DISCRETE AND CONTINUOUS do0i:10.3934/dcds.2017220
DYNAMICAL SYSTEMS
Volume 37, Number 10, October 2017 pp. 5085-5104

ON PARABOLIC EXTERNAL MAPS

LuNA LOMONACO*

Departamento de Matematica Aplicada, Instituto de Matemaética e Estatistica
Universidade de Sao Paulo
Rua do Matao 1010, 05508-090 Sao Paulo - SP, Brazil

CARSTEN LUNDE PETERSEN

Department of Science, NSM, IMFUFA
Roskilde University
Universitetsvej 1, 4000 Roskilde, Denmark

WEIXIAO SHEN

Shanghai Center for Mathematical Sciences and School of Mathematical Sciences
Fudan University
Handan Road 220, Shanghai, China 200433

(Communicated by Sylvain Crovisier)

ABSTRACT. We prove that any C1*+BV degree d > 2 circle covering h having
all periodic orbits weakly expanding, is conjugate by a C11tBV diffeomorphism
to a metrically expanding map. We use this to connect the space of parabolic
external maps (coming from the theory of parabolic-like maps) to metrically
expanding circle coverings.

1. Introduction. In this paper we provide a connection between the worlds of
real and complex dynamics by proving theorems on degree d > 2 circle coverings
which are interesting in the world of real dynamics per se and interesting in the
world of complex dynamics through quasi-conformal surgery. The main theorem
states that any C1*BV degree d > 2 circle covering h (where h € C'*BY means
Dh is continuous and of bounded variation), all of whose periodic orbits are weakly
expanding, is conjugate in the same smoothness class to a metrically expanding map.
Here weakly expanding means that for any periodic point p of period s there exists
a punctured neighborhood of p on which Dh®(xz) > 1. And metrically expanding
means Dh(xz) > 1 holds everywhere, except at parabolic points. This theorem
strengthens a theorem by Mafié [6] who proved the same conclusion holds under
the stronger assumption that h is C? with all periodic points hyperbolic repelling.

The real analytic version of the above theorem, which comes for the same price,
provides a missing link between the space of parabolic external maps from the
theory of parabolic-like maps and metrically expanding circle coverings. For an
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enlargement on the theory of parabolic-like maps and the role of parabolic external
maps in this theory see the introduction to Section 4 and the paper by the first
author [4].

2. Setting and statement of the results. Recall that a smooth covering map
(this is, a local diffeomorphism which is a covering map) h : S' — S! has degree
d # 0 if and only if h(e®?™®) lifts to the exponential e??™® as a diffeomorphism
H:R — R with H(z + 1) = H(z) + d. It will be convenient to work mostly with
H and the induced map also denoted H : T — T := R/Z. Denote by Par(h) the
set of parabolic periodic points for h, and note that for d > 0 the multiplier of any
parabolic orbit is 1.

We denote by .7-';+BV the set of smooth covering maps h : S' — S! of degree
d > 0 with h € C'BV (j.e. writing Dh for the derivative of h, the function Dh
is continuous and of bounded variation). We set also F; ¢ := F; ™V 0 C"*¢ with
r=2,3,...,00,w, and 0 < € < 1, where C""¢ are the maps which have an e-Holder
r-th derivative.

On the other hand, let us call orbit ezpanding and denote by OcllJrBV C F éJrBV
(see Figure 1) the set of maps h for which for every periodic point p say of period
s, there is a neighborhood U(p) of p such that for all x € U(p) \ {p} we have
Dh?(xz) > 1. This is, h is a degree d smooth covering of the circle, with continuous
derivative of bounded variation, and with all periodic points either repelling or
parabolic-repelling.

Finally a map h € is called metrically expanding if for all x in S\ Par(h),
Dh(xz) > 1. We shall see that for such maps Par(h) is a finite set. We denote by
METBY c OFFBY ¢ FIFBY (see Figure 1) the sub-class of metrically expanding
maps.

In this paper we will prove the following result (see Section 3):

1+BV
]:d

Theorem 2.1. For each map h € (9‘1{+BV, the set Par(h) is finite and h is conjugate

to a map he MiﬁBV via a CYTBY diffeomorphism.
Moreover, if h is C"¢ for somer = 2,3,...,00,w, and 0 < € < 1, we can take

the conjugacy map to be C"T¢.

A degree d circle map h : St — S! is topologically expanding, if every interval even-
tually expands onto the entire circle or equivalently the map is topologically conju-
gate to the map Py(z) = 2%. We denote by 7; BV = {h € F}TBV| his topologically
expanding}. Theorem 2.1 implies the following:

Corollary 2.2. We have O3BV = T8V and for all h € MYV the set Par(h)
s a finite set.

We now restrict our attention to real analytic coverings maps with at least one
parabolic orbit. So let us denote by Fy C FC}JFBV the set of all real analytic smooth
covering maps h : St — S! of degree d, by Ty = Fg F]TCFEW7 by T4« C Tq the set of
maps h € Fy topologically expanding and for which Par(h) # 0, and by Tg1 C Ta,«
the set of such h with Par(h) a singleton. Similarly, denote by My = M;‘Bv C Fq
the set of degree d real analytic metrically expanding coverings h : S! — S!, by
Mg = Mg N T the set of such h for which Par(h) # 0, and by Mg1 C Mg«
the set of such i with precisely one parabolic point.

An external map is a map h € F4 with the following properties:

o h:S! — S'is a degree d > 2 real analytic covering of the unit circle, with a

finite set Par(h) of parabolic points p of multiplier 1,
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FicURE 1. A map of the maps we consider. }';+BV is the set of
degree d smooth covering h : S* — S! with h € Cl+BV;O;+BV
is the set of maps h € ]—";JFBV for which for every periodic point
p say of period s, there is a neighborhood U(p) of p such that
for all z € U(p) \ {p} we have Dh*(z) > 1; while M1"BY and
7711+BV are the class of respectively metrically and topologically
expanding h € F;JFBV. Fq is the class of real analytic degree d cir-
cle coverings, Tg and My the set of respectively topologically and
metrically expanding h € Fy, and 74 . and My . the set of respec-
tively topologically and metrically expanding h € F; for which
Par(h) # 0. Also, Py is the class of extenal maps and Py, the
class of parabolic external maps. Finally, Hq1 = {h € F4| h ~ys

2% 4(d—1)/(d
ha(z) = %}. By Corollary 2.2, O™V = 7/+BY "and
by Theorem 2.4, My C Pq = Taq, Magsx C Pgx = Taix and

Mgi1 CPa1=Har=Tan.

e the map h extends to a holomorphic covering map h : W' — W of degree
d, where W', W are reflection symmetric annular neighborhoods of S'. We
write Wy := W\ D, and W/, := W'\ D,

o for each p € Par(h) there exists a dividing arc v, satisfying :

— p€rp, C W \D and 7, is smooth except at p,
— 9 Ny = 0 for p # p/,
— h:yp NW' = Yy is a diffeomorphism,

7p divides W and W' into €, A, and Q,, A respectively, all connected,

and such that h: A}, — Ay(p) is an isomorphism and DU Q) C DU,
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FIGURE 2. A parabolic external map in Pg ;.

