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ABSTRACT

A novel theoretical framework for describing the dynamics of transient anions is presented. An ensemble of classical trajectories is propagated
on-the-fly, where resonance energies are computed with bound state techniques, and resonance widths are modeled with a combination of
bound state and scattering calculations. The methodology was benchmarked against quantum dynamics results for model potential energy
curves, and excellent agreement was attained. As a first application, we considered the electron induced dissociation of chloroethane. We
found that electron attachment readily stretches the C-Cl bond, which stabilizes the transient anion within ~10 fs and leads to the release
of fast chloride ions. Both magnitude and shape of the computed dissociative electron attachment cross sections are very similar to the
available experimental data, even though we found the results to be very sensitive on the accuracy of the underlying methods. These
encouraging results place the proposed methodology as a promising approach for studies on transient anions” dynamics of medium sized

molecules.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5130547

I. INTRODUCTION

Among electron induced processes in molecular systems, dis-
sociative electron attachment (DEA) plays a prominent role in a
series of physicochemical environments. Basically, a molecule cap-
tures an incoming low-energy electron (<10 eV) and forms a tran-
sient anion state, or resonance, which triggers off a nuclear dynamics
that may culminate in dissociation. In interstellar space and plan-
etary atmospheres, DEA may generate small inorganic and even
prebiotic molecules.” Cold plasmas, which are currently employed
in many technological applications,” rely on DEA of alkanes and
haloalkanes in order to create species responsible for the devised
treatment. One proposed application where DEA would be an
active participant is the pretreatment of lignocellulosic materials,
also based on cold plasmas.” DEA is also recognized to have a
range of implications in materials"” and environmental sciences.”’
A major motivation concerns the interaction of low-energy electrons
with biomolecules.” They are very efficient in inducing single and
double strand breaks in DNA,” which may account for long-term

biological damage. On the other hand, radiosensitizer compounds
typically present much larger DEA cross sections when compared to
nonsensitizers, ' which suggests that electrons might play a deci-
sive role in its bioactivity. DEA has also been suggested to partic-
ipate in other biological processes.'”'” These and other situations
where molecules fragment upon collision of low-energy electrons
are reviewed in Ref. 4.

Despite its significance as a fundamental physicochemical pro-
cess and its relevance to several fields, theoretical attempts to
describe DEA are still limited to very small or to simplified sys-
tems. Nonlocal resonance theory,* which is the most accurate treat-
ment for electron induced processes, has been successfully employed
for a series of diatomics or pseudodiatomic models."”'® High accu-
racy comes with high cost, and for larger molecules, one usually
employs a local approximation.'* Nonlocal effects are important
for broad resonances or near-threshold phenomena. Otherwise, the
local approximation provides similar results with a significantly
reduced computational cost.'*'"” Within the local approximation,
the available theoretical contributions to the problem usually rely
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on building potential energy surfaces (PESs) with time consum-
ing scattering calculations followed by nuclear wavepacket propa-
gations.”'**’ When considering all vibrational degrees of freedom,
this approach is still restricted to diatomics and triatomics,"”'* '
and even then calculations are very costly. If the system of inter-
est is a large molecule, one has to restrict the multidimensional
potential energy surfaces to few (not more than three) vibrational
coordinates.'>** ** Molecular dynamics simulations are sometimes
employed for the later stages of DEA,” ** but without account-
ing for the autodetachment probability of its initial stage, when the
anion is still transient. Alternatively, potential energy curves (PECs)
computed along reaction coordinates can also help in understand-
ing DEA mechanisms.” ' Although theory has been providing a
significant contribution to the understanding of electron induced
processes in small molecules, the current approaches are too compu-
tationally demanding to be applied to more complex systems and/or
to more vibrational degrees of freedom. In view of these difficulties,
the large amount of DEA data obtained in the last few decades, from
small” to considerably complex biomolecules,”” remains mostly
untouched by theory.

Faced with the various motivations related to DEA of molec-
ular systems, the existence of abundant experiments on the pro-
cess, and the limited contribution from theory to the problem up to
date, we propose a new theoretical approach to investigate electron
induced processes based on the mixed quantum-classical nuclear
dynamics of the transient anion states. While this class of meth-
ods has been widely employed to survey species with a constant
charge state,” it has not yet been adapted to describe transient
anions, mostly due to the difficulty in describing autodetachment
from these states. Our method is closely related to the works of
Lehr et al.”*” and Goursaud et al,” who employed classical tra-
jectories for studying the dissociation of transient anions. While our
proposed approach is also based on the concept of classically prop-
agating the nuclei while accounting for autodetachment, it differs
from previous works in important aspects. While they made use
of precomputed PESs and were limited to one and two vibrational
coordinates, our PESs are evaluated on-the-fly, i.e., along the path
of each classical trajectory. This means that all vibrational degrees
of freedom are accounted for and are described on an equal foot-
ing. Additionally, the electronic problem needs to be solved only at
the parts of the PESs relevant to the dynamics, and thus, the com-
putational cost does not scale with the number of dimensions. That
would not be the case for the alternative approach, where precom-
puting PESs would rapidly become unfeasible for more than a few
vibrational coordinates. It is also worth mentioning the work of
McCurdy and Turner,”” who showed that a semiclassical propaga-
tion of the wavepacket on precomputed PESs provided very similar
results to those obtained from the quantum propagation. Our pro-
posed methodology for the dynamics is general, regardless of the
choice of method or model for describing the transient state, as long
as it provides energies, widths, and nuclear gradients along the prop-
agation. In our first application, the resonance energies were esti-
mated from conventional bound state methods, while results from
separate scattering calculations provided a model for the resonance
widths.

In order to validate the proposed methodology, we have bench-
marked it against quantum dynamics results for a series of model
one-dimensional PECs for a single dissociative state. Then, we
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applied it to model DEA to an actual molecule. The chosen target
should have a single low-lying shape resonance, count with avail-
able experimental DEA cross sections for comparison purposes,
and should be larger than a diatomic or triatomic. Chloroethane
(CH3CH,Cl) fulfills these requirements and was thus selected as
the first case study. Electron attachment gives rise to a ¢ res-
onance, which is centered at impact energies around 2.5 eV, as
revealed by electron transmission spectroscopy (ETS) measure-
ments”® and by scattering calculations.”” This resonance induces
the elimination of the chloride ion (CI™), which has a maxi-
mum yield around 1.5 eV."*! Short lived resonances, such as
those of chloroalkanes,”" ** promote a shift from the vertical res-
onance energy to the maximum of the DEA cross section. This
redshift is related to the considerable difference in autodetach-
ment lifetimes at energies lying below and above the center of
the resonance.'**>** QOur goals here are twofold: first, to pro-
pose the methodology and validate it by comparing to quan-
tum dynamics results and second, to demonstrate its potential
and feasibility for a quantitative description of DEA to poly-
atomic molecules by considering the chloroethane molecule as a test
case.

Il. THEORY

The basic idea of our proposed computational strategy is to
propagate an ensemble of classical nuclei on potential energy sur-
faces computed on-the-fly, while the possibility of electron autode-
tachment brings about a survival probability factor for each clas-
sical trajectory. The first component of the problem comprises
the nuclear dynamics, which we have described with the mixed
quantum-classical trajectory method.””*”** Basically, the full quan-
tum mechanical nuclear wavepacket is replaced by an ensemble of
independent and classical trajectories propagated on-the-fly, along
adiabatic PESs that are computed as needed. It is thus expected that
the ensemble average of an observable should behave similarly to its
quantum mechanical expectation value. For many years now, this
method has been successfully employed in photophysics and pho-
tochemistry problems,“‘m and we thus believe that its extension
to electron-induced processes should be equally reasonable. Next
is the electronic description. Since the resonant anion is coupled
to the continuum of scattering states, its description would ideally
require the use of scattering methods™ ' or adapted bound state
methods, such as the complex absorbing potential’*** and the stabi-
lization method.””” Conventional bound state methods can also be
employed,” ” as long as one ensures that the roots of the Hamil-
tonian correspond to the quasibound state (a valence anion state),
rather than a pseudocontinuum state (the neutral molecule plus a
free electron). This so-called variational collapse of the wavefunction
can be circumvented by avoiding very diffuse functions. However,
methods that ignore the discrete-continuum coupling cannot pro-
vide direct information on the autodetachment probabilities, which
is key for a quantitative description of resonant anions dynamics.
Here, we have adopted a mixed approach, where the resonance ener-
gies are evaluated with conventional bound state methods, although
corrected with electron scattering calculations, which also provided
resonance widths.

