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Skin cells present many endogenous photosensitizers (ePS) that interact with light, generating oxidizing species,
causing molecular damage in proteins, lipids, and nucleic acids, and consequently triggering cellular and
organelle malfunction. Several cell lines with terminal differentiation are susceptible to accumulating non-
digestible pigments, such as lipofuscin or melanin-lipofuscin. Besides being hallmarks of aging, both pigments
can work as photosensitizers, increasing and expanding the toxicity of sunlight to the range of visible light (VL,
400-700 nm). In here we review the literature to describe the mechanisms by which the photosensitized
oxidation reactions induced by VL cause DNA damage. We aim to provide the mechanistic background needed to
improve the current strategies of photoprotection.

1. Introduction

Skin cancer is one of the most common human diseases, which is
increasing worldwide by a scary rate of 2-3 million new cases per year.
Keratinocytes are the cells most exposed to sunlight and consequently
the most susceptible to malignant transformations. As a consequence
most skin cancers derive from keratinocytes [1-4]. For example, basal
cell carcinoma, which originates from keratinocytes in the basal layer, is
the most common type of skin cancer, luckely with small changes of
progressing to life-treating conditions. Squamous cell carcinomas, the
second most frequent type of skin cancer, have a small frequency of
metastasis (~5 %) and its diagnosis can be confused by lupus erythe-
matosus [5,6], psoriasis [7,8] leishmaniasis [9,10].

The most dangerous and less frequent skin cancer is melanoma,
whose incidence has increased steadily in recent years, with an esti-
mated 325,000 new cases in 2020 [11]. There are several risk factors for
the development of melanoma, such as skin type (phototypes I and II are
more susceptible), genetic inheritance correlated to other phenotypes,
and the level of sun exposure [12], but many individuals that do not
have any of these risk factors can also develop melanoma [13].

There are several DNA lesions that cause mutations after sun expo-
sure. Pyrimidine bases engage in excited-state reactions, forming either
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cyclobutene pyrimidine dimers (CPD), through a [2+2] cycloaddition
mechanism, or Pyrimidine-pyrimidone (6-4) photoproduct (6-4PP),
which is formed through an oxetane intermediate [2] (Fig. 1). These
products occur with yields (product/number of absorbed photons) of
few percents (1-2 %) and are a direct consequence of the electronic
absorption of these nucleobases, which occur mainly in the UVB range,
but also in the UVA, with much lower efficiency [13]. 6-4 PP are the
photoproducts that have the highest frequency of mutagenicity, and
consequently are the most rapidly repaired. They cause the strongest
distortion in the DNA structure, triggering T—C transition mutation.
CPD are the most prevalent UV-induced DNA lesion, triggering C—T
transition mutation, which is the most prevalent and characteristic
mutation caused by UV exposure [14]. Many other lesions can lead to
mutations, but most relevant to the context of this work are the oxidative
lesions that occur both in the UV and VL ranges and are characterized
mostly by the G—T transition mutation, because guanine is the most
easily oxidized base (Fig. 1B).

Nowadays, the main strategy to prevent skin cancer is centered on
avoiding the effects of the ultraviolet radiation (UVR), by stimulating
the widespread use of sun blockers, which are efficient to protect against
the effects of UVB (280-320 nm), but not so much of UVA (320-400 nm)
and allows almost complete transmission of visible light (VL, 400-750
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nm). Consequently, VL is still mostly ignored in sun protection strate-
gies, even though VL inducesphotodamage in the skin cells [15].