— calling Q =, 9 and Q' =, ;,, we have Q' UD CC W UD.
We denote by Py C F; the set of external maps, by Py . C Py the set of parabolic
external maps h € Py with Par(h) # (), and by Pg1 C Py the set of h € Py for
which Par(h) is a singleton (see Figure 2).

To emphasize the geometric properties of maps h € Py we shall also write
(h, W, W,~) for such maps, where v = Up vp, though neither the domain, range
or dividing arcs are unique or in any way canonical. An external map for any
parabolic-like map belongs to Py . (see Section 4.2). Note that the set Py is in-
variant under conjugacy by a real analytic diffeomorphism: for any h € P,; and
¢ € Fi, pohop™t € Py It is easy to see that Py C Ty and Py C Ta. (see
Proposition 4.2). In particular, Py1 C 74,1, and so any two maps hq, he € Py are
topologically conjugate by a unique orientation preserving homeomorphism sending
the parabolic point to the parabolic point.

244 (d—1)/(d+1)
(d=1)z4/(d+1)+1"
z = 1 of multiplier 1, and critical points at z = 0 and at z = oco. Both D and

Consider the map hg(z) = It has a parabolic fixed point at
C \ D are basins of attraction of the parabolic fixed point, while St is the Julia set
for hy. The map hy plays in the parabolic-like map theory the same role the map
2z — 2% plays in the theory of polynomial-like maps; in particular, in degree 2 it is
the external map for any member of the model family Ps(z) =2+1/2+A, A€ C,
(see Proposition 4.2 in [4]). Define H41 = {h € Fy| h ~¢s ha} (where h ~¢s hq
means that h is quasi-symmetrically conjugate to the map hy). It is rather easy to
see that hg € Py 1, see Lemma 4.2. Moreover, clearly hq € Tg1, so that Hq1 C Tq1.
In Section 4.3 we prove:

Proposition 2.3. Suppose hi,hy € Py are topologically conjugate by an orien-
tation preserving homeomorphism ¢, which preserves parabolic points. Then ¢ is
quasi-symmetric. In particular Pg1 C Ha1 C Tqa-
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Let fd := F4/F1 denote the set of conjugacy classes of maps in Fy under real
analytic diffeomorphism, and call 74 : Fq — JFy the natural projection. As a
consequence of the above we have (see also page 5100):

Theorem 2.4. For every d > 2 we have
Mg CPa=Ts, MasCPau=Tax and Mg1 CPg1=Ha1=Tan
Moreover
ma(Ma) = ma(Pa) = wa(Ta),
d(Pax) = 7a(Ta ), and

3. Proof of Theorem 2.1. Recall that for each integer d > 2, the set OcllJ“BV
denotes the collection of all orientation preserving covering maps h : S! — S! with
the following properties:

1. h has degree d;

2. his a C! local diffeomorphism and the derivative Dh has bounded variation;

3. If p is a periodic point of h with period s, then there is a neighborhood U (p)
of p such that Dh*(z) > 1 holds for all x € U(p) \ {p}.

In the next section 3.1 we will prove the following

Theorem 3.1. For each map h € (9(11+BV, Par(h) is finite. Moreover, there exists
a positive integer N and a real analytic function p : S* — Rt such that

N = p(hN () o T
|Dh™ ()], := o) Dh™Y (z) > 1
holds for all x € S* \ Par(h).

In particular, the theorem claims that a map h € O§+BV without neutral cycles
is uniformly expanding on the whole phase space S!, a result proved by Mafié [6]
under a stronger assumption that h is C2. Some partial result on the validity of
Mafié’s theorem under the C1TBV condition was obtained in [5].

Recall that a map h € O5™Y is called metrically ezpanding if Dh(z) > 1 holds
for z € S' \ Par(h). Theorem 3.1 implies the following

Theorem 3.2. Each map h € Ocll+BV is conjugate to a metrically expanding map
via a CYTBY diffeomorphism. Moreover, if h is C™+¢, r =2,3,...,00,w, 0 < e < 1,
we can take the conjugacy map to be CTTE.

Proof. Let p and N be given by Theorem 3.1 and set
N—-1

pula) = 3 pl(i () DI (2)

=0

which is a continuous function with bounded variation. Then a computation shows
that

pu(h()) _ DN (@)p(hN (@) + 3335, DI (x)p(h ()
P () p(@) + 3250 D (@)p(h (x))
which is strictly greater than 1 for z € S'\ Par(h).

|Dh(a)

p. = Dh(x)
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Let us complete the proof. Identify S! with R/Z via e??™ + x mod 1. Then
the map

x x 1
o(x) ::/ Cp*do::C/ pxdx, with 1 :/ psdx
0 0 C 0

defines a C'tBV diffeomorphism of S!, and setting g := ¢ o ho ¢!, we obtain that
Dg(¢(z)) = |Dh(z)|,, > 1 for all x € S' \ Par(h).
Clearly, if h is C" then so is ¢. O

The condition that Dh has bounded variation is used to control the distortion.
Recall that the distortion of h on an interval J C S! is defined as

. |Dh(z)]
Dist(h,J) = sup lo .
(h:7) owes  Dh(y)]

For proving Theorem 3.1 we will use the following

Lemma 3.1. There exists a Cy > 0 such that, for any interval J C S' andn > 1,
if J, h(J),..,h"=(J) are intervals with pairwise disjoint interiors, then

Dist(h™,.J) < Cy.

Proof. Since h is a C' covering and Dh has bounded variation, log Dh also has
bounded variation. For each x,y € J,

Dh™(z) Dh(hi(z))| = ;
‘log Dh(y) gDh(hZ(y))’ < ;Var(logDh,h (J))

n—1

SZIO

=0

is bounded from above by the total variation of log Dh. O

3.1. Proof of Theorem 3.1. The main step is to prove that a map h € (’)CllJrBV

has the following expanding properties, which we will assume first, and prove in the
next subsection 3.1.1.

Proposition 3.3. For each h € OcllJrBV

(a) Par(h) is a finite set.

(b) There exists a constant Ky > 0 such that Dh¥(z) > K holds for each x € S*
and k> 1.

(¢) For each x & | Jpeyh~"(Par(h)), Dh"™(x) = oo as n — occ.

(d) Let p be a fized point and let 5o > 0, K > 0 be constants. Then there exists
0 = 6(p, 00, K) > 0 such that if

the following properties hold:

d(w,p) < & and maxd(h/(z),p) > &,
J:
then DhF(z) > K.
(e) For any K > 0, there exists a positive integer ng such that for each n > ny
and x € h="(Par(h)) \ h~""1(Par(h)), we have Dh"(x) > K.