The discrete-continuum coupling of the transient state is given
by the nonlocal resonance width I'(q, E), which depends on both the
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impact energy E and the nuclear coordinates of the target q. Within
local descriptions, the energy dependence is substituted by the res-
onance energy E,, which defines a local resonance width I'z(q) =
I'[q, E-(q)]." As long as the resonance width is not very large and
thus does not overlap the collision threshold, local approximations
provide very similar DEA cross sections to the full nonlocal descrip-
tion.”” In this case, the transient anion state can be characterized by
a complexed value resonance energy ¢,

i
SZEV— EFL, (1)

where the real component part E, defines the energy of the tran-
sient anion relative to the neutral, which is called resonance energy
or resonance position. The decay of the state by electron detachment
is accounted for by the imaginary component —iI'1/2, where Iy is
the local resonance width (which controls the autodetachment rate),
while 1/T;, (in atomic units) is the autodetachment lifetime. Here and
throughout the text, we are going to use atomic units.

The calculation of DEA cross sections based on a classical for-
malism has been presented before” ** and much of the following
construction is based on these previous works. Besides the funda-
mental difference pointed out in the Introduction, concerning the
evaluation of the PESs, there are three other key differences from
the derivation of Lehr et al.”*" to ours. First, they have assumed a
classical distribution for the nuclear degrees of freedom, while we
(and also Ref. 36) adopted the Wigner distribution associated with
the nuclear wavepacket, which has been shown to be much more
accurate in other applications.”’

Second, while we also employed the local resonance width I'.(q)
for the dynamics propagation, we further kept the energy dependent
resonance width I'(q, E) in the attachment probability. In a sense,
this is equivalent to the semilocal approximation,'*'” which uses the
local width for the wavepacket propagation and the nonlocal version
for the entrance and exit amplitudes. We further assumed energy
and coordinate dependence of the width function to be separable:
I'(q,E) = g(q)zy(E), as is typically done in semilocal descriptions of
quantum dynamics.*'"*’ The g(q) function is built in such a way
that the nonlocal width T'(q, E) coincides with the local width T'7(q)
at the resonance energy [E = E,(q)],

I'(q)

g(q)" = YE(Q) (2)
such that
_ y(E)
I'(q,E) =T.(q) B (@) 3)

Third, in Ref. 36, only normalized DEA cross sections were
obtained, while in Refs. 34 and 35, absolute DEA cross section curves
were obtained by transforming from coordinate to resonance energy
variables, since the relation between these was known in their one-
dimensional PEC. This is clearly not the case in actual molecules,
which ultimately motivates the idea of sampling initial conditions
and numerically propagating the trajectories. Here, the DEA cross
sections are obtained by assigning a broadening function to each tra-
jectory, as is usually done in calculations of photoabsorption cross
sections.””
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We start by considering that the neutral target is prepared in a
state whose Wigner distribution is given by W(x), where x = (qo,
Po) denotes a nuclear phase space point with coordinates qo and
momenta po. The Wigner distribution W(x) represents the proba-
bility density function (PDF) for finding the nuclear variables at x.
Now, the rate for electron attachment is given by I'(qo, E), and we
assume that it takes place when the kinetic energy of the incoming
electron E matches the resonance energy E,(qo), which brings in a
delta function S§[E — E,(qo)]. This implies a vertical electron capture,
in the sense that the nuclear degrees of freedom x remain unal-
tered. The multiplication of these factors provides the probability
for electron attachment pas(x, E)dx,

Part(x, E)dx = T(qy, E)S[E — E(q,) ] W(x)dx. (4)

Once the transient anion is formed, the nuclear coordinates
evolve in time [q(x, t)] according to Hamilton’s equations of motion,
where we explicitly kept the dependence on the initial condition x.
Due to the time reversal symmetry of electron capture, both attach-
ment and detachment rates at q must be the same and equal to I';.(q).
Instead of working with the detachment probability, it is more con-
venient to consider the survival probability Py (X, t), which is the
probability that electron autodetachment has not taken place until
time ¢ for the initial condition x. At each instant ¢, the survival prob-
ability is decreased by the detachment probability, which provides
the following equation:

Pgury (%, £+ dt) = Purv(x,1)[1 - T[q(x, £) ]dE]. (5)

Given that Psur(x, t = 0) = 1 (electron capture sets thq clock), the
survival probability can be computed in closed form,”**’

Por(x,1) = exp[—/otrL[q(x, t')]dt']. (6)

As long as the resonance width is different from zero, the survival
probability will be a monotonically decreasing function of time.
When the anion becomes more stable than the neutral, autodetach-
ment no longer takes place (I'y = 0), and Psurv (X, t) converges to the
final survival probability, which we denote Pgurv(x). A scheme for the
electron induced dynamics and the competition between DEA and
autodetachment is represented in Fig. 1.

The mixed quantum-classical DEA cross section ¢ is con-
structed by integrating the product of the electron attachment pa (x,
E) and the survival Py (x) probabilities over the initial conditions
phase space x,”*"

o(B) = & [ T(apB)O[E- E(a) Pan()W@)dx ()

The integral in Eq. (7) is fit to be evaluated within the nuclear
ensemble method.”" An ensemble of initial conditions is sampled
according to the Wigner distribution W(x), which effectively trans-
forms the integral into an average over the ensemble. Given the con-
straint imposed by the delta function in Eq. (7), each initial condition
determines the energy E for which the cross section is computed.
Therefore, the energy dependence of the cross section is accounted
for by the different initial resonance energies, which in turn reflects
the underlying Wigner distribution. In order to shift from a

J. Chem. Phys. 151, 224104 (2019); doi: 10.1063/1.5130547
Published under license by AIP Publishing

151, 224104-3


https://scitation.org/journal/jcp

The Journal

of Chemical Physics

P=exp[- [T(1)dt]

A + B"(DEA)
e  +AB — AB™ “ 1-P
AB + e~ (autodetachment)

energy

e'T A /.
© l LA

coordinate

FIG. 1. Schematic representation of the electron induced dynamics of the molecule
AB. Initially (left panel), electron attachment promotes the nuclear wavepacket
from the neutral ground state AB (black curve) to the transient anion state AB~
(orange curve), thus triggering the dynamics of the nuclei (represented by the red
arrow) along a dissociative coordinate. While the anion lies higher in energy than
the neutral, the resonance width T accounts for the possibility of electron detach-
ment (middle panel). At the end (right panel), part of the wavepacket remains in
the anion potential energy curve (accounting for dissociation) and part will lie in
the neutral curve (accounting for vibrational excitation). The competition between
dissociative electron attachment (DEA) and autodetachment is governed by the
survival probability P = exp[— /T (¢)dt].

collection of delta functions to an actual cross section curve, we
have assigned a broadening function g;(x, E) to each trajectory, simi-
larly to what is done in photoabsorption cross section calculations.”*
This also allows for the ratio y(E)/y(E-(q)) [Eq. (3)] to become dif-
ferent from one when the impact energy does not coincide with
the resonance energy. Here, we have employed a Breit-Wigner
profile,

1 n/2
m (E-E(qp)* + (n/2)*

which ensures that g;(qo, E) ~ §[E — E;(qo)] when  — 0.

When accounting for the separable width function, the ini-
tial condition sampling, and the broadening function, the working
expression for the DEA cross sections becomes

(8)

8(qy,E) =

o) = Fy 2 s ISR EPan (), ©)

where the superscript i denotes one of the N trajectories, whose
initial conditions X = (q),p}) are sampled from the Wigner
distribution.