Skin is a tissue constantly exposed to electromagnetic radiation and
the excess of exposure promote aging and carcinogenesis. VL represents
~45 % of the total sun light irradiance, promoting acute and chronic
responses, including pigmentation [16,17], erythema and inflammation
[18]. This is because skin cells have many endogenous molecules sen-
sitive to VL, which induces the photosensitization oxidation reactions,
generating reactive oxidant species and DNA damage [19-23] (Fig. 1).
Some endogenous VL photosensitizers, such as melanin, lipofuscin, and
melanolipofuscin are known to cause DNA lesions upon light exposure
[19-22]. These endogenous pigments have different chemical compo-
sitions, and are able to generate reactive species that photodamage
biomolecules, as was evidenced by the singlet oxygen (103) induced
formation of Fpg-sensitive sites in the DNA [19,21,22,24].

DNA damage in postmitotic cells, such as melanocytes and neurons,
as well as in stem cells that originate all types of skin cells are particu-
larly dangerous to the skin, once there is clear correlation between the
level mutations with the malignant transformation [25-27]. Even
though the effects of VL in the skin are evident and unquestionable,
there is still scarce evidence concerning the mutagenic role of VL and
when there is scientific evidences pointing to the mutagenicity of VL, the
mechanisms involved are not well understood [28]. In here, we aim to
overcome this liteture gap, by reviewing scientific evidence connecting
the accumulation of melanin and lipofuscin, VL exposure and DNA
damage in melanocytes and keratinocytes.

2. Keratinocytes, lipofuscin, melanolipofuscin, and DNA lesions

Lysosome aging and the accumulation of indigestible products of
oxidation in lysosomes trigger the accumulation of an yellow-brownish
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autofluorescent polymeric compound named lipofuscin, which is
generated from cross-reactions between oxidized lipids and proteins,
and transition metals, such as iron and copper [29]. Lipofuscin is a
hallmark of cell aging, since senescent cells accumulate dysfunctional
lysosomes and mitochondria, producing high levels of reactive species
and stimulating lipofuscinogenesis [30].

Even in the dark, lipofuscin accumulation is not innocuous, impair-
ing several functions that are important to cell homeostasis, such as
ubiquitin-proteasome pathway, lysosomal activity, antioxidant defense,
and stimulating prooxidant reactions [31-34]. Accumulation of lip-
ofuscin could result from an adaptive mechanism to tolerate the
oxidative stress condition present in cancer cells [35,36]. Nevertheless,
the accumulation of lipofuscin could also enforce tumoral aggressive-
ness and resistance against therapies [35,36]. Actually, the lipofuscin
accumulation arise conditions to prone the DNA damage, mutations and
carcinogenesis [36,37]. Several malignant lineages accumulate lip-
ofuscin in higher levels than normal cells, such as cancer cells from
non-small-cell-lung carcinoma, choroidal melanoma cells, and squa-
mous cell carcinoma (SCC) [1-4,36]. Indeed, autofluorescence of lip-
ofuscin and lipofuscin-like pigments are efficient noninvasive
biomarkers of the cancer development, especially in SCC and choroidal
melanoma [1-4,36,37].

After light absorption lipofuscin-like pigments become potent pho-
tosensitizers accelerating the damage in exposed tissues such as in
retinal pigmented epithelial (RPE) cells. The pathophysiology of age-
related macular degeneration is highly correlated with the accumula-
tion of lipofuscin and melanolipofuscin pigments in RPE cells [38-40].
Recently, lipofuscin-like granules have been identified in skin cells
exposed to UVA and VL, turning these cells hyper-sensitive to VL and
causing exposed cells to accumulate premutagenic DNA lesions. Since in
human epidermis keratinocytes receive melanin granules from
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Fig. 1. DNA lesions are formed by direct photochemistry (A) or photosensitized oxidation (B) processes. The sunlight is the main source of these processes, which can
lead to mutation, for example, by mispairing of DNA bases or by error-prone translesion synthesis pathways (C). Scheme was modified from [14].
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melanocytes, it is possible that these cells also accumulate melanolipo-
fuscin pigments during differentiation in the stratum corneum, but this
possibility remains to be validadate.