Proof of Theorem 3.1 assuming Proposition 3.3 Replacing h by an iterate if
necessary, we may assume that all points in Par(h) are fized points (since Par(h)
is finite). We say that a function p : S! — (0,00) is admissible if the following
properties are satisfied:

(A1) there is 6y > 0 such that whenever = € B(p, d) \ {p} for some p € Par(h), we
have p(h(z)) > p();
(A2) for any x € S' \ Par(h) and s > 1 with h*(z) € Par(h), we have

DI (@), > 2.
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We will first prove the existence of an admissible function p (Lemma 3.2) real
analytic (Lemma 3.2 together with Lemma 3.3), and then we will prove that every
zo € S! has a neighborhood U(z) such that for all x € U(zg) \ Par(h), we have
|Dh¥ ()|, > 1, where k = k(U(z0)) > 0 (see Completion of proof of Theorem 3.1).
By compactness, this gives us Theorem 3.1.

Lemma 3.2. There exists a real analytic admissible function p.

Proof. Let Xy = Par(h) and X}, = h=*(Par(h)) \ h=*+1(Par(h)) for each k > 1. By
Proposition 3.3 (e), there exists ng such that Dh™(x) > 4 holds for x € X,,, n > no.
Let po = min{Dh*(z) : z € X} for some k = 1,2,...,np}. Let 7 : R — S! be the
universal covering 7(t) = 2™, Let p: R — (0,00) be a real analytic function of
period 1 with the following properties:

(i) p(p) =1, p'(p) = 0 and p"(p) > 0 for each p € 7~ (Par(h));

(ii) p(£) < po/2 holds for each & € 71 (X; U XU+ U X,,,);

(iii) 0 < p(#) < 2 for all T € R.
It is easy to see that there is a smooth function p satisfying all the requirements. To
get a real analytic one, choose € > 0 such that (ii) holds for p on a 2e-neighbourhood
of T H (X1 UXaU---UX,,) and p”"(z) > 0 on a 2e-neighbourhood of 7w~ (Par(h)).
Write 7=t (Par(h)) N[0, 1[:= {f1 < ... < p,} and let § > 0 be given by Lemma 3.3
below. And let p be a partial sum of the Fourier series of p satisfying p’(y;) = 0 for
some y; with |y; —p;| < & for each j, p”"(x) > 0 on a e-neighbourhood of 7#~* (Par(h))
and p < pp/2 on an e-neighbourhood of 771(X; U X U---U X,,,). Let ¢ be the
corresponding real analytic diffeomorphism given by Lemma 3.3. Then p = po ¢ is
the desired real analytic function.

The function p induces a function p : S — R by the formula p(e?™) = p(¢). The
property (A1) follows from (i) immediately. Let us check the property (A2). Of
course it suffices to show |Dh"(x)|, > 2 for each z € X,,, n > 1. If n < ng, then
Dh™(x) > po, p(z) < po/2 and p(h"(x)) = 1, hence |DR"(x)|, > 2. If n > ng, then
Dh™(x) > 4, p(x) < 2 and p(h"(x)) = 1, hence again |[Dh"™(z)|, > 2. O

The following Lemma completes the previous one, expliciting the details used for
obtaining the admissible function p (induced by p = p o ¢) real analytic.

Lemma 3.3. Given € > 0 and n > 1 distinct v1 < ... < x, < x1 + 1 there
exists 6 > 0 such that for any set of n points y1, ...,y with |y; — ;| < § for each
7,1 < j < n there exists a real analytic diffeomorphism ¢ : R — R, satisfying for
alzeR: plx+1)=¢(x)+ 1, |p(z) — x| <€ and |¢'(x) — 1| < € and for each j :
o(;) = y;.
Proof. I n =1 set § = € and ¢(x) = 4+ y1 — x1. Otherwise set

m =min{(z2 — z1),... (Tn —Tpn—1), 1 + 21 —2,)}

and define g;(x) := sin®(m(x — z;)) for each j,1 < j < n. Then g; is 1-periodic,
0 < gj(x) < 1 for all « with g;(z) = 0 only at z;, and the absolute value of
gj(z) = msin(27(z — x;)) is bounded by 7. Set

Gj(a) = ] gila)
i,i7]
So that 0 < Gj(z) <1, Gj(x;) = 0 for i # j, |G’ (x)| < 7(n — 1) and

Gj(x;) = ] gi(x;) = K(m)
it
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where K (m) is a constant depending only on m. Define

ola) =+ Y0y = 2) G

(z;)

so that ¢(x;) = y; for each j. Then for § = me/n? and for each j : |y; — x| < §
the map ¢ is the desired diffeomorphism. O

Fix an admissible function p as above and let

n= inf p(y)/ sup p(y) (1)
ye yest

Note that |[DRh*(z)|, > nDh*(x) holds for any x € S' and any k > 1.

We say that a set U is eventually expanding if there exists a positive integer k(U)
such that whenever & > k(U) and x € U \ Par(h), we have |Dh*(z)|, > 1. The
assertion of Theorem 3.1 is that S! is eventually expanding.

Completion of proof of Theorem 5.1. By compactness, it suffices to show that each
7o € S! has an eventually expanding neighborhood U (zg).

Case 1. Assume h*(zg) ¢ Par(h) for each k > 0. Then by Proposition 3.3 (c),
Dh*(x9) — oo as k — oo, so by continuity, there exists a kg and a neighborhood
U(zo) of ¢ such that, for x € U(zg), Dh*(x) > Kion By Proposition 3.3 (b), for
all k > kg and z € U(xy),

Dh¥(x) = Dh* (z)Dh*=Fo(h*o () > KoDh* (z) >

ESEE )

hence
|DR* ()|, > nDR* () > 2.
Thus U(xzo) is eventually expanding.

Case 2. Assume that h*(zy) € Par(h) for some k > 0. By (A2), it suffices to
consider the case x € Par(hg). Reducing dp in (Al) if necessary, we may assume
that Dh(z) > 1 holds on B(z,d0) \ {zo}. Let K =2/n and let § = d(xg,dp, K) > 0
be a small constant given by Proposition 3.3 (d). Let us prove that |[Dh*(z)|, > 1
holds for all z € B(x,0) \ {zo} and k > 1, so in particular, B(zg,d) is eventually
expanding. Indeed, if x,h(z),...,h*(z) € B(xg,dy), then p(h*(x)) > p(x) and
Dh*(z) > 1, hence |Dh*(z)|, > 1. Otherwise, we have Dh*(z) > 2/n which
implies that [Dh*(z)|, > nDh*(z) > 2. O
3.1.1. Geometric expanding properties of maps in O}fBV:

Proof of Proposition 3.3. This section is devoted to the proof of Proposition 3.3.
Throughout, fix h € (’)Cll+BV. We shall first establish lower bounds on the derivative
of first return maps to small nice intervals.

Recall an open interval A C St is nice if h"(9A) N A =0 for all n > 0. Let

D(A) = {x € S* : 3k > 1 such that h¥(z) € A}.

For each © € D(A), the first entry time k(x) is the minimal positive integer such
that h*®) (z) € A. The first entry map Ra : D(A) — A is defined by z +— h*®) ().
For z € D(A) N A, the entry time is also called the first return time and the map
R4l D(A)nA is called the first return map. For a nice interval A and any component J
of D(A), the entry time k(x) is independent of x € J, and if we denote the common
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entry time by k, then the intervals J, h(J),...,hR¥~1(J) are pairwise disjoint and
h¥:J — Ais a diffeomorphsim.