For the dynamics of chloroethane, the autodetachment lifetime
was modeled as follows. First, we have assumed that the local reso-
nance width dependence on the position can be approximated by an
explicit function of the corresponding resonance energy,

Ti[q(x )] = T1[Er(q(x 1))]- (10)

We performed ab initio electron scattering calculations (to be
described in Sec. III E) for four geometries where the C-Cl bond
distance was varied, which provided pairs of resonance energies and
widths. We further included the point (E, = 0 and I'; = 0) into the
set, which guarantees that autodetachment cannot take place when
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the anion becomes electronically stable. Since we found resonance
energies and widths to be quite correlated, the instantaneous
I'L[E-(q(x, t))] was obtained from a third-order polynomial inter-
polation” to the computed points, which was then extrapolated
to all configurations accessed during the dynamics propagation.
Accounting only for the C-Cl stretching coordinate when build-
ing our model for the resonance width is justified a posteriori, since
the dynamics simulation reveals that the anion relaxes mainly via
the elongation of the C-Cl bond. More sophisticated models (that
include an explicit dependence on the vibrations) could be devised,
but that is beyond the scope of the present work. However, based
on the characteristics of the state and on the actual results from the
dynamics, we anticipate the effect of the other degrees of freedom to
be of less importance to the resonance width.

While the scattering calculations served mainly to provide
a reliable model for the autodetachment probabilities, they were
not employed for the calculation of energies and gradients dur-
ing the dynamics. Rather, bound state methods (to be described
in Sec. III D) were employed for the calculation of anion energies
(V4) and energy gradients, as well as for a single point calculation
of the neutral ground state energy (Vy), which then provided the
instantaneous resonance energy (E;) and resonance width (I'z) (as
computed with the above-described autodetachment model). Our
choice stems from two observations. First, resonance positions can
be estimated based on bound state methods, and these are typically
much less computationally demanding than scattering calculations.
Additionally, the former class of methods usually offers analyti-
cal nuclear gradients (pivotal for the efficiency of the dynamics),
which is not the case for the latter. In the case of chloroethane,
energies and gradients were computed for tens of thousands of
geometries accessed during the dynamics propagation. Meanwhile,
resonance widths were readily obtained by extrapolating the data
from a manageable number of scattering calculations. All in all,
the most computationally demanding part of the present applica-
tion concerned the electronic structure calculations, which are much
more numerous (albeit less expensive) than the latter. It is also
worth mentioning that the dynamics propagation and the autode-
tachment model are two independent aspects of the problem. There-
fore, improved autodetachment models could be devised, without
the need to repeat the computationally demanding dynamics sim-
ulations. Moreover, although we have not investigated this aspect
here, this methodology can be directly connected to surface hopping
trajectories.”’

lll. COMPUTATIONAL DETAILS
A. Quantum dynamics

For the quantum propagation in the model PECs, we have
employed the semilocal version of the Feshbach projection operator
formalism.”’ Since the employed models involve one nuclear degree
of freedom, we will use the dissociative coordinate R instead of q. In
the semilocal approximation, the entrance amplitudes incorporate
the nonlocal I'(R, E) width, while the local I'; (R) width is employed
for the wavepacket propagation,”

. ; )
(R ) = [T,, + Va(R) - %FL(R)]W(R, o, a1
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whose initial condition is given by
Ya(R,0) = g(R)x»(R). (12)

InEgs. (11)and (12), T, = —(2;1)_1(12/dR2 is the nuclear kinetic
energy operator, y is the reduced mass, V;(R) and I'; (R) are the real
and imaginary components of the anion PEC, respectively, g(R) is
related to I'L(R) via Eq. (2), and y,(R) is the initial vibrational state.
Once the wavepacket is propagated, the DEA cross section can be
computed as”’

Rh_)r?oe—mR/O‘ dt!]/d(R,t)e1Et ) (13)

o(E) = 35 H(E)

where K = \/2(E — Eq,) is the relative momentum of the departing
fragments and Ey,, is the energy threshold for the DEA reaction.

The numerical propagation was performed with the split-
operator technique.”’ The wavepacket is multiplied by the (real and
imaginary) potential energy in position representation and by the
kinetic energy in momentum representation, while the transforma-
tion between representations is performed with fast Fourier trans-
form.”” We employed a space grid of 2'° = 1024 points, from —2.0ag
to 6.0ap, and a temporal grid of 218 = 262144 points, from 0 fs to
500 fs (which corresponds to a time step of 3.8 x 107 fs). In order to
avoid spurious reflections of the wavepacket from the end of the grid,
the amplitude of the wavepacket lying beyond the cutoff radius Rey
was damped by multiplying it by the term cos[(71/2)(R — Reut)/(Riast
— Ra)],” where Ry is the last grid point. Finally, the limit in
Eq. (13) is taken at a finite R = Rpga position, beyond the crossing
point of anion and neutral PECs, and before R.y. Here, we have used
Rpga = 4.0ag and Ry = 4.1ay.

B. Distorted sampling distribution

As already pointed out, the ensemble of initial conditions for
the dynamics simulations should be sampled according to the appro-
priate Wigner distribution. Here, we consider each normal mode
to be given by a harmonic oscillator potential, whose normalized

Wigner distribution for finite temperatures’””" is given by

(o 4 P
W(q,p)—g(n)exp(—ZG;i—z(iz ’ (14)

pi

with crfii = 1/Qaipiwi), aji = piwi/(2a;), a; = tanh(w;/27T), w;
and y; are the vibrational frequency and reduced mass of mode i,
respectively, and T is the temperature.

Alternatively, we could sample from any other sampling PDF
and employ the importance sampling technique to map the results
to the target PDF of interest, as has been recently demonstrated.’””
Basically, each trajectory is assigned to an importance sampling
weight (the ratio between target and sampling PDF evaluated at
the sampled point), which exactly compensates for the difference
between the two PDFs. There are two situations in which one would
employ different sampling and target PDFs. First, when a set of
calculations has already been performed for one sampling PDF,
the results can be mapped into any other target PDF. This is the
case discussed in Ref. 72, where the importance sampling technique
was employed to compute temperature dependent observables. The
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second motivation is related to a situation when sampling from the
target PDF leads to a poor convergence of the observable being com-
puted. In this case, one should adopt a PDF that better samples from
the most important region of the parameter space. While this does
not seem to be a reason for concerns in simulations of photoex-
cited states, it proved to be a major issue in the present dynam-
ics of short-lived transient anions, as will be discussed in Sec. V.
Here, we have performed importance sampling calculations for both
situations discussed above.

The implementation of the importance sampling technique for
the selection of initial conditions’” was generalized by allowing for
arbitrary broadened and displaced Gaussians as PDFs. Denoting x
= (q, p) as the phase space point with coordinate q and momentum
p, a Gaussian distribution centered at xo = (qo, po) with standard
deviation o = (04, 0)) is given by

M 1 (xi - xio)2 )

P(x) g Voo exp( 207 . (15)

In the most general case, displacements and standard devi-

ations for both sampling and target distribution could be differ-

ent and the importance sampling weights would be calculated by

the ratio of the corresponding distributions, as given by Eq. (15).

When distributions are displaced from one another but share the

same Gaussian exponent o, the importance sampling weights are
computed as

207 o?

M s E2 ()2 i
W(X) — H % GXP(— (XzO) (XIO) _ Xio xl()xi)) (16)
i=1 Vi

where the superscript s and ¢ denote sampling and target PDF
parameters, respectively.