The damage in nuclear DNA has been shown to cause oxidation
products as well as single and double-strand breaks [41]. 8-0x0-dG is the
most common oxidized lesion formed by guanine attacked by 105, which
is generated by lipofuscin photosensitization by VL (Fig. 1). 8-oxo-dG,
which is recognized by endonucleases, such as Formamidopyrimidine
[fapy]-DNA glycosylase (Fpg), can cause mispairing during DNA repli-
cation, resulting in a transversion mutation GC>TA [42]. The higher
level of Fpg-sensitive sites in the nuclear DNA of lipofuscin-loaded cells
exposed to VL indicates the critical role lipofuscin photosensitization
may have in the accumulation of somatic mutations in skin cells [41,43].
The genotoxic events correlated with VL are not restrained to DNA
oxidation, but single and double strand breaks are also detected by
comet assay in lipofuscin-loaded cells treated with VL and blue light [41,
43]. This is possibly promoted by the ferrous iron present in lipofuscin
particles as well as in other cellular sites, such as nuclear proteins, which
reacts with hydrogen peroxide, producing the highly reactive hydroxyl
radical. The hydroxyl radical breaks DNA strands, generating the double
strand breaks, a highly genotoxic lesion, and leading to mutations and
carcinogenesis [44,45]. The triplet excited states formed after light
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absorption are also capable of abstracting electron/hydrogens from
biological targets, causing strand breaks in DNA [19]. The metabolic
consequences of VL-induced damages in lysosomes and mitochondria,
lead to disruption of the lysosomal-mitochondria axis of cell homeostasis
and blockade of the autophagic flux, conditions that favor genomic
instability by themselves [46,47].

3. DNA lesions in melanocytes and the correlation with
melanoma

Melanoma is the most aggressive type of skin cancer due to its
metastatic potential, and its incidence has increased considerably in
recent decades [48-51]. The disease occurs when melanocytes prolif-
erate in an abnormal, uncontrolled and autonomous way due to several
factors that can be genetic, epigenetic and others, with subtypes I and II
being the most sensitive to UV exposure [50,51] and subtypes IV, V and
VI most sensitive to VL [19,52].

Melanocytes are the skin cells responsible, among many other ac-
tions, for melanin production. Melanin is the main protecting pigment
against the excess of sun exposure, avoiding the damaging and muta-
genic effects of UVR [53,54]. However, melanin is also involved in
excited state and free-radical reactions that lead to several deleterious
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Fig. 2. (A) VL promotes skin pigmentation by stimulating normal melanocytes to produce more pheomelanin (Phe) or eumelanin (Eu) [18]. (B) Besides of
pigmentation, lipofuscin granules (Lf) are accumulated in keratinocytes due to blockade of the autophagic flux [22,46]. Photosensitization of melanin and lipofusin
by VL causes DNA damage because of Reactive Oxygen Species (ROS) generatiom is greater than DNA repair mechanisms (such as variant of melanocortin 1 receptor
—MCIR). (C) DNA damage accelerates aging and cell death as well as initiation of carcinogenesis in the skin [64-68]. Pine Bark Extraxt (PBE) and Titanium Dioxide
(TiO2) protect cells from pigmentary disorder in melanocytes and keratinocytes and Polypodium leucotomos (PL) prevents DNA damage and cell death due to its