In order to prove Proposition 3.3, we will first prove lower bounds for the deriv-
ative of the first entry map on small nice intervals around periodic points (Lemma
3.4). We will then use it for proving that for any K > 1, there is a so such that
Dh*(p) > K for any p periodic point of period at least so (Lemma 3.5). This im-
plies that Par(h) is finite, which is the first statement of Proposition 3.3. Then,
we will prove the existence of a lower bound Ay > 1 for the derivative of the first
return map on small nice intervals about any point z € S' \ Par(h) (Lemma 3.6).
Finally, we will prove Proposition 3.3 using these properties, Lemma 3.1 and the
compactness of St.

Before proceeding with the plan described above, note that there is an arbitrarily
small nice interval around any point zg € S'. Indeed, let O be an arbitrary periodic
orbit such that h*(z) ¢ O for all k > 0. Then for any n, any component of
S\ h~™(0) is a nice interval. By [7], h has no wandering interval which implies
that h="(0) is dense in S*. The statement follows.

Lemma 3.4. For any periodic point p and any constant K > 0, there exists an
arbitrarily small nice interval A > p with the following property. Denote by A’ the
component of D(A) which contains p. Then

DRy(z) > 1 for allz € A"\ {p}

and

DRA(z) > K for allz € D(A)N(A\ A).

Proof. Let sg be the period of p. Let By 3 p be an arbitrary nice interval such that
Bnorb(p) = {p}. For each n > 1, define inductively B,, to be the component of
h~%0(B,,—1) which contains p. Then B,, is a nice interval for each n and |B,| — 0
as n — o0o. Let

£, = sup{|J| : J is a component of h~*(B,,) for some i > 0}.

Since h has no wandering intervals, £, — 0 as n — oc.
Let &g be the minimum of the length of the components of By \ By. Choose n
large enough such that

o ¢, < e 2005/ K; (where Cj is the total variation of log Dh.)
e Dh* >1on B,y1 \ {p} (according to the third property defining O3*BY) .

Let us verify that A := B,, satisfies the desired properties. So let z € A\ A’ =
B, \ Bp+1 and let k > 1 be the first return time of z into A. We need to prove that
Dhk(z) > K.

To this end, let T be the component of B,, \ B,,+1 which contains z and let J be
the component of h=*(B,,) which contains z. Then J C T and k > nsg. Note that
hi%(T) is a component of B,,_; \ B,,_;1 for each 0 < j < n. Since the first return
time of p to By is equal to sg, the intervals By, h(Bj),...,h**~1(B;) are pairwise
disjoint. Therefore, the intervals h’(T), 0 < j < msg, are pairwise disjoint. By
Lemma 3.1, h*™|T has distortion bounded by Cy. Since h™*°(J) is a component of
h=k+son(B,)), we have |[h"*°(J)| < &,,. Therefore,

/]

— < BCOEn/(So.
T
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Since J, h(J),...,h*=1(J) are pairwise disjoint, by Lemma 3.1 again, we obtain

o 1Bal 7]
Dh*(z) > e C0|—n26 CoZl > K.
|| ]

O

Lemma 3.5. For any K > 1, there exists sg such that if p is a periodic point with
period s > sg then Dh*(p) > K. In particular, Par(h) is finite.

Proof. Let pg be an arbitrary fixed point of h and for each n =1,2,..., let

£, = min{|J| : J is a component of S' \ h™"(po)}.

Then ¢, — 0 as n — oo.

By Lemma 3.4, there is a small nice interval A 5 py such that DR4 > 1 holds
on A" and DR4 > K > 1 holds on D(A)N (A\ A4’), where A’ is the component of
h=1(A) which contains pg. Let ¢ be the minimum of the length of the components
of A\ {po} and let sy > 2 be so large that e, < §/(e“°K) for all s > so.

Now let p be a periodic point with period s > so. We shall prove that Dh*(p) >
K. Assume first that there exists p’ € orb(p) N A. Let 0 = tg < t1 < tg < -+- <
t, = s the consecutive returns of p’ into A. Note that there exists 0 < 79 < n such
that hlo(p') € A\ A, so

n—1

Dh*(p) = Dh*(p') = [ DRa(h"(p)) > K.

i=0
Now assume that orb(p) N A = (. Let I be an open interval bounded by py and
some point p’ in orb(p) with the property that I Norb(p) = . Then I is a nice
interval and |I| > 0. Let J be a component of A~*(I) which has p’ as a boundary
point. Then h/(J)NI = for j =1,2,...,5s — 1 and |J| < &5. By Lemma 3.1, we
have

Dh*(p) = DR*(p’) > e_C°||LI]| >e %5/e, > K.

This proves the first statement. As fixed points of A™ are isolated for each n > 1, it
follows that Par(h) is finite. O

Lemma 3.6. For each h € 0(11+vi there exists a constant A\g > 1 such that for

any © € St \ Par(h), if A is a sufficiently small nice interval containing x, then
DR4 > Ao holds on D(A) N A.

Proof. By Lemma 3.5, there exists sg such that if p is a periodic point with period
s > so then Dh*(p) > 2¢%. Let 1 < A\g < A1 < 2 be a constant such that if
p & Par(h) is a periodic point of period s < sg, then Dh®(p) > A;. Let § > 0 be
a small constant such that |Dh®(xz1) — Dh*(2z2)] < A1 — Ag whenever s < sy and
dist(xl,x2) < 9.

Now let z € S' \ Par(h) and let A > x be a nice interval such that |A| < ¢ and
AnNPar(h) = . Now consider y € A with k > 1 as the first return time of y to
A. Let J be the component of h~*(A) which contains y. Then h* : J — Ais a
diffeomorphism with distortion bounded by Cy (by Lemma 3.1). Since J C A, there
is a fixed point p of h* in J. Note p ¢ Par(h). Since h7|J is monotone increasing
for all 0 < j < k, k is equal to the period of p. If k < ng then Dh¥(p) > \;, and
since |J| < |A| < &, we have Dh*(y) > Dh*(p) — (A1 — Xo) > Ao. If k > ng, then
Dh¥(p) > 2e“°, and hence Dh*(y) > e=“Dh*(p) > 2 > Ao. O
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Proof of Proposition 3.3. (a). This property was proved in Lemmas 3.5.

(b). By Lemmas 3.4 and 3.6, for any y € S! there is a nice interval A(y) > y such
that the derivative of the first return map is at least 1. By compactness, there exist
Y1, Y2, - - -, yr € St such that |J;_, A(y;) = S'. Now consider an arbitrary z € S' and
k > 1. Define a sequence {i,} C {1,2,...,r} and {k,} as follows. First let kg = —1,
take ig such that x € A(y;,) and let k1 = max{l < j < k : h(x) € A(ys,)}-
If k; = k then we stop. Otherwise, take iy C {1,2,...,7} \ {io} be such that
M1 *1(2) € A(y;,) and let ky = max{k; < j < k : hI(z) € A(y;,)}. Repeat the
argument until we get k, = k. Then n < r and DhF+1—ki=1(pkitl(z)) > 1. It
follows that

n—1 r—1
Dh*(z) > ] Dh(h¥i(x)) > <min Dh(y)> .
i yeSst
This proves the property (b).