C. Classical dynamics

100000 trajectories were propagated for each of the model
PECs. The dynamics simulations of the chloroethane resonant anion

were performed with the Newton-X package’™ * interfaced with the
Columbus”™° software. The electronic problem was described at the
multireference configuration interaction (MRCI) level,”” with two
levels for the excitation number: zero [MRCI(0)], and two (MRCI
with singles and doubles or MRCISD), which will be described in
Sec. 111 D. 1400 trajectories were run for the MRCISD calculations,
while the dynamics performed at the MRCI(0) level counted with
1000 trajectories. Nuclei were propagated numerically according to
velocity-Verlet algorithm with a time step of 0.5 fs. This time step
did not compromise the calculation of the survival probability, as
they were very close to those obtained by employing a time step
of 0.1 fs for 10 selected initial conditions. Furthermore, due to the
exponential dependence of the survival probability on the resonance
width, its calculation could become inaccurate if we were to evalu-
ate the integral in Eq. (6) with the same time step of the dynamics.
Instead, we have integrated a third-order polynomial interpolation®®
of the I';[q(#)] function, with a time step of 0.002 fs, which guar-
anteed a smooth variation of the exponential argument. If one is
interested in evaluating the initial relaxation of the transient anion
and also in computing DEA cross sections, it is enough to propagate
the dynamics until the anion becomes more stable than the neutral.
Thus, whenever the C-Cl distance reached 4.5ay, the trajectory was
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terminated, which is more than enough to guarantee stabilization
against autodetachment. On the other hand, if one is also inter-
ested in how the initially deposited energy is distributed between
the fragments, then the dynamics should contemplate the drifting
of the fragments until their interaction has considerably decreased.
We have analyzed this later stage of DEA by proceeding with the
propagation of 200 trajectories beyond the 4.5a¢ cutoff. The bound
state calculations [MRCISD/MRCI(0)] eventually failed to converge,
which typically happened for a C-Cl distance of around 13ao.

Initial conditions for the dynamics simulations of chloroethane
were generated by independently sampling position and momen-
tum for each normal mode. Except for the v3 normal mode (which
is dominated by the C-Cl stretching), all other modes were sam-
pled according to the harmonic potential Wigner distribution for a
temperature of 333 K [Eq. (14)], which matches the experimental
condition of the DEA cross section measurements.”’ As for the v;
mode, we adopted a displaced Wigner distribution [Eq. (15)] with
Gv,0 = 1.5/\/usws and p;, o = 1.0\/3ws, both in the direction of
promoting the dissociation, while keeping the same exponents of the
original Wigner distribution. This bias showed to be critical in order
to attain a reasonable convergence of the DEA cross sections with
the number of trajectories. The centers of the sampling PDF were
chosen after testing a couple of combinations for a very reduced
set of trajectories. Finally, the bias on the sampling is corrected to
the actual 333 K Wigner distribution by means of the importance
sampling weights [Eq. (16)].

D. Bound state calculations

Describing resonant states with bound state methods is
expected to be a rather tricky task. On the one hand, anion states
usually require more diffuse functions than neutral states. However,
when very diffuse functions are employed, the additional electron
of the anion state does not lie in a valence-type orbital but rather
in diffuse orbitals far from the molecular frame. In this case, the
anion state is actually emulating the scattering continuum and not
the resonant anion, which has a valence nature. One can circum-
vent this issue by choosing a basis set that effectively constraints
the electron to occupy a valence orbital. We found that the aug-cc-
pVDZ basis set’® offered a good compromise between both require-
ments. The exception would be at geometries where the C-Cl bond
is compressed, where the computed anion state mimics the contin-
uum, but these geometries are unimportant for the dissociation and
were never actually sampled for the dynamics. Instead of this sim-
pler approach of employing an already described basis set, one could
instead search for an adequate set of basis functions with the aid of
stabilization methods,”””’ but we did not pursue that here. Another
major methodological challenge concerns a balanced description of
correlation effects for neutral and anion states. In view of these
inherent difficulties, our choice of basis set and electronic structure
methods should imply in an overestimation of the resonance posi-
tion. Here, we have corrected the resonance energies computed with
bound state methods in order to match the result obtained from
ab initio scattering calculations (to be described in Sec. III L)
performed at the neutral equilibrium geometry.

The active orbitals of chloroethane were generated in a state-
averaging (SA) complete active space self-consistent field (CASSCF)
calculation, or SA-CASSCF, which included the ground state and
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two singlet excited states of the neutral in the SA. 6 electrons were
distributed in 4 orbitals: the bonding ocq and antibonding of
orbitals at the C-Cl bond and the two nonbonding n¢; orbitals at the
chlorine atom. Augmenting this active space with orbitals located
at the C-C bond had a small effect (~0.1 eV) on the energies of
the resonance and thus we kept with the (6,4) active space. Per-
forming CASSCEF calculations for the anion state usually resulted
in diffuse orbitals replacing the ¢* orbital in the active space, as
placing the extra electron far from the molecule provides a lower
electronic energy than that of the valence ¢* anion. In order to
avoid the appearance of continuum intruder states, both anion and
neutral states shared the same active orbitals as obtained from the
above described SA(3)-CASSCEF level. Attempts to include the anion
state in the SA also led to the same issue. The electronic wavefunc-
tion was described at the MRCI level,”” with a (6,4) reference space
for the neutral and a (7,4) space for the anion, and with both zero
[MRCI(0)] and two (MRCISD) excitations from the active space. For
the neutral state, the MRCI(0) energy is equivalent to the first root of
the SA(3)-CASSCEF calculation. On the other hand, the MRCI(0) cal-
culation is not the same as a CASSCF calculation performed for the
anion, since the orbitals of the former are optimized according to the
SA(3)-CASSCEF calculation. For the static calculations, the David-
son correction to the MRCISD wavefunction (MRCISD+Q)*’ was
computed.

E. Scattering calculations

In order to provide a reliable model for the resonance life-
time, and also to validate the results obtained from the bound state
calculations, we have performed fixed-nuclei elastic scattering cal-
culations at the equilibrium geometry obtained from the MRCISD
level and also for a couple of distorted geometries. We employed
the Schwinger multichannel (SMC) method,”"*"** with pseudopo-
tentials,” in its latest computational implementation.”* The same
Cartesian Gaussian functions presented in Ref. 85 (generated as in
Ref. 86) were employed here, while one p-type function with a 0.75
exponent was supplemented to the hydrogen atoms. An additional
set of diffuse 4s3p functions was placed at the carbon atom bonded
to the chlorine, with exponents generated by successive divisions by
4, as proposed in Ref. 87. The neutral ground state was described at
the restricted Hartree-Fock level, making use of the Gamess pack-
age,” while modified virtual orbitals® were employed for the scat-
tering calculations, as generated in the field of the cation with charge
+4. The use of MVOs is a standard procedure in scattering calcu-
lations.” They should provide a more compact representation of
correlation-polarization effects (thus requiring less CSFs), since they
have a more valence-like characteristics than the canonical virtual
orbitals.

The scattering wavefunction was expanded in a set of con-
figuration state functions (CSFs) {|ym)}, built as |y;) = A[|Po)
® |@j)] (which accounts for static and exchange interactions), and
lxii) = A[|®;) ® |¢j)] (which incorporates polarization and correla-
tion effects). For the former type of CSFs each virtual orbital (scat-
tering orbital) |¢;) is coupled to the target ground state |®o) and then
antisymmetrized with the operator A. The later type was generated
by coupling a scattering orbital |g;) to a single virtual excitation |®;)
of the target (which define a pair of hole and particle orbitals). This
set of functions was selected based on the criteria escar + €part — €pote
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< &, ' for an energy cutoff e = 1.6 hartree, where the &'s are the
energies of the scattering, particle and hole orbitals. Both singlet-
and triplet-coupled target excitations were considered, while only
the spin preserving doublet CSFs were kept in the scattering wave-
function expansion. Since we are interested in characterizing the ¢*
resonance, the scattering calculations were performed only for the
A’ irreducible representation. The three lowest singular vectors of
the SMC denominator matrix were removed from the calculation,
since they were assigned to linear dependency problems. The same
protocol was adopted for the scattering calculations performed at
nuclear configurations where the C-Cl bond was stretched.

