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Holographic phase transition and quasinormal modes in Lovelock gravity
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In this work we aim at discussing the effects of the higher order curvature terms on the Lovelock AdS
black holes quasinormal spectrum and, in the context of gauge/gravity correspondence, their consequences
for the formation of holographic superconductors. We also explore the hydrodynamic limit of the U(1)

gauge field perturbations in d dimensions.

DOI: 10.1103/PhysRevD.90.124071

I. INTRODUCTION

The AdS/CFT relation, discovered in the framework of
string theory [1,2], has surpassed its natural cradle to spread
into the realm of condensed matter by means of the
holographic construction [3-5]. In such a case, it does
not matter much what is the type of the black hole in the
AdS space as a physical object, but rather what is the CFT
theory described in the process. Indeed, the CFT theory is
the backbone of the construction and classical perturbations
of the gravity set up may lead, changing the black hole, or
generally speaking changing the AdS set up, to valuable
information about the CFT counterpart. We move to new
condensed matter systems, thus to new physics.

Recently, a series of models have been considered, with
various degrees of success to obtain models concerning
condensed matter systems, see [6,7] for a partial and
incomplete list. Several different physical situations have
been touched, such as superconductivity, for perturbations
of Reissner-Nordstrom solutions [3] and superfluidity [7],
as well as when dealing with time dependent solutions [8],
density waves [9]. Applications in high energy physics
have been particularly important [10,11]. Higher order
corrections to the gravity counterpart have been often used,
but a general discussion is still missing [12—15].

Here, we are going to discuss details of the higher order
corrections to gravity and their consequences for the
holographic field theory. In particular, we consider
Lagrangians whose field equations are at most of second
order [16] which, in the case of generalizations of gravity
lead us to the Lovelock Lagrangians [17]. The paper is
organized as follows. Section II provides a review of the
d-dimensional Lovelock gravity and the black hole sol-
utions considered in this work. In Sec. III we obtain the
quasinormal spectrum of d-dimensional charged Lovelock
black holes due to a scalar probe field. In Secs. [Vand V we
explore in the probe limit the formation of holographic
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superconductors in the presence of higher order corrections
to the curvature. Also we compute the real time R-current
correlators due to electromagnetic perturbations due to
electromagnetic field. In Sec. VI we discuss the results and
some final comments are given.

II. THE LOVELOCK GRAVITY

String theory brought the idea that higher dimensional
curvature terms in the gravity action are basically man-
datory to cope with quantum corrections at the Planck scale
[18]. On the other hand, field equations with higher time
derivatives are unstable. Such a result, originally relying
upon Ostrogradsky [19] long ago on very general grounds
has been rederived in simple terms [20]. Nevertheless, there
are theories with complex dynamics involving higher order
terms in the Lagrangian but whose equations of motion are
at most second order in time [16,17,21]. We discuss here
the cases of Lovelock gravity as discussed in [22], where,
in several space-time dimensions we have Einstein gravity
corrected by higher order terms but with second order
differential equations for the fundamental metric fields.
The solutions of the field equations we are considering
are those of Refs. [22] with nonvanishing charge, that is, the
gravity sector in d dimensions is described by the action

_ d
§=- 16G deL (1)

where k is an integer strictly smaller than % labeling

inequivalent theories, the individual Lagrange densities are

Rﬂzp 1H2p  Hopii eﬂd
Ayp—1G2p “lopyy * aq»
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with [ denoting the d-dimensional AdS radius related to the
cosmological constant A by

Ao _d=D@-2)
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and the curvature is

Rl = Rl + s ehel,
where ¢4 is the vielbein.

It is an established result that the equations of motion are
second order in the time derivatives. The Einstein equations
have been solved [22] and a series of AdS black hole
solutions emerge from these actions, the most important
result used in the present work. Solutions are labeled by the
space-time dimension d, the integer k defined above.