(c). Assuming h*(z) ¢ Par(h) for all k > 0, let us prove that Dh*(z) — oo
as k — oo. By (b), it suffices to show that limsup,_, . Dh*(z) = co. Let y €
w(z)\Par(h) (where w(x) is the w-limit set for z) and consider a small nice interval A
containing y for which the conclusion of Lemma 3.6 holds. Since y € w(x) there exist
ny < ng < --- such that A" (x) € A. By Lemma 3.6, Dh™+17" (B (x)) > Ny > 1
for all k. Thus Dh™+1(z) > Dh™ (z)\§ — 0o as k — co.

(d). The proof repeats part of the proof of Lemma 3.4. Let By be a nice interval
such that By C B(p,dp), Bo Norb(p) = {p}. Define B,, to be the component of
h~"(By) which contains p. Let 7 > 0 be the minimal length of the components of
By \ B;. Given K > 0 let ng be so large that |B,,| < e"“7Ky/K. Choose § > 0
such that B(p,d) C By,.

Now assuming that d(z,p) < § and max;?:l d(h (z),p) > bo, let us prove
Dh*(z) > K. Let n > ng be such that x € B,,\ B,11. Note that k > n. Let J be the
component of B, \ By41 which contains z, then the intervals .J, h(J),..., A"~V (J)
are pairwise disjoint, h™(J) is a component of By \ B;. Thus by Lemma 3.1,

N ) I
Dh™(xz) > e ¥ >e Bl > K/Ky
By (b), it follows that Dh*(x) > KoDh™(x) > K.

(e). Without loss of generality, we may assume that all periodic points in Par(h)
are fixed points. Let Xy = Par(h) and for n > 1, let X,, = h~"(Par(h)) \
h="*t1(Par(h)). So for each y € X,,, n is the minimal integer such that h"(y) €
Par(h).

Let 49 > 0 be a small constant such that h|g(, s5,) is injective and B(p, dp) N
Par(h) = {p} for each p € Par(h). Note that this choice of §p implies the following:
if y € B(p,d0) N Xy, for some m > 1, then maxf™, d(h/(y),p) > . Thus by (d),
there is a constant § > 0 with the following property: if y € B(p, ) N X,, for some
m > 1, then Dh™(y) > K/Kj.

Now for each p € Par(h), fix a nice interval A, > p such that A, C B(p,0).
Given z € X,, with n > 1, we shall estimate Dh™(x) from below. Let p = f"(x).

Case 1. Assume that there exists 0 < j < n such that y := h?(z) € B(p,9).
Then y € X,,—; N B(p,d) and hence Dh" 7 (x) > K/K,. By (b), it follows that
Dh™(x) > KoDh" I(y) > K.

Case 2. Assume now that h'(z) € B(p,d) for all 0 < j < n. Then n is the first
entry time of = into A,,. Let J be the component of h~"(A,) which contains z. Then
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J,h(J),...,h""1(J) are pairwise disjoint. By Lemma 3.1, Dh"(z) > e~ |A4,|/|J|.
Provided that n is large enough, |J| is small so that Dh"™(z) > K. O

4. Parabolic external maps. In this section we will prove Theorem 2.4, which
relates parabolic external maps to topologically expanding maps and to metrically
expanding maps, and which completes the theory of parabolic-like maps. We will
start by giving an introduction to parabolic-like maps. We will always assume the
degree d > 2, if not specified otherwise.

4.1. Parabolic-like maps. The notion of parabolic-like maps is modeled on the
notion of polynomial-like maps and can be thought of as an extension of the later
theory. A polynomial-like map is an object which encodes the dynamics of a poly-
nomial on a neighborhood of its filled Julia set. We recall that the filled Julia set
for a polynomial is the complement of the basin of attraction of the superattract-
ing fixed point oo, and therefore the dynamics of a polynomial is expanding on a
neighborhood of its filled Julia set.

A (degree d) polynomial-like mapping is a (degree d) proper holomorphic map f :
U' — U, where U',U ~Dand U’ C U. The filled Julia set for a polynomial-like map
(f,U’,U) is the set of points which never leave U’ under iteration. Any polynomial-
like map is associated with an external map, which encodes the dynamics of the
polynomial-like map outside of its filled Julia set, so that a polynomial-like map
is determined (up to holomorphic conjugacy) by its internal and external classes
together with their matching number in Z/(d — 1)Z. By replacing the external map
of a degree d polynomial-like map with the map z — 2z (which is an external map
of a degree d polynomial) via surgery, Douady and Hubbard proved that any degree
d polynomial-like map can be straightend (this is, hybrid conjugate) to a degree d
polynomial (see [3]).

On the other hand, in degree 2 a parabolic-like map is an object encoding the
dynamics of a member of the family Pa(z) = z+1/2z+ A € Peri(1), where A € C,
on a neighborhood of its filled Julia set K 4. This family can be characterized as
the quadratic rational maps with a parabolic fixed point of multiplier 1 at co, and
critical points at +1. The filled Julia set K4 of P4 is defined to be the complement
of the parabolic basin of attraction of co (see [4]). So on a neighborhood of the
filled Julia set K4 of a map P4 there exist an attracting and a repelling direction.

A degree d parabolic-like map is a 4-tuple (f,U’,U,~) where U', U, UUU’,~ D,
U ¢U, f:U — U is a degree d proper holomorphic map with a parabolic fixed
point at z = zy of multiplier 1, and with a forward invariant arc v : [-1,1] — U,
which we call dividing arc, emanating from zy such that:

e vis C' on [—1,0] and on [0, 1], and y(£1) € U,

o f(h(t) =~(dt), V-5 <t< g, and y([3 1) U(=1,—3]) CU\U,

e it divides U’,U into @', A’ and Q, A respectively, such that Q' CC U (and

Q' cQ)and f: A’ — A is an isomorphism.

The filled Julia set is defined in the parabolic-like case to be the set of points
which do not escape ' U« under iteration. As for polynomial-like maps, any
parabolic-like map is associated with an external map (see [4]), so that a parabolic-
like map is determined (up to holomorphic conjugacy) by its internal and external
classes. By replacing the external map of a degree 2 parabolic-like map with the map

ha(z) = %, (which is an external map of any member of the family Per;(1)(z) =
{[Pa]|Pa(z) = z+ 1/z + A}, as shown in [4]) one can prove that any degree 2

parabolic-like map is hybrid equivalent to a member of the family Perq(1) (see [4]).
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The notion of parabolic-like map can be generalized to objects with a finite
number of parabolic cycles. More precisely, let us call simply parabolic-like maps the
objects defined before, which have a unique parabolic fixed point. Then a parabolic-
like map is a 4-tuple (f,U’,U,~) where U',U,UUU",~D, U ¢ U, f:U' - Uisa
degree d proper holomorphic map with a finite set Par(f) of parabolic points p of
multiplier 1, such that for all p € Par(h) there exists a dividing arc v, C U, p € 7,,
smooth except at p, v = Up vp, and such that:

o for p#p', v Ny =0 and f: v, NU — 74y is a diffeomorphism,
e it divides U and U’ in ©Q,, A, and Q;,, A} respectively, all connected, and
such that f: A — Ay, is an isomorphism and €, C Q,,
e calling 2 =(, €, and Q' =, €2, we have ' CC U.
The filled Julia set for a parabolic-like map (f,U’,U,~) is (again) the set of points
that never leave Q' U~ under iteration.