At each C-Cl bond distance R, energy E,(R) and width I'; (R) of
the resonance were obtained from the scattering calculations by fit-
ting the computed eigenphase sum J(R, E) to a functional form com-
prising a Breit-Wigner profile and a second-order degree polynomial
in energy,

I (R)/2

8(R,E) = - tan*l(E “E®)

) +a0+a1E+a2E2. (17)

Meanwhile, the y(E) function was obtained with a single fit to the
equilibrium geometry eigenphase sum, according to”’

_ E)/2
O(Ro,E) = —tan 1(#_)/“]5)) vao+mE? +mE,  (18)
with
y(E) = AE"? exp(~bE), (19)

1 1/2 —bE .
—— +E /"¢ "lerf(iVbE
= |exf(iv/BE)

where erf is the error function. According to the Wigner threshold
law, at lower collision energies, the scattered electron decays with
the lowest partial wave allowed by the target symmetry.”” For polar
molecules, the formally correct behavior of the width at the thresh-
old becomes more intricate,”’ but our SMC scattering calculations
are not able to fully account for the long-ranged dipolar interac-
tion. This limitation stems from the limited range of the square-
integrable basis functions that are employed. Therefore, the higher
partial waves cannot contribute at the very low energies, which in
turn will be dominated by the s-wave (I = 0). The SMC method
should thus provide a behavior closer to y(E) ~ E"* as E — 0, even for
polar molecules. In any case, the threshold behavior of the resonance
width only affects the computed DEA cross sections at very low ener-
gies, which do not concern us in the present work. It is also impor-
tant to realize that the resonant contribution [as given via the tan™"
functional form in Egs. (17) and (18)] and the threshold behavior [as
governed by the y(E) function] are two separate aspects of the scat-
tering eigenphase. In fact, while the 0™ resonance of chloroethane is
mostly of p-wave (I = 1) characteristics at the local resonance energy,
the s-wave prevails close to the threshold (in the SMC calculation).
The set of parameters obtained from the eigenphase sum fitting are
given in the supplementary material.

At this point, we briefly review how each term of the work-
ing expression for the DEA cross sections is evaluated [see Eq. (9)].
The local resonance width Tr(q,) is evaluated at each sampled

a6 -5 - | e
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initial condition qj, and its expression is built from a few scatter-
ing calculations, as explained after Eq. (10). The y(E) function is
given by Eq. (20) and is obtained from a single scattering calcula-
tion performed at the neutral equilibrium geometry, as described
above. In the denominator, it is evaluated at the resonance energy of
each initial condition Er(qf)), while in the numerator, it is evaluated
in terms of the continuous electron impact energy E variable. The
broadening function gi(qj, E) is given by Eq. (8) and depends on the
initial resonance energy E,(q}) and the y(E) function. The survival
probability Psurv(xi) is computed according to Eq. (6), thus requir-
ing the resonance width along the trajectory q(x', t'). Therefore,
results from the actual propagation of the trajectories enter solely
in the survival probability, while the other terms depend only on
the initial condition qj. Finally, the cross section curve is obtained
by multiplying each term and averaging over the ensemble of N
trajectories.

IV. MODEL POTENTIAL ENERGY CURVES

A harmonic potential was employed for the neutral PEC V(R)
and a single-exponential dissociative curve for the anion PECs
V4(R), while the local resonance width I'. (R) was modeled as being
proportional to the resonance energy E,(R) = V4(R) — Vo(R),

Vo(R) = CR’, 1)

V4(R) = [E} - D] exp(~aR) + D, (22)
0

Iu(R) = max[ll;oEy(R),O]. (23)

The max function ensures that I'. (R) = 0 whenever the anion is more
stable than the neutral [E,(R) < 0]. In all models considered, we have
fixed the neutral PEC (C = 1.5 eV), the vertical resonance energy
(E? = 2 eV) and the asymptote of the anion PEC (D = -1 eV). Unless
stated otherwise, the reduced mass was taken as y = 9 amu. The
explicit energy dependent part of the resonance width was modeled
as

y(E) = AE"? exp(-bE), (24)

withA=1,I=1,and b=05eV"".

We start by discussing the results for the reference model Al,
where & = 0.8a;" and I’ = 1 eV. The PECs and both the actual
Wigner distribution and a displaced Wigner distribution are pre-
sented in Fig. 2, with displacement and broadening parameters
[Eq. (15)] of the latter given by qy = 1.5/\/uw, py = 0.8,/uw,
(03)% = 0.8/(2apw), and (0;)* = 0.8 pw/(2a). We have computed
the energy integral of the DEA cross section for an increasing num-
ber of trajectories, when sampling from both unshifted and shifted
Wigner PDFs. In the latter case, we employed importance sampling
weights [Eq. (16)] to correct for the different sampling and tar-
get (unshifted Wigner distribution) PDFs. As shown in Fig. 2, both
approaches lead to the same result for a sufficiently large number of
trajectories, as they should. Importantly, the convergence is dramat-
ically improved when sampling from the shifted Wigner distribu-
tion. This happens because of the much larger survival probabilities
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FIG. 2. On the left, PECs for the A1 model: neutral state (black) and real (orange)
and imaginary (blue) components of the anion state, together with the corre-
sponding Wigner distribution of the neutral vibrational ground state (black) and
a displaced distribution (purple). On the right, energy integral of the DEA cross
section (in arbitrary units) for an increasing number of trajectories, computed for
both original distribution (black) and displaced (purple) Wigner distribution as the
sampling distribution, with the former as the target distribution.

obtained for trajectories starting with the more positive position
and momentum. They start closer to the crossing point and reach
it faster such that autodetachment is less likely and takes place dur-
ing a shorter period of time, thus decreasing the argument of the
exponential in the survival probability [Eq. (6)]. On the other hand,
sampling an initial condition that provides larger survival proba-
bilities becomes increasingly unlikely due to the Gaussian decay of
the Wigner distribution. When accounting for the opposing trends
of the survival probability and the initial condition sampling dis-
tribution, there should be an intermediate region in phase space
which maximizes the likelihood of DEA. Therefore, when there is
good overlap between this important phase space region and the
sampling PDF, the convergence of the DEA cross section should
improve, as we have observed. For all model PECs, we employed
broadening and shifting parameters for the sampling PDF that pro-
vided a similar convergence as that obtained for the A1 model. One
could in principle optimize the sampling PDF in order to maximize
the rate of convergence, but we did not pursue that. When dealing
with dynamics simulations of photoexcited molecules, one can usu-
ally afford to run on the order of few hundred trajectories based on
ab initio methods to few thousand trajectories based on semiempir-
ical methods. For transient anions which present a sizable shift from
the vertical resonance energy to the maximum of the DEA cross sec-
tion, as is the case of chloroethane, converged observables would
only be attained with the aid of the importance sampling technique’”
and a well suited sampling PDF.

The wavepacket (as obtained from the quantum propaga-
tion) and the distribution function for the classical trajectories are
depicted in Fig. 3, for propagation times of t = 0 fs, t = 6 fs, and
t = 12 fs. The classical distribution was obtained by attaching a nar-
row Gaussian function to each trajectory and summing over the
ensemble. The matching between the curves is quite remarkable. Not
only the classical propagation correctly mimics the displacement and
speed of the wavepacket, but it also reproduces the four order of
magnitude decrease in its norm. This last point demonstrates that
assigning a survival probability [Eq. (6)] as an effective weight to
each trajectory provides an excellent approximation to the action
of the imaginary component operator —il'.(q)/2 on the quantum
wavepacket.
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FIG. 3. Quantum wavepacket (green) and distribution of classical trajectories
(violet) for the A1 model, att=0fs, t=6fs, and t = 12 fs.