In order to consider charged solutions, the gravity action
(1) has to be supplemented by the Maxwell action

1
Sy = _46/ ddx\/ _ggW)gUGFqupm (2)

where € is related to the vacuum permeability e,
Solutions to the Einstein-Maxwell system are labeled by

the space-time dimension d, the integer k defined above

and the charge Q. From [22,23], those solutions read

dr?
+ rdefi_z,

2
ds* = —<17 + - gk(r))dt2 +
& n+45=g(r)

(3)

where 7 = —1,0, 1 defines the topology. For = 1, del_z
is the angular measure on the sphere, 7 = 0 implies a flat
black hole where d¥2_, is the flat metric and 5 = —1
corresponds to the hyperbolic metric. The metric depends
on the charge Q of the black hole by means of the
expression

- ZGM + 5[]_2/(’1 _ (:'G Q2 1/k (4)
9k = A2k d—32dk2) ) =

where G is the gravitational constant, §;_p ; is the standard
Kronecker delta and M is the black hole mass. For a generic
value of k, the black holes described by the line element (3)
have two horizons (r_,r,) located at the zeros of g,
satisfying r_ < r,. The black hole family describe by (3)
include the d-dimensional Reissner-Nordstrom AdS-black
holes for k = 1 and the charged AdS-Gauss-Bonnet black
holes for k =2 and d > 5. For a discussion on the causal
structure of Gauss-Bonnet gravity, see [24]. Also, the line
element (3) is asymptotically AdS for all values of k and d.

III. LOVELOCK SCALAR QUASI
NORMAL MODES

In this section we are going to explore the quasinormal
spectrum of charged AdS-Lovelock black holes consider-
ing a probe scalar field evolving at such geometry.
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The black hole quasinormal modes (QNM) of asymp-
totically AdS black holes is obtained by considering probe
fields dynamics supplemented by ingoing boundary con-
ditions at the event horizon and Dirichlet boundary con-
ditions at spatial infinity [25,26]. In the context of AdS/
CFT correspondence the decay of QNM is interpreted as
the return to equilibrium of a thermal state in the quantum
field theory at finite temperature living at the AdS boundary
[27]. For a recent review on the subject see [28,29] and the
references therein. In particular, scalar fluctuations on the
bulk geometry are related to the poles of thermal retarded
Green function [30] and the electromagnetic perturbations
are associated to the poles of retarded Green functions of
R-symmetry currents at the boundary.

The next procedure is standard but new. We consider the
scalar perturbations of the above system. Scalar perturba-
tions are easily obtained. We rewrite the metric in a form
that we use in the numerical analysis below, that is,

dr?

d? = =flde + g+ rd¥ 0)
with
2 M 0> i
fr)=n+5- |:rd—2k—1 - r2<d—"‘2)] ' )

Depending on the curvature (thus on ), the angular part of
(5) changes accordingly. We can rewrite the parameters
in terms of the inner horizon r_ and the event horizon
r, as

In this paper, we study the planar black hole case, namely
n = 0, and without loss the generality, we set / = 1. Now, it
is standard to compute the scalar modes. Because it is an
anti-de Sitter spacetime, we should use Horowitz-Hubeny
method [27] to calculate the scalar quasinormal modes of
this black hole. According to this method, we set
v=t+ [ ]%, so the metric is rewritten as

ds* = —f(r)dv* + 2dvdr + r*d%?_,, (8)
and then the scalar equation is given by
f(r)d" + (f = 2iw)¢" = V(r)p =0, ©)

where V=Y 1 (4 —4)(d-2) L+ (d-2)L. The

transformation z =1 is introduced, so that the region of

r
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FIG. 1 (color online).
d=4k=1.

variable becomes 0 <z < h (h = i). The boundary con-

dition at event horizon require ¢(r,) =1 but ¢ should
vanish at infinity. Therefore, the scalar field equation is
given by

&P 1(z) dp | u(z)¢

S(Z) dZ2 Z——hd_Z (Z — h)2 = 0, (10)
where
4
s(z) = _ZZ_fh’
t(z) = =72 (Z_2 Z—JZC +2zf + 2iw> ,
u(z) =(z-h)v (11)

we can expand s(z) = > s;(x = h)’, t(z) = > t;(x — h)’,
and u(z) =Y u;(x—h)" and ¢(z) => a;(x—h) at
event horizon z = h. Considering the boundary condition
at horizon, we have a; = 1, and substitute s, u, ¢, and ¢ into
Eq. (11), we obtain the recursion relation
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FIG. 2 (color online).
d=5k=1.
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a, = __Z [l(l - 1)Sn—i + it + un—i]ai’

n =0

(12)

where P, =n(n—1)sy+ nty, so all the a; can be
obtained. Finally, according to another boundary condi-
tion ¢(0) =0, we always can get the value of @ from
equation Y _,a; = 0. It is very convenient to use Wolfram
Mathematica to realize the above process, so we use this
software to calculate the quasinormal modes of this black
hole. We find a sequence of quasinormal frequencies as
function of the temperature of the black hole. It is a
tedious but straightforward procedure. Nevertheless, we
find some interesting results.