4.2. External maps for parabolic-like maps. The construction of an external
map for a simply parabolic-like map (f, U’,U,~) with connected filled Julia set K s
is relatively easy, and it shows that this map belongs to Pg,1. Indeed, consider the
Riemann map o : C \ Ky — C \ D, normalized by fixing infinity and by setting
a(y(t)) = Last — 0. Setting W = o(U \ Ky) and W, = (U’ \ Ky), we
can define a degree d covering ht := ao foa™! : Wi — Wy, reflect the sets
and the map with respect to the unit circle, and the restriction to the unit circle
h:S! — S'is an external map for f. An external map for a parabolic-like map is
defined up to real analytic diffeomorphism. From the construction it is clear that
h € Pg,1. The construction of an external map for a simply parabolic-like map with
disconnected filled Julia set is more elaborate (see [4]), and still produces a map
in Pg1. Repeating the costructions handled in [4] for (generalized) parabolic-like
maps, one can see that the external map for a degree d parabolic-like map belongs
to 'Pd7*.

On the other hand, it comes from the Straightening Theorem for parabolic-like
mappings (see [4]) that a map in P41 is the external map for a parabolic-like map
(with a unique parabolic fixed point) of same degree (and the proof is analogous in
case of several parabolics fixed points and parabolic cycles).

While the space of external classes of polynomial-like mappings is easily char-
acterized as those circle coverings which are q-s.-conjugate to z ~ z¢ for some
d > 2, this is not the case for parabolic external classes. Theorem 2.4 gives a
characterization for these maps.

4.3. Proof of Theorem 2.4. The main technical difficulty for proving Theorem
2.4 is to prove the following property for maps in Mg .:

Lemma 4.1. For any h € Mg, there is a map ¢ € F1 such that the map h := ¢oho
¢~ also belongs to M. and in addition for every orbit po, p1,...Ps = Po € Par(H)
say of parabolic multiplicity 2n, the power series developments of H : T — T at the
points Py, k € Z/sZ, take the form

H(x) = prer + (@ = pr) L+ (@ = p)*" - Pl =) + Oa = 5)°")  (2)
for some fized polynomial P (i.e. P depends on the cycle, but not on k) with non-

zero constant term and degree at most 4n — 1.

We will first prove the Theorem assuming the Lemma, which we will prove in
Subsection 4.3.1. In order to prove Theorem 2.4 (assuming Lemma 4.1), we will



5098 LUNA LOMONACO, CARSTEN LUNDE PETERSEN AND WEIXIAO SHEN

first prove that Mg C Py (Proposition 4.1), then that hy € Py 1 (Lemma 4.2), and
later that two maps in P, . topologically conjugate by a conjugacy preserving the
parabolic points are quasi-symmetrically conjugate (Proposition 2.3). Finally, we
will prove that Py C (’);JFBV N Fq = Tq (Proposition 4.2) and put together all these
bits for obtaining Theorem 2.4.

Proposition 4.1. For every h € My there exists €9 > 0 such that for every 0 <
€ < €9 the map h has a holomorphic extension (h, W', W,v) as an external map with
range W C {z : |log |z|| < €}. In particular, a map h € Mg, has a holomorphic
extension (h, W', W,~) as a parabolic external map with range W C {z : |log |z|| <
€}. So Mg C Py, Mg C Pa. and any map which is conjugate to h € My by
¢ € F1 also belongs to Py.

Proof. If h € My \ Mg, . the result is obvious. So let us consider maps h € My ..
It suffices to consider maps h € Mg , satisfying the properties of h in the Lemma
above. Also it suffices to work with the representative H : T — T of h. Since H is
a real analytic covering map, it extends to a holomorphic isomorphism H : V' — V
between reflection symmetric neighborhoods of R and satisfying H(2+41) = H(z)+d.
Set E(z) := "™, For each p € P = E~1(Par(h)), choose a pair of repelling Fatou

cooordinates ¢ : EF — H; := {z|R(z) < 0} such that each ¢ and each ZF is
symmetric with respect to R, and ¢;j7[+1(97) = ¢ (x — 1). Possibly restricting the

qbf we can suppose all the domains Eg, with p ranging over P, are disjoint for each
choice of sign, that H(ZF) D Ef(p), and that H* is univalent on ZF, where s = s,,
denotes the period of E(p).

For each orbit in Par(h) choose a representative p; € P, and call 2n; the parabolic
multiplicity of the orbit. Define S. := {x + iy||y| < €} for ¢ > 0. For p in the
orbit of p;, call C}, the double cone, symmetric with respect to the real line, such
that C, "R = {p} and the angle between R and 9C, is 1/(16n;). Call X, =
Se \ Upep Cp- By a compactness argument, since DH(z) > 1 for z € RN X,
and limsup,cox, ,p, [ATg(DH(2) — 1)| = 7/4, there exists an ¢y > 0 such that,
for all z € X, R(DH(z)) > 1. Possibly decreasing €y, we can assume that for all
p, 0’ € P, S,NC,NC, = (. Since h satisfies the conclusion of Lemma 4.1, the curves
(qb;t)_l (Fa-i+R_) intersect the boundary of C), at angle 7/4 asymptotically as a —
00, and moreover for E(p) and E(p’) in the same orbit this happens asymptotically
at the same imaginary height. Thus, possibly decreasing €y and fixing any €,0 <
€ < €9, we may choose a; > 0 (depending on €) such that, for all ¢ and all p with
E(p) in the orbit of E(p;), the arcs ﬁ,t = (qﬁ?})‘l(q:ai i+ R_) exits X, through
0S. transversally (see Figure 3).

Let A} be the closed connected component in S, bounded by v, := v, Uval‘f and

containing Cp, and set A, = Ay UT(A}), where 7(z) = Z. Define X! =5\ U, &p
(note that X! ¢ X,), and X, = S, \ U, A p)-

Then, by construction H*(X,) ¢ X! and H-1(X,) C S.. Thus, taking W :=
exp(Se), W' := h=1(W) and the multi arc v as the family exp(v,), p € P, we have
constructed an extension (h, W/, W,~) of h in Py. O

Lemma 4.2. The map hq is Mébius conjugate to a map in Mg, so hq € Pq.