Besides the reference model A1, we have tested for other com-
binations of the parameters a and I°. The former provides the
steepness of the PEC and is thus the key parameter controlling the
dissociation lifetime, while the later governs the magnitude of the
resonance width, hence the autodetachment lifetimes. The following
values were considered: a = 0.8a;" (model A), a = 0.5a;" (model B),
and o = 0.2&151 (model C), and I’ = 1 eV (model 1), I® = 0.2 eV
(model 2), and T° = 0.04 eV (model 3). Each pair of parameters was
combined, which gave rise to nine sets of model PECs. For exam-
ple, a = 0.8a, 1and I = 1 eV defines the model A1, and so on. Even
though these parameters were arbitrarily chosen, they should be rep-
resentative of what one could encounter in actual molecules. Figure 4
shows the nine model PECs considered, while the corresponding
DEA cross sections computed according to both quantum [Eq. (13)]
and mixed quantum-classical [Eq. (7)] propagations are presented

2 : 2 . 2
1 /\1— 1~ A2 1 A3
|
1
I
/Bl

energy (eV)

~J
~
~J

1
q(a)

FIG. 4. Model PECs [according to Eq. (23)] for the neutral state (black) and for the
real (orange) and imaginary (blue) components of the anion state for C = 1.5 eV,
E? = 2eV, and D = —1 eV. We considered combinations of a = 0.8a;" (top),
0.5a5 (middle), and 0.2a5 (bottom), and I° = 1.0 eV (left), 0.2 eV (middle), and
0.04 eV (right).
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in Fig. 5. Overall, agreement is excellent. The main difference lies
on a small shift of the mixed quantum-classical DEA cross section
peak position to lower energies. This shift virtually disappears when
the resonance width is decreased (moving from left to right panels
in Figs. 4 and 5) but becomes more pronounced when the anion
PEC becomes less steep (moving from top to bottom panels). To a
great extent, the redshift in the DEA cross sections can be traced
back to the small differences between the quantum wavepacket and
the ensemble of classical trajectories. In the Al model, we found
the development of a very slight displacement of the classical dis-
tribution to larger ¢’s (see Fig. 3). This displacement becomes neg-
ligible when going from Al to A3 models (not shown), and thus
it should not be related to the real component of the anion PEC,
which are the same in these cases. On the other hand, larger shifts
on the distribution appear when moving to Bl and C1 models (not
shown), in line with the worsening in the corresponding DEA cross
sections. This indicates that the shift in the ensemble distribution
and consequently in the DEA cross section arises from the different
description of the imaginary component. Larger ¢’s are associated
with lower resonance energies, which explains the observed redshift.
Still, the comparison between the DEA cross sections (top left panel
of Fig. 5) is less favorable than the underlying distributions (Fig. 2),
which suggests that it is not only the imaginary component to be
blamed for the larger discrepancy of the former. We have found that
the phase of the quantum wavepacket changes considerably before
the stabilization of the anion state, which is obviously absent in the
classical propagation. Interference effects should become more pro-
nounced when going from faster (model A1) to slower (model C1)
dynamics and could thus play a role in explaining the differences
between quantum and mixed quantum-classical DEA cross sections.
We have also compared the average resonance energy and width,
as computed in both descriptions, and they follow the same trends
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FIG. 5. DEA cross section for the model PECs of Fig. 4 computed according to
quantum (green) and mixed quantum-classic (purple) propagation.
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discussed above. While the semiclassical propagation of McCurdy
and Turner”’ provided accurate vibrational excitation cross sections
for a one-dimensional problem, here we showed that a simpler and
fully classical description of the nuclei can also provide quantitative
cross sections for DEA.

In the following, we briefly compare the results of the nine
models. In models A3, B3, and C3, the vertical width assumes a very
small value (0.04 eV) such that the survival probabilities are closer
to 1; the DEA cross sections are large, and the peak positions coin-
cide with the vertical resonance energy (2 eV). The narrowing of the
Franck-Condon width (and larger peak maximum) when moving
from models A3 to C3 reflects the less steep dissociating PEC. The
real component PEC of the anion is the same in models A1, A2, and
A3, while the vertical resonance widths assume the values 1, 0.2, and
0.04 eV. For larger resonance widths, the variation of the survival
probabilities in the initial position (and momentum) becomes more
dramatic, which means that the important region in initial condi-
tions phase space for DEA becomes even more displaced from the
equilibrium region. This implies in a shift from the vertical reso-
nance energy to the actual DEA peak position and a decrease in
the cross section magnitudes. Indeed, both effects are systematically
observed in our model PECs. For a fixed row of Fig. 5, the com-
parison along columns shows exactly that. Additionally, we found a
larger effect on the cross sections for the slower dynamics (last row),
when magnitudes are reduced by six orders of magnitude, compared
to the two orders of magnitude difference for the faster dissocia-
tion (first row). On the other hand, the peak position becomes less
displaced when going from faster (first row) to slower (last row)
dynamics, which is more marked when comparing A1, B1, and C1
models.

We have further considered how results for model Al are
affected when preparing the initial conditions at different temper-
atures: 0 K, 300 K, and 500 K. For the quantum propagation, the
DEA cross sections were obtained by Boltzmann averaging the con-
tribution from each vibrational level, while in the mixed quantum-
classical approach, the appropriate finite temperature Wigner distri-
bution was employed. As shown in Fig. 6, an increase in temperature
enhances the cross section and shifts its peak position to smaller
energies, which is due to DEA to the vibrationally excited levels of
the neutral. This temperature effect has been discussed in previous
works.”**”**” The important aspect for our main discussion is that
both approaches provide very similar results.

Finally, we have considered different reduced masses: 90 amu,
9 amu, and 1 amu, again for the reference model Al. We found
it to have a huge impact on the magnitudes of the cross sections
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FIG. 6. DEA cross section for the model A1 for the neutral state prepared at 0 K
(left), 300 K (middle), and 500 K (right).
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FIG. 7. DEA cross section for the model A1 for a reduced mass of 90 amu (left), 9
amu (middle), and 1 amu (right).

(shown in Fig. 7), which spanned 11 orders of magnitude. For a
larger reduced mass, the dissociation dynamics takes longer, thus
enhancing the probability for autodetachment and decreasing the
DEA cross section. Moreover, the heavier particle is more localized,
which accounts for the narrower peak. The present findings con-
firm previous reports on isotope effects in DEA.””"” Once again,
the matching between both descriptions for the nuclear propagation
is great, especially when realizing the range of orders of magnitude
involved.

V. CHLOROETHANE
A. Static results

We begin by discussing the scattering calculations results. Elas-
tic integral cross sections of the A" symmetry are shown in Fig. 8,
together with the computed eigenphase sum, obtained at the neu-
tral equilibrium geometry. The least-squares fit to the latter is also
shown, according to local [Eq. (17)] and nonlocal [Eq. (18)] func-
tional forms. We found the vertical resonance energy at 2.33 eV,
which matches very well with the value obtained from ETS mea-
surements (2.35 eV).”* This value lies slightly below the elastic cross
section peak (2.43 eV), in view of the considerable width and the
influence of background scattering.” Our peak position is also close
to what was reported in a previous SMC calculation™ (2.6 V). The
vertical resonance width was obtained at 1.35 eV, which corresponds
to an autodetachment lifetime of 0.49 fs. Our computed width is
smaller than the 1.8 eV obtained from the ETS spectrum,”’ but it
should be kept in mind that the measured value includes the vibra-
tional broadening of the nuclear wavepacket, absent in our single
fixed-nuclei scattering calculation.

In order to build the autodetachment model employed in the
dynamics simulations [Eq. (10)], we have performed additional
scattering calculations for geometries where the C-Cl bond was
stretched by 0.1, 0.2, and 0.3ao, while the other coordinates were kept
fixed. The computed elastic cross sections and eigenphase sums (and
the fits to the later) are also displayed in Fig. 8. We found that the
resonance width strongly correlates with the resonance energy. This
result is in line with the linear relation between widths and ener-
gies found for a series of chloroalkanes in ETS measurements.*"'"’
The interpolation to the pairs of computed resonance width and
energy (also displayed in Fig. 8) provided the I'(E,) function that
was employed in the dynamics.