antioxidant and anti-inflammatory action [66-70].
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products subsequent to UVR and VL exposure, including cyclobutane
pyrimidine dimers (CPD) [19,55-57]. Indeed, dark-skinned individuals
synthesize eumelanin in greater proportion than fair-skinned people,
being better protected against UVR, but being succestible to the effects
of melanin photosensitization with VL [11,21,52,55,56]. VL causes
increased pigmentation in human skin because melanosomes from me-
lanocytes synthesize melanin and transfer it to keratinocytes in the skin
[49,51] (Fig. 2A) and also induces the generation of the reactive oxi-
dants upon excitation with UVR/VL, such as 102, which causes the
formation of 8-oxo0-dG and other oxidized base pairs [13,22,19].
Among the VL spectrum, blue light has been the most harmful for
causing skin cell damage [44,47,57-59]. Oxidative stress, mitochondrial
disorder, reduction of oxygen consumption, DNA damage, increase in
oncogene expression and decrease in tumor suppressor genes are effects
observed in melanocytes [21,52,60]. The catastrophic decrease in the
capacity to maintain homeostasis in melanocytes and the inefficiency of
DNA repair mechanisms, is amplified by the presence of the variant of
melanocortin 1 receptor (MC1R) gene (R allele) and in individuals with
red hair phenoties [13,61,62] (Fig. 2B). The absorption of UVR and VL
photons by pheomelanin contributes to cellular damage and can stim-
ulate pathways of cell death, aging and skin cancer [21,63] (Fig. 2C).

4. Mechanisms of skin photoprotection against VL exposure

Any procedure that avoids the penetration of sun light through the
human skin will provide photoprotection [52,69,70]. Although skin
photoprotection is classically focused on prevention of acute and
chronic skin damage, especially against UVB and UVA, current sun-
screen does not protect efficiently skin against VL photodamage
[71-73].

Protection against VL has been indicated to prevent hyperpigmen-
tation, photoaging, photodermatoses, skin inflammatory and pigmen-
tary disorders [52]. It is not feasible to think of broad-band VL
photoprotection by the same type of mechanism and level of those
available to protect against UVB, i.e., efficiently avoiding photons to
penetrate the skin, because this would represent painting the in-
dividuals. However, tinted sunscreen composed by a blend of iron oxides
and TiOz can protect the skin against pigmentation by VL [77,78],
because iron oxide reduce the transmittance of energy of the VL by two
[66] (Fig. 2B). The most dangerous region of VL has been shown to be
the violet/blue regions [44], and sunscreen have been developed to offer
effective protection on this wavelength range [78].

Photoprotection can also involve other mechanisms such as antiox-
idants (e.g., vitamin E and C), suppressors of excited states (carotenoids)
and stimulators of redox-sensitive signaling networkers and endogenous
antioxidants defenses (e.g., bixin) [74-76]. Topically applied antioxi-
dants may also provide some level of protection against the excess of VL
[66]. French maritime pine bark (Pinus pinaster) extract (PBE) reduces in
vitro melanin production by downregulating tyrosinase [67] and
aqueous extract of Polypodium leucotomos (PL) reduced photooxidation
of melanin precursors and activation of blue light photoreceptor opsin-3
(OPN3 gene) in melanocytes, after irradiation with blue light [68,79]
(Fig. 2B). The chemical composition of PL leaves includes phenolic
compounds, such as benzoates and cinnamates. Some of them, such as
caffeic and ferulic acids prevent UVR-mediated peroxidation, by inhib-
iting the lipid peroxidation chain reaction, decreasing the levels of
cyclooxygenase-2 and of other markers of cellular damage [80-84].

Another strategy that seems to facilitate protection against sun
exposure is the development of special fabrics. They provide superior
protection against the effects of UVR. They will likely protect against the
effects of VL, although further studies must be performed to substantiate
this claim [82]. A word of caution. The effects of UVR and VL are
deleterious depending on the dose and skin type. Studies have shown
that the excessive use of topical sunscreens or pro-active avoidance of
any level of sun exposure could put the population at risk of hypo-
vitaminosis D, causing bone demineralization and decreased protection
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against several other types of cancer [85,86].

5. Conclusions

Photosensitization by melanin and lipofuscin-like pigments subse-
quent of VL exposure, provokes oxidation of several important biolog-
ical targets, leading to the accumulation of premutagenic lesions on
DNA, which can be converted into mutations, if not repaired. Antioxi-
dant and anti-inflammatory actives have been used as a photoprotection
strategy against the cell damage induced by UVR/VL.
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