Proof. For 0 < r < 1 define M,.(z) = (2+7)/(1 4+ rz). Then, |M/(z)| is a monotone
decreasing function of R(z) with |M,.(-1)] = (1 +7)/(1 —r) and |M/(1)] = (1 —
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N

FIGURE 3. Construction

7)/(1 + 7). Note that for r = (d — 1)/(d + 1) we have hy = M,(z%). Thus M 1o
hgo M, = (M,)? and this map evidently belongs to M, 1. O

Proposition 2.3: Suppose hi,ha € Pq. are topologically conjugate by an orien-
tation preserving homeomorphism ¢, which preserves parabolic points. Then ¢ is
quasi-symmetric.

Proof. Let (h;, W/, W;,~¥%), i = 1,2 be holomorphic extensions with W/ and W;
bounded by C' Jordan curves intersecting +° transversely. The case h; € Pi is
handled in Lomonaco, [4]. The general case is completely analogous, we include the
details for completeness. It suffices to construct a quasi-conformal extension, ¢ :
W, — W, , with ¢(75(t)) 1= 73, () for each p € Par(hy) and with ¢ohy = hyo¢
on Q.

For each p € Par(hy), extend ¢ so that ¢(y,(t)) == 73, (). It is proved in
[4] that the arcs ’yzl, and 'y;(p) are quasi-arcs, and that this extension, which is C!
for z # p, is quasi-symmetric. Next, extend ¢ as a diffeomorphism between the
outer boundary of W} and W2 respecting the intersections with ~*, i.e. besides
being a diffeomorphism it satisfies ¢(vy,(£1)) = 7§(p)(il)~ Then ¢ is defined as a
quasi-symmetric homeomorphism from the quasi-circle boundary of Azl, to the quasi-
circle boundary of Ai(p) for each p € Par(hy). We extend ¢ as a quasi-conformal

homeomorphism ¢ : A} — Ai(p)' Next, consider the C1 lift ¢ : OW] — oW of
¢ o hy to hy respecting the dividing multi arcs. We next extend ¢ by 5 on OW{ N
Wi, For each i = 1,2, the connected components of W, \W; are quadrilaterals
Q; indexed by the p € Par(h;), preceding Q; in the counter-clockwise ordering.
Moreover, ¢ thus defined restricts to a piecewise C! and hence quasi-symmetric
homeomorphism from the boundary of Q; to the boundary of Qi(p). Extend this
boundary homeomorphism to a quasi-conformal homeomorphism between Q}) and
Q?b(p)‘

Call the thus extended map ¢; and its domain and range U{ and Uj respectively.
Define recursively, for ¢ = 1,2 and n > 1:

Ut = U8 U (hH(UF) N 9)).
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Moreover, define recursively ¢, 1 : U™ — UZ™! as the quasi-conformal extension
of ¢, which on hi ' (U) N Q] satisfies

¢nohy =hgodni1
(i.e. it is the lift of ¢, o hy to ha)

conformal homeomorphism ¢, : Wf — W;_ , which conjugates dynamics except
on Af. Thus, ¢ is the restriction to S! of a quasi-conformal homeomorphism, and

thus it is a quasi-symmetric map. O

Then, ¢, U ¢ converges uniformly to a quasi-

Proposition 4.2. P; C (9(11+BV N Fq = Ta, and in particular Pg. C Ta .

Proof. Let h € Pg and let (h, W', W, ~) be a degree d holomorphic extension of h as a
parabolic external map with dividing multi arc v and associated sets A’ and A. We
shall first redefine © and € so as to be reflection-symmetric: Q@ = W\A U 7(A) and
Q' =W'\ A’ UT(A’) (where 7(2) = 1/Z), then Q" := h=1(Q) C Q' C Q. It follows
that each p € Par(h), say of period n, admits the circle as repelling directions.
Indeed, if not, then it would have a 7T-symmetric attracting petal along S' to one
or both sides. However, since 2" C €, the parabolic basin for A" containing such a
petal would be a proper basin and thus would contain a critical point.

To prove that all other periodic orbits are repelling, let p denote the hyperbolic
metric on Q. Then, each connected component V of Q" is a subset of U N W’
for some connected component U of ). Thus, h is expanding with respect to the
conformal metric p. Since any non parabolic orbit is contained in 2 NS*, it follows
that all non parabolic orbits are repelling. This proves the first inclusion. The
equality sign is immediate from Corollary 2.2. O

Completion of proof of Theorem 2.4: By Proposition 4.1, Mg C Py and Mg . C
P, (and so Mg1 C Pg1), and by Proposition 4.2, Py C Ty and Py . C Tg.. Since
hq is topologically expanding we have that Hq1 C 74,1, and combining Lemma 4.2
and Proposition 2.3 we obtain Py 1 C Hg,1. So:

Mg CPysCTa, Masx CPaw CTaw, and Mgy CPyy CHar CTan-

By Theorem 2.1, any h € 7y is real analytically conjugate to a map he My, and
so by Proposition 4.1 we also have h € P;. So we obtain

Pa=Tis, Pax=Tix, and wg(Mg)=mq(Pa)=ma(Ta)-

4.3.1. Proof of Lemma 4.1. This subsection is completely devoted to proving Lemma
4.1. Let us start by noticing that it follows from the definition of M, that h only
has finitely many parabolic points. The proof of Lemma 4.1 uses the idea of the
proof of Theorem 3.2 to recursively construct conjugacies to maps which full-fills
the requirements of H to higher and higher orders. It turns out that after two steps
of the recursion we arrive at the desired map H and obtain the conjugacy as the
composition of the pair of conjugacies from the recursion.

The recursion is given by the following procedure:

Let h € My be arbitrary, let N = N, denote the least common multiple of
the periods of parabolic orbits for h and let L := (d — 1)/(d — 1). Define a real
analytic diffeomorphism ¢ : R — R and a new real analytic diffeomorphism H (lift
of degree d covering ﬁ) as follows:

N

=

- (H*)(z) and H:=¢oHo¢ .
k=0

S

¢(z) =
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-~

Then ¢(x + 1) =1+ ¢(x), Par(H) = ¢(Par(H)), N; = N;, and

o - CH@) H @) H(@) S5 (Y (H ()
He@)=——g0y— = koo (HE)' ()
_ (Y@ EY@ TS EY @) g
bmo (HE)'(x) Lt S0 (Y (@)

with equality if and only if « € Par(H), thus He M,

For p € Par(H) with period s, set p := ¢(p) € Par(ﬁ), pr = H¥(p), pp =
o(px) = ﬁk(ﬁ), then psir — P = Ds+k — Pk € Z for each k > 0. Let 2n > 0 denote
the common parabolic degeneracy. A priori the power series developments (Taylor
expansions) of H around the points py could have non-linear terms of order less
than 2n + 1. However, since h € My, the leading non-linear term must be of odd
order, say 2m + 1 (and have positive coefficient), and Claim 4.1 (statement and
proof of which are below) implies m = n.

