := h−1(Ω) ⊂ Ω′ ( Ω. It follows
that each p ∈ Par(h), say of period n, admits the circle as repelling directions.
Indeed, if not, then it would have a τ -symmetric attracting petal along S1 to one
or both sides. However, since Ω′′ ⊂ Ω, the parabolic basin for hn containing such a
petal would be a proper basin and thus would contain a critical point.

To prove that all other periodic orbits are repelling, let ρ denote the hyperbolic
metric on Ω. Then, each connected component V of Ω′′ is a subset of U ∩ W ′
for some connected component U of Ω. Thus, h is expanding with respect to the
conformal metric ρ. Since any non parabolic orbit is contained in Ω′′∩S1, it follows
that all non parabolic orbits are repelling. This proves the first inclusion. The
equality sign is immediate from Corollary 2.2.

Completion of proof of Theorem 2.4: By Proposition 4.1,Md ⊂ Pd andMd,∗ ⊂
Pd,∗ (and soMd,1 ⊂ Pd,1), and by Proposition 4.2, Pd ⊆ Td and Pd,∗ ⊆ Td,∗. Since
hd is topologically expanding we have that Hd,1 ⊂ Td,1, and combining Lemma 4.2
and Proposition 2.3 we obtain Pd,1 ⊂ Hd,1. So:

Md ⊂ Pd ⊂ Td, Md,∗ ⊂ Pd,∗ ⊂ Td,∗, and Md,1 ⊂ Pd,1 ⊂ Hd,1 ⊂ Td,1.

By Theorem 2.1, any h ∈ Td is real analytically conjugate to a map ĥ ∈ Md, and
so by Proposition 4.1 we also have h ∈ Pd. So we obtain

Pd = Td, Pd,∗ = Td,∗, and πd(Md) = πd(Pd) = πd(Td).

4.3.1. Proof of Lemma 4.1. This subsection is completely devoted to proving Lemma
4.1. Let us start by noticing that it follows from the definition of Md that h only
has finitely many parabolic points. The proof of Lemma 4.1 uses the idea of the
proof of Theorem 3.2 to recursively construct conjugacies to maps which full-fills
the requirements of Ȟ to higher and higher orders. It turns out that after two steps
of the recursion we arrive at the desired map Ȟ and obtain the conjugacy as the
composition of the pair of conjugacies from the recursion.

The recursion is given by the following procedure:
Let h ∈ Md be arbitrary, let N = Nh denote the least common multiple of

the periods of parabolic orbits for h and let L := (dN − 1)/(d − 1). Define a real

analytic diffeomorphism φ : R −→ R and a new real analytic diffeomorphism Ĥ (lift

of degree d covering ĥ) as follows:

φ(x) :=
1

L

N−1∑
k=0

(Hk)(x) and Ĥ := φ ◦H ◦ φ−1.
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Then φ(x+ 1) = 1 + φ(x), Par(Ĥ) = φ(Par(H)), Nĥ = Nh and

Ĥ ′(φ(x)) =
φ′(H(x)) ·H ′(x)

φ′(x)
=
H ′(x)

∑N−1
k=0 (Hk)′(H(x))∑N−1
k=0 (Hk)′(x)

=

∑N
k=1(Hk)′(x)∑N−1
k=0 (Hk)′(x)

=
(HN )′(x) +

∑N−1
k=1 (Hk)′(x)

1 +
∑N−1
k=1 (Hk)′(x)

≥ 1 (3)

with equality if and only if x ∈ Par(H), thus Ĥ ∈Md.

For p ∈ Par(H) with period s, set p̂ := φ(p) ∈ Par(Ĥ), pk := Hk(p), p̂k =

φ(pk) = Ĥk(p̂), then ps+k − pk = p̂s+k − p̂k ∈ Z for each k ≥ 0. Let 2n > 0 denote
the common parabolic degeneracy. A priori the power series developments (Taylor
expansions) of H around the points pk could have non-linear terms of order less
than 2n + 1. However, since h ∈ Md, the leading non-linear term must be of odd
order, say 2m + 1 (and have positive coefficient), and Claim 4.1 (statement and
proof of which are below) implies m = n.

Write h0 := h, H0 := H and φ0 := φ. Set H1 := Ĥ, and define

φ1(x) :=
1

L

N−1∑
k=0

(Hk
1 )(x) and H2 := φ1 ◦H1 ◦ φ−11 .

Then φ := φ1 ◦ φ0 and Ȟ := H2 satisfy the Lemma, with P̌ := P̂ + x2nR̂, where P̂

and R̂ are given by Claim 4.2 applied to H1 (statement and proof of Claim 4.2 are
below, after the proof of Claim 4.1).