Moving to the results obtained from bound state methods,
we found that the vertical resonance shifts to smaller energies
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FIG. 8. A’ elastic cross section (top left) and corresponding eigenphase sum (top
right) of chloroethane, with the fitted Breit-Wigner profile [Eq. (17)] in cyan, as com-
puted for the equilibrium geometry (black) and for C—Cl stretchings of 0.1ap (red),
0.2ay (brown), and 0.3ay (magenta). In the bottom left, computed pairs of reso-
nance widths and energies (dots) and the interpolated function (violet) employed
for the dynamics. In the bottom right, nonlocal fit [Eq. (18)] (green) to the computed
equilibrium geometry eigenphase sum (black).

and approaches the experimental value when the level of theory
is improved: 4.97 eV with MRCI(0), 3.53 eV with MRCISD, and
2.81 eV with MRCIS+Q, compared to the measured 2.35 eV.” We
assign this discrepancy to an unbalance of correlation effects in the
description of anion and neutral states, which is a well-known issue.
Despite lacking an accurate description of correlation effects, the
current implementation of the SMC method provides a more or
less balanced description of neutral and anion states, which explains
the quite reasonable results for low-lying shape resonances it usu-
ally delivers. Figure 9 displays the PECs of the ¢* resonance and

sh MRCI(0)
MRCISD h |
4L MRCISD+Q |
S SMC <
° s ]
> 3 >
o o0
22N A A
o
1+ r 7 .
z
0 ' : 0 =
0 0.5 1 0 0.2 0.4

C-Cl stretching (A) C-Cl stretching (A)

FIG. 9. Left: PECs for the neutral ground state (black) and the ¢* anion state
of chloroethane, as computed with different levels of bound state calculations
(orange) and with SMC scattering calculations (turquoise). Right: same PECs, but
vertically shifted in order to match the SMC vertical energy.
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the neutral state of chloroethane, along the C-Cl stretching coor-
dinate, as computed in the MRCI(0), MRCISD, and MRCISD+Q
levels. It also shows the anion PECs shifted by a fixed amount such
that the vertical resonance at each level of calculation matched the
SMC result (2.33 eV). The MRCISD PEC, for example, was shifted
by AEvraisp = Ersmc — Enmrcisps Where Efgye = 2.33 eV and
E?)MRCISD = 3.53 eV are the vertical resonance energies obtained
with the SMC and MRCISD calculations. This correction compen-
sates for the lack of correlation effects and the limited basis set
employed in the bound state calculations for the anion. Since the
PECs computed with both bound state and scattering calculations
are roughly parallel, it is reasonable to assume that the same cor-
rection could be applied beyond the neutral equilibrium geometry.
Therefore, this correction was imposed on top of the anion [V 4(R)]
and neutral [Vo(R)] energies computed along the dynamics sim-
ulation such that the on-the-fly resonance energies were actually
evaluated as E,(R) = V4(R) — Vo(R) + AE.yrcisp- Similarly, the
resonance widths were computed at each time step, as described in
the bottom left panel of Fig. 8.

We have further evaluated how the resonance energy varies at
the Franck-Condon region, as computed with bound state methods
and corrected with the above described protocol. An additional set
of 1000 MRCISD single point calculations were performed, as sam-
pled from the unshifted harmonic potential Wigner distribution.
We had to disregard around 6% of these points, which grouped at
considerably lower resonance energies than the vertical value, thus
indicating that these calculations were actually emulating the con-
tinuum. By including them and assigning an arbitrary and common
resonance energy of 2.8 eV, average and standard deviation of the
energy distribution increases very slightly (0.03 eV) and we thus pre-
fer to simply discard these points. Interestingly, the ensemble aver-
age of the resonance energy (2.15 eV) lies below the vertical value
(2.33 eV). This vibrationally averaged energy should more closely
correspond to what is obtained from ETS measurements (2.35 V).
Assuming this 0.18 eV redshift applies for the measured ETS spec-
trum; the equivalent of an experimental vertical resonance energy
would be at 2.53 eV. Making use of the importance sampling tech-
nique,fl we found a very close shift (0.15 eV) when the neutral state
is prepared at 0 K, while the temperature increase to 333 K accounts
for the remaining 0.03 eV. The present finding is somewhat analo-
gous to what is encountered in molecular photoexcitation, where the
absorption band maximum is usually red shifted relative to the ver-
tical excitation energy,””'’" due to both zero-point and temperature
effects.”” We are not aware of previous discussions of this effect in
the context of transient anions. The distribution of resonance ener-
gies has a standard deviation of 0.22 eV, which should represent the
vibrational broadening width. Adding this number to the computed
vertical resonance width of 1.35 eV, we obtain a composite energy
width for electron attachment of 1.57 eV, closer to the measured
1.8eV.”

B. Dynamics results

The evolution of the resonance energy for 200 out of the 1400
trajectories (for clarity reasons) is shown in Fig. 10, together with the
whole ensemble average for both resonance energy and width. It also
shows the survival probability, importance sampling weight, and
the DEA cross section contribution of each trajectory, plotted as a
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FIG. 10. Top left: resonance energy for 200 out of the 1400 trajectories (gray)
and ensemble average resonance energy (orange) and width (blue). On the other
panels, survival probability, importance sampling weight, and DEA cross section
for each of the 1400 trajectories.

function of impact energy. We found that the electronic stabiliza-
tion of the anion takes place extremely fast, as the average resonance
energy goes to zero in 8 fs after electron attachment. Most of the
trajectories start with a resonance energy below the vertical value,
which is a consequence of the shifted PDF from which the initial
conditions were sampled. Trajectories that begun at higher energies
have overall large resonance widths, and thus their survival prob-
abilities decrease very rapidly, while those starting at lower ener-
gies have smaller resonance widths, hence survival probabilities that
decrease at a slower rate. Therefore, the later will gain in relative
importance compared to the former as the dynamics unfolds. We
found a huge variation of the survival probabilities, which span 9
orders of magnitude and decrease very rapidly as the initial reso-
nance energy increases. On the other hand, the different sampling
and target PDFs lead to importance sampling weights that correlate
positively with the initial resonance energy. Both survival proba-
bilities and importance sampling weights are accounted for when
computing the contribution of each trajectory to the DEA cross sec-
tion such that the effective weight becomes much more uniform, as
shown in the bottom left panel of Fig. 10. The uniformity of these
points means that there is a good overlap between the sampling PDF
and the region in phase space, which is most important for the DEA
process.

Figure 11 shows the evolution of the four most activated inter-
nal coordinates for the ensemble average and for the 200 trajectories
that run beyond the 4.5a9 C-Cl distance threshold. The dynamics
simulation reveals that the electron capture into the ¢ orbital read-
ily induces the stretching of the C-Cl bond, as the departing chloride
ion gains momentum to dissociate. As this is the dominant vibra-
tional relaxation mechanism, most of the impact energy should be
primarily transferred to kinetic energy of the fragments when DEA
takes place. On top of that, this result supports the autodetachment
model we have adopted, which only considered the behavior of the
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FIG. 11. Evolution of four internal coordinates for each trajectory (gray) and for
the ensemble average (violet). The coordinates are the C—Cl distance, the C-C
distance, the C-C-Cl angle, and the CCH, pyramidalization angle defined as the
average between the three bending angles to the central carbon atom.

resonance width upon the C-Cl stretching. Additional scattering
calculations (not shown) further indicate that the width is less sen-
sitive to the activation of other vibrational modes. Figure 11 further
shows the reaction of other internal coordinates to the electron cap-
ture and to the C-Cl stretching. The recoil of the departing chloride
ion induces a shortening of the C-C bond, which continues to oscil-
late coherently after dissociation (at least in the first 100 fs). The
C-C-Cl angle is shortened in a more or less constant rate, which
indicates that the neutral fragment gains some rotation. In addition,
the CH» hydrogens initially move toward the halogen atom, which
causes the CCH, moiety to oscillate around its planar conformation.
Thus, our results point out that the CH3;CH, fragment should be
formed with some rotational excitation and in vibrationally excited
levels for the C-C stretching and CH, wagging modes.