Write ho := h, Hy := H and ¢o := ¢. Set Hy := H, and define

N-1

61(@) =~ ST (HN(2)  and  Hyi= 1o Hy ool

Then ¢ := ¢1 0 ¢y and H := H, satisfy the Lemma, with P := P+ mQ”}A%, where P
and R are given by Claim 4.2 applied to H; (statement and proof of Claim 4.2 are
below, after the proof of Claim 4.1).

Claim 4.1. Suppose that for some m > 0 the Taylor expansions of H around the
points py, take the form

H(x) = ppr1 + (& = pr) (L + (z = pi)®™ - Py(a — pi) + Oa — pi)*™),
where Py, is a polynomial of degree at most (2m—1), Ps1 = Py for k > 0 and where
P (0) > 0 for at least one k,0 < k < s. Then for each k the Taylor approzimation
to order 4m of H at py, takes the form

H(@) = Pe + @ =D)L+ @~ 5™ - P(E ~ D) + O@ ~pi)*™),  (4)

where

Py =3 Pl )
k=0

is independent of k > 0 and moreover for T close to py and j > 1:
H(Z) = pjx + (T —Pe)(L+7- (@ —pp)*™ - P(T —pr) + O@ —p)"™).  (6)

Let us first see that the Claim implies m = n. Since H and H are analytically
conjugate, the parabolic degeneracy of H at p is also 2n. However, since the co-
efficient of the leading terms in (4) are non-negative and at least one of them is
positive, it follows from (5) that the constant term of P is positive, and then from
(6) that the degeneracy is 2m. Therefore m = n.

Proof. Towards a proof of the Claim a routine computation and induction shows
that for all 5 > 0 the Taylor series of H? to order 4m at py, is given by:
j—1
H () = HY (p) + (2 — pe) (1L + (@ = p)*™ - Y Prvi(z — p) + Oz — pi)*™)
1=0
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and thus with Qi = 2m+ 1)Py + 2 - P, = Qs1k

j—1

(H) () = 1+ (& = pr)*™ - Y Qunl(z — pr) + Oa — pi) "™
=0

Continuing to compute H’(¢(x)) for x near pj, starting from the first term of (3)
and using (H°)' =1, (H7) — 1 = O((z — pr)*™) we find

. N (HIY (x N+ (HI)Y(z) -1

' (6(a)) = gé___oll((m))/((x)) - :g&__—lll((((m))/((x)) - 1)) (7)
=|1+% XN;((HJ)'(I) - |1-% N_:((HJ)’(I) —1) | +O0(z —pp)™
=1+ ;((IQ_N)'(:E) 1)+ Oz —pp)*™ i

—14 _Jz\)fk)Qm S Qur(z — pi) + Oz — p)™™

From the formula for ¢ we find the expansion of ¢ to order 2m at py :

8() = P+ 1@ — pi) (1 + Oz — pif™)

so that the expansion for ¢! to order 2m at pj, is:
¢~ (@) = pr + L(@ — pr) (1 + OF — pi,)*™)
and thus the expansion for H' to order (4m — 1) at pj, is:

(L(F = pe))™

5 ¥
H'(@) =1+ 52— 3 Quaa(L(@ — ) + 0@ — )™
=0

So by integration from py we find

o ~ R R ~ R L2m N—-1 R R R R

H(®) = Prar + (@ = pe)(1+ (@ = o)™ S+ Y Prn(L(E = i) + O = i)™,
1=0

from which the Claim follows, since IV is a multiple of s and the terms of the sum

are repeated N/s times. O

Claim 4.2. Suppose the Taylor expansions of H around the points py take the form
H(z) = prr1-+(z—pr) L+ (@ —pr) " - Pz —pi) + (@ —pr) "™ Ry (2 —pr) +O(z—pi)™"),
where P and Ry are polynomials of degree at most (2n — 1), P with P(0) > 0 is

independent of k and Rsy, = Ry, for k > 0. Then for each k the Taylor expansion
of H to order 6n at py takes the form

H(@) = Prr +(@—Dr) (14 @~ Fi) ™ P@ i) + @~ Bi) ™" R@—Pi) + O@ )",

(8)
where R and P(x) = L?>"P(Lx) with P(0) > 0 are polynomials of degree at most
2n — 1 and are independent of the point in the orbit of D = ¢(p).
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Proof. The proof of this Claim is similar to the proof of the first Claim, and we
only indicate the differences.

For proving a formula for the j-th iterate the following formula is simple and
useful

P(x(1+2*"P(x))) = P(z) + 2*" -z - P'(x) - P(z) + O(x)*" 9)
(Note that the term z2" -z - P’(z) - P(z) contains terms of order larger than or equal

to 4n, but taking them out only complicates the formula.)
By induction, for each j > 1 and x close to p; we find

H (x) = pjan + (z = pr) (L + (z = p)*" - j - Pz — pr)
- D () (Pl p)?

+ (& = pe) P'( — pi) P2 — pi))

+(@—pe)™ D Ripr(e — pr) + Oz — pi)®™")
1=0
-1

=pjk+ Fj(@—pp) + (@ —pi)*" - > Rigwla — pi) + Oz — pi)™")
=0

where
Fij(z) == x(1+2* 5. P(z)

watn 20D (o 1 1)(Pla)? + 2P () P(@)

is independent of k, i.e. independent of the starting point in the orbit of p. As
above, define @ by the formula 22"Q(z) := <L ("1 P(z)), and thus Q(z) = (2n+

1)P+x- P, and Sy by the formula 21" Sy, (z) := L (z*" T Ry (z)), and thus Si(z) =
(An+1)Ry + = - R}, = Ss+x(x). Then

j—1

(H?)) () = Fj(x—pi) + (@ =)™ D> Siyn(@ — pr) + Ola — pp)*"
1=0

=1+4j(z—pr)*Qz — pr) + Oz — i)™
Thus
N—1 N-—1

(H) (@) = 1) = > jl@—pp)*"Qz — px) + Oz — pi)*"
i=1 i=

1
= NN (2 — )2 Q(z — pi) + Oz —pp)™  (10)

Computing f[’(qﬁ(gc)) from the second formula in (7) we obtain

o NS () (@) - 1)
H'(¢(x)) = N+ SN (H Y (@) - 1)

N
=1+ %D _((H) (z)-1)

j=1
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1— 23 (@) (@) - 1)+ Y2 (2 - p) ™ (Q(a — pi))?
j=1
+O(x — pk)G”
— 14 L((HN) (2) = 1) + BN ()i (Q(a — pr))?
+ Oz — p;c)G”

(@ = p)*" "=~
:1+%(F1/v(l’*17k)*1)+7]vk E Siyr(z — pr)
=0

— L@ —pe)"™(Q(z — pr))* + Oz — i)™

That is, the terms of H'(¢(x)) depending on k are the terms

(z—p)'" on
N : Z Sl+k($ _pk) + O(SE _pk)
=0

of order at least 4n.

From the definition of ¢ and (10) we see that ¢ is independent of k to order 4n
and thus the same holds for ¢~!. Combining this with the above shows that H' is
independent of k to order 6n—1 and thus H is independent of k£ up to and including
order 6n, as promised by the Claim. O
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