Claim 4.1. Suppose that for some m > 0 the Taylor expansions of H around the
points pk take the form

H(x) = pk+1 + (x− pk)(1 + (x− pk)2m · Pk(x− pk) +O(x− pk)4m),

where Pk is a polynomial of degree at most (2m−1), Ps+k = Pk for k ≥ 0 and where
Pk(0) > 0 for at least one k, 0 ≤ k < s. Then for each k the Taylor approximation

to order 4m of Ĥ at p̂k takes the form

Ĥ(x̂) = p̂k+1 + (x̂− p̂k)(1 + (x̂− p̂k)2m · P̂ (x̂− p̂k) +O(x̂− p̂k)4m), (4)

where

P̂ (x) :=
L2m

s
·
s−1∑
k=0

Pk(Lx) (5)

is independent of k ≥ 0 and moreover for x̂ close to p̂k and j ≥ 1:

Ĥj(x̂) = p̂j+k + (x̂− p̂k)(1 + j · (x̂− p̂k)2m · P̂ (x̂− p̂k) +O(x̂− p̂)4m). (6)

Let us first see that the Claim implies m = n. Since H and Ĥ are analytically

conjugate, the parabolic degeneracy of Ĥ at p̂ is also 2n. However, since the co-
efficient of the leading terms in (4) are non-negative and at least one of them is

positive, it follows from (5) that the constant term of P̂ is positive, and then from
(6) that the degeneracy is 2m. Therefore m = n.

Proof. Towards a proof of the Claim a routine computation and induction shows
that for all j ≥ 0 the Taylor series of Hj to order 4m at pk is given by:

Hj(x) = Hj(pk) + (x− pk)(1 + (x− pk)2m ·
j−1∑
l=0

Pl+k(x− pk) +O(x− pk)4m)
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and thus with Qk := (2m+ 1)Pk + x · P ′k = Qs+k

(Hj)′(x) = 1 + (x− pk)2m ·
j−1∑
l=0

Ql+k(x− pk) +O(x− pk)4m.

Continuing to compute Ĥ ′(φ(x)) for x near pk starting from the first term of (3)
and using (H0)′ ≡ 1, (Hj)′ − 1 = O((x− pk)2m) we find

Ĥ ′(φ(x)) =

∑N
j=1(Hj)′(x)∑N−1
j=0 (Hj)′(x)

=
N +

∑N
j=1((Hj)′(x)− 1)

N +
∑N−1
j=1 ((Hj)′(x)− 1)

(7)

=

1 + 1
N

N∑
j=1

((Hj)′(x)− 1)

1− 1
N

N−1∑
j=1

((Hj)′(x)− 1)

+O(x− pk)4m

= 1 + 1
N ((HN )′(x)− 1) +O(x− pk)4m

= 1 +
(x− pk)2m

N
·
N−1∑
l=0

Ql+k(x− pk) +O(x− pk)4m

From the formula for φ we find the expansion of φ to order 2m at pk :

φ(x) = p̂k +
1

L
(x− pk)(1 +O(x− pk)2m)

so that the expansion for φ−1 to order 2m at p̂k is:

φ−1(x̂) = pk + L(x̂− p̂k)(1 +O(x̂− p̂k)2m)

and thus the expansion for Ĥ ′ to order (4m− 1) at p̂k is:

Ĥ ′(x̂) = 1 +
(L(x̂− p̂k))2m

N
·
N−1∑
l=0

Ql+k(L(x̂− p̂k)) +O(x̂− p̂j)4m.

So by integration from p̂k we find

Ĥ(x̂) = p̂k+1 + (x̂− p̂k)(1 + (x̂− p̂k)2m
L2m

N
·
N−1∑
l=0

Pl+k(L(x̂− p̂k)) +O(x̂− p̂k)4m),

from which the Claim follows, since N is a multiple of s and the terms of the sum
are repeated N/s times.

Claim 4.2. Suppose the Taylor expansions of H around the points pk take the form

H(x) = pk+1+(x−pk)(1+(x−pk)2n ·P (x−pk)+(x−pk)4n ·Rk(x−pk)+O(x−pk)6n),

where P and Rk are polynomials of degree at most (2n − 1), P with P (0) > 0 is
independent of k and Rs+k = Rk for k ≥ 0. Then for each k the Taylor expansion

of Ĥ to order 6n at p̂k takes the form

Ĥ(x̂) = p̂k+1+(x̂−p̂k)(1+(x̂−p̂k)2n ·P̂ (x̂−p̂k)+(x̂−p̂k)4n ·R̂(x̂−p̂k)+O(x̂−p̂k)6n),
(8)

where R̂ and P̂ (x) = L2nP (Lx) with P̂ (0) > 0 are polynomials of degree at most
2n− 1 and are independent of the point in the orbit of p̂ = φ(p).
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Proof. The proof of this Claim is similar to the proof of the first Claim, and we
only indicate the differences.

For proving a formula for the j-th iterate the following formula is simple and
useful

P (x(1 + x2nP (x))) = P (x) + x2n · x · P ′(x) · P (x) +O(x)4n (9)

(Note that the term x2n ·x ·P ′(x) ·P (x) contains terms of order larger than or equal
to 4n, but taking them out only complicates the formula.)