Our computed DEA cross section is presented in Fig. 12,
together with the measured data of Pearl and Burrow."' In their
first measurement,”’ the ion yield peaked at 1.7 eV with a cross sec-
tion of (1.6 + 0.3) x 107" cm* while in a subsequent paper,” they
report a maximum DEA cross section of 1.49 x 107 cm?, peak-
ing at 1.49 eV. The later data are reproduced in Fig. 2 of Ref. 100,
from which we extracted the data points presented in Fig. 12. Our
calculations correctly reproduce the shift from the vertical reso-
nance energy (2.37 eV) to the peak position of the DEA cross sec-
tion (1.56 eV), which agrees very well with the measured displace-
ment from 2.33 eV to 1.49 eV. Furthermore, the DEA cross section
magnitudes are remarkably close to experiment.

The recently proposed application of the importance sam-
pling technique for dynamics simulations allows for an inexpensive
evaluation of temperature effects on computed observables.”” We
have thus assessed temperature effects on the DEA cross section of
chloroethane, which is also presented in Fig. 12. Heating of the neu-
tral molecule is followed by a sizable increase in the cross section
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FIG. 12. Computed DEA cross section of chloroethane (violet), for the neutral state
prepared at 0 K, 333 K (experimental condition), and 433 K. Measured data”' in
red.

and a small shift of the peak position to lower energies. This find-
ing is consistent with previous reports on the effect of temperature
on DEA induced by short-lived resonant states.””'’*'"* Even for the
rather small variation from room temperature (288 K) to the tem-
perature of the experiment (333 K), we found a non-negligible 10%
increase in the DEA cross section magnitude (not shown).

C. Precision and accuracy assessment

In the following, we discuss how the computed DEA cross sec-
tion is modified when precision and accuracy of the underlying
calculations are varied. Figure 13 shows that with as few as 100 tra-
jectories, the curves are already quite close to that obtained with the
much larger set of 1400 trajectories. When the broadening parame-
ter 7 is increased from 0.1 eV to 0.5 eV, the structures in the curves
(which arise from the limited number of trajectories) are smoothed
out. In the present case, using a larger broadening parameter is justi-
fiable, since the measured cross section is already relatively broad in
energy. This is very promising for future applications of the method,
where semiquantitative magnitudes and peak positions are expected

NE 4
20
3 B i
=
.8 -
S 2 - // S
2 N
1 - S -
Qo
5
\ ! |
0= 2 I 2
energy (eV) energy (eV)

FIG. 13. Computed DEA cross section for 1400 (full lines) and 100 (dashed lines)
trajectories, for linewidths of # = 0.1 eV (left) and # = 0.5 eV (right). Measured

data®! in red.
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to be attained with an affordable number of trajectories. We further
evaluated the effect of scaling the MRCISD computed vibrational
frequencies by a factor of 0.95, again with the aid of importance sam-
pling calculations.”” The DEA cross section (not shown) increased
by only 5%, while the peak remained at the same position.

In Fig. 14, we compare DEA cross sections computed with
both MRCISD and MRCI(0) levels of description for the transient
anion dynamics. MRCI(0) results provide one order of magnitude
larger cross sections, peaking at even lower energies (1.34 eV), when
compared to the more accurate MRCISD results. This is due to the
faster stabilization of the resonance energy (and width), also com-
pared in Fig. 14, which in turn reflects the steeper MRCI(0) PEC
(see Fig. 9).

Finally, we also assessed the sensitivity of DEA cross sections
on the vertical resonance energy and width. Two cases were tested:
(i) a £0.1 eV variation of the vertical resonance energy, while the
vertical widths also change accordingly, and (ii) same vertical reso-
nance energy, but vertical widths modified by +0.1 eV. Results of this
comparison, shown in Fig. 15, point out that the DEA cross sections
are rather sensitive to both vertical energy and width. The magni-
tudes are impacted by ~50% when the width varies by only 0.1 eV,
while the same shift in the resonance energy brings in a factor of
2 to the cross section. These scenarios should be representative of
what one encounters in scattering calculations. For example, typical
precisions of resonance energies obtained with the SMC method are
around ~0.3 eV. When a resonance is found in the upper limit of
this margin, its width tends to follow accordingly and be wider than
if it had been found in the lower limit, which contemplates case (i).
Besides that, scattering calculations may provide comparable reso-
nance energies and yet rather distinct widths, as recently discussed
for the low-lying resonances of para-benzoquinone.'’”* We have per-
formed an additional set of scattering calculations for chloroethane,
without the additional set of very diffuse 4s3p functions (not shown).
Even though the resonance positions were not affected consider-
ably, the linear correlation between resonance widths and energies
(upon C-CI stretching) turned out to be noisier than what was
found when including the extra 4s3p diffuse set. This result suggests
that calculating accurate resonance widths might require more dif-
fuse functions than are usually employed for describing resonance
energies.
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FIG. 14. On the left, computed DEA cross section of chloroethane, according
to MRCISD (full violet) and MRCI(0) (dashed violet) dynamics, together with the
measured data’’ (red). On the right, ensemble average of the resonance energy
(orange) and width (blue) for the two levels of theory (full and dashed lines).
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Here, we have focused on the case of a shape resonance, but the
method should also be applicable for Feshbach resonances. These
states are described by 2-particle, 1-hole configurations, and are
lower-lying in energy than the parent excited state of the neutral.
They are usually found at higher energies than shape resonances, but
tend to be longer lived with respect to autodetachment, due to the
less likely two-particle process involved in its formation. Bringing
to mind the discussion about the model PEC, our proposed method
should be more accurate for the case of Feshbach resonances due
to their longer autodetachment lifetimes. However, that might not
be the case if the dissociation time is much longer than what we
have found for chloroethane, as also suggested by the model PEC
results.

VI. CONCLUSIONS

A novel theoretical framework for describing the dynamics
of transient anions has been proposed. It is based on propagat-
ing an ensemble of classical trajectories, where resonance ener-
gies are computed on-the-fly with bound state methods, while the
widths are described with a model that requires few electron scat-
tering calculations. It has been implemented into the Newton-X
package and will be freely available to the community in the next
release of the code. The proposed mixed quantum-classical dynam-
ics approach was benchmarked against quantum dynamics prop-
agations for modeling one-dimensional potential energy curves.
Different slopes of the dissociating curve, resonance widths, temper-
atures, and reduced masses were considered, and both methodolo-
gies consistently delivered quite close DEA cross section curves. The
agreement improves when the resonance width becomes smaller and
when the dissociation takes place faster.

The very first application of the proposed methodology to a real
molecular target concerned the dissociation of chloroethane induced
by electron capture. While autodetachment is the main decaying
mechanism, we found that it only takes place at very short time scales
(~10 fs), since the C-Cl stretching rapidly stabilizes the ¢* transient
anion. The fragments should be formed with high kinetic energy,
while some of the deposited energy should be transferred to vibra-
tional excitation of the neutral radical. The computed DEA cross
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section curve is in excellent agreement with existing experimental
data, both in magnitude and in shape. In particular, our calculations
provide a quantitative shift from the vertical resonance energy to the
ion yield peak energy. We also found the cross section to be quite
temperature dependent.

When accounting for rather conservative uncertainties on the
resonance energy and width, DEA cross sections varied to within
one order of magnitude. This great sensitivity highlights the need
for further theoretical developments on the description of transient
anions. Special attention should be given to the widths of resonant
anions, as the uncertainties of calculations are not well known. Fur-
thermore, the cross sections showed an even more pronounced sen-
sitivity on the nuclear energy gradients, which ultimately governs
the dissociation time. Therefore, for DEA processes involving short-
lived resonances, quantitative cross section magnitudes require very
sophisticated electronic structure methods for the dynamics prop-
agation and accurate models for the autodetachment probability.
Despite that, the present application of the proposed methodol-
ogy provided quantitative observables and a detailed picture of the
electron-induced dynamics.

SUPPLEMENTARY MATERIAL

See the supplementary material for the parameters of Egs. (17)-
(20) and plot of the o, resonant orbital.
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