By induction, for each j ≥ 1 and x close to pk we find

Hj(x) = pj+k + (x− pk)(1 + (x− pk)2n · j · P (x− pk)

+ (x− pk)4n · j(j − 1)

2
((2n+ 1)(P (x− pk))2

+ (x− pk)P ′(x− pk)P (x− pk))

+ (x− pk)4n ·
j−1∑
l=0

Rl+k(x− pk) +O(x− pk)6n)

= pj+k + Fj(x− pk) + (x− pk)4n ·
j−1∑
l=0

Rl+k(x− pk) +O(x− pk)6n)

where

Fj(x) := x(1 + x2n · j · P (x)

+ x4n · j(j − 1)

2
((2n+ 1)(P (x))2 + xP ′(x)P (x)))

is independent of k, i.e. independent of the starting point in the orbit of p. As
above, define Q by the formula x2nQ(x) := d

dx (x2n+1P (x)), and thus Q(x) = (2n+

1)P +x ·P ′, and Sk by the formula x4nSk(x) := d
dx (x4n+1Rk(x)), and thus Sk(x) =

(4n+ 1)Rk + x ·R′k = Ss+k(x). Then

(Hj))′(x) = F ′j(x− pk) + (x− pk)4n ·
j−1∑
l=0

Sl+k(x− pk) +O(x− pk)6n

= 1 + j(x− pk)2nQ(x− pk) +O(x− pk)4n

Thus

N−1∑
j=1

((Hj)′(x)− 1) =

N−1∑
j=1

j(x− pk)2nQ(x− pk) +O(x− pk)4n

= N(N−1)
2 (x− pk)2nQ(x− pk) +O(x− pk)4n (10)

Computing Ĥ ′(φ(x)) from the second formula in (7) we obtain

Ĥ ′(φ(x)) =
N +

∑N
j=1((Hj)′(x)− 1)

N +
∑N−1
j=1 ((Hj)′(x)− 1)

=

1 + 1
N

N∑
j=1

((Hj)′(x)− 1)

 ·
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N

N−1∑
j=1

((Hj)′(x)− 1) + (N−1)2
4 (x− pk)4n(Q(x− pk))2


+O(x− pk)6n

= 1 + 1
N ((HN )′(x)− 1) + (N−1)2−(N2−1)

4 (x− pk)4n(Q(x− pk))2

+O(x− pk)6n

= 1 + 1
N (F ′N (x− pk)− 1) +

(x− pk)4n

N
·
N−1∑
l=0

Sl+k(x− pk)

− 1
2 (x− pk)4n(Q(x− pk))2 +O(x− pk)6n

That is, the terms of Ĥ ′(φ(x)) depending on k are the terms

(x− pk)4n

N
·
N−1∑
l=0

Sl+k(x− pk) +O(x− pk)6n

of order at least 4n.
From the definition of φ and (10) we see that φ is independent of k to order 4n

and thus the same holds for φ−1. Combining this with the above shows that Ĥ ′ is

independent of k to order 6n−1 and thus Ĥ is independent of k up to and including
order 6n, as promised by the Claim.
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[6] R. Mañé, Hyperbolicity, sinks and measure in one-dimensional dynamics, Communications

in Mathematical Physics, 100 (1985), 495–524.
[7] M. Martens, W. de Melo and S. van Strien, Julia-Fatou-Sullivan theory for real one-

dimensional dynamics, Acta Mathematica, 168 (1992), 273–318.

[8] W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer-Verlag, 1993.

[9] W. Rudin, Real and Complex Analysis, New York-Toronto, Ont.-London, 1966.
[10] M. Shishikura, Bifurcation of parabolic fixed points, in The Mandelbrot set, theme and vari-

ations, London Mathematical Society Lecture Note Series, Cambridge University Press, 274
(2000), 325–363.

Received March 2016; revised April 2017.

E-mail address: lluna@ime.usp.br

E-mail address: lunde@ruc.dk

E-mail address: wxshen@fudan.edu.cn

http://www.ams.org/mathscinet-getitem?mr=MR3445628&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1645310&return=pdf
http://dx.doi.org/10.1017/S0143385798117455
http://www.ams.org/mathscinet-getitem?mr=MR816367&return=pdf
http://dx.doi.org/10.24033/asens.1491
http://www.ams.org/mathscinet-getitem?mr=MR3394113&return=pdf
http://dx.doi.org/10.1017/etds.2014.27
http://www.ams.org/mathscinet-getitem?mr=MR806250&return=pdf
http://dx.doi.org/10.1007/BF01217727
http://www.ams.org/mathscinet-getitem?mr=MR1161268&return=pdf
http://dx.doi.org/10.1007/BF02392981
http://dx.doi.org/10.1007/BF02392981
http://www.ams.org/mathscinet-getitem?mr=MR1239171&return=pdf
http://dx.doi.org/10.1007/978-3-642-78043-1
http://www.ams.org/mathscinet-getitem?mr=MR0210528&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1765097&return=pdf
mailto:lluna@ime.usp.br
mailto:lunde@ruc.dk
mailto:wxshen@fudan.edu.cn

	1. Introduction
	2. Setting and statement of the results
	3. Proof of Theorem 2.1
	3.1. Proof of Theorem 3.1

	4. Parabolic external maps
	4.1. Parabolic-like maps
	4.2. External maps for parabolic-like maps
	4.3. Proof of Theorem 2.4

	Acknowledgments
	REFERENCES