The first noteworthy result with angular quantum num-
ber [ = 0 is the fact that spaces with higher values of k are
stiffer, namely have larger values for the imaginary part of
the frequency, as shown in Figs. 1-4. Also, we clearly see
that the real and imaginary part of frequencies scales
linearly with the Hawking temperature, which is expected
of AdS black holes [27]. We have the results for various
values of the temperature as given in Table I, where b is the
value of black hole charge Q.
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FIG. 3 (color online).
d="17k=23.

As we see in Fig. 3, the scalar quasinormal frequencies
for a five and seven-dimensional Lovelock black hole, with
k =2 and k = 3, respectively, are purely damped, namely
there is no oscillatory phase for the perturbation. Such a
result seems to be a general feature of Lovelock theories
with d =2k + 1 since the gravity theory reduces to
Chern-Simons gravity in these cases. The purely damped
frequencies are not new in literature. The same result has
been found in the behavior of scalar quasinormal modes of
the three dimensional Lifshitz black hole [31], whose
gravity theory is the new massive gravity (NMG). The
corresponding action, as in the Lovelock case, contains
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FIG. 4 (color online).
six-dimensional case for k = 1,k = 2.

Purely damped quasinormal modes behavior in terms of the Hawking temperature for d =5,k =2 and

higher order corrections in the curvature. The dynamics of
probe scalar fields in higher dimensional Lifshitz black
holes (d =5,...,10) do not show an oscillating phase
either [32]. Thus, at least in case of Lovelock gravity with
d =2k + 1 and Lifshitz black holes, the purely damped
modes are related to the higher curvature terms.

Also, we observe that the effect of adding charge to the
black hole is to increase the quasinormal frequency value.
There is also a quite important increase in the imaginary
part of the frequencies for k = 2, when the models seems
to get stiffer. This effect is less pronounced for the six-
dimensional case, see Fig. 4.
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TABLE I. Various values of quasinormal frequencies, where 7 is the Hawking temperature.

b d=4 d=5k=1 d=5k=2 d=6k=1 d=6k=2
0 (7.747 — 11.158i)T (9.800 — 8.620i)T (=25.133i)T (10.394 — 6.769i)T (8.854 —25.320i)T
0.25 (6.712 — 14.240i)T (9.981 —9.257/)T (—26.899i)T (10.483 — 6.902i)T (9.021 —25.235i)T
0.5 (9.156 —22.211i)T (11.416 — 12.4206i)T (—30.480i)T (11.33 —8.069i)T (9.361 —27.322i)T

IV. THE PHASE TRANSITION AND
CONDUCTIVITY

According to the AdS/CFT dictionary, the scalar per-
turbation y corresponds, at the AdS border, to the order
parameter of the conformal field theory. The gauge field
perturbation gives rise to the border source and to the
current. We can thus analyze whether we can have a
superconducting phase and compute the conductivity. As
it turns out, we have the conductivity as a function of the
frequency, what is a physically relevant object to study the
properties of the conformal field theory at the border (or
else, of the condensed matter system at the border). For
later purposes it is going to be useful to write the above
function in terms of the event horizon radius r, and the
Cauchy horizon r, = yr, . From this point on we shall work
on flat topology, # = 0 and / = 1. We have

2d—4 2d—4 _ ,,d-3
rt =1 I A
M:bd—3_1’"+ls 0 = 71 rd= (13)
where y = ==, In terms of the new parameters we have

r

1

2d-4 d-1
)1_7 =3 _ S et A L
1= 7/a,’—3 1— 7/d—3

(14)

and the Hawking temperature is given in terms of the local
gravity at the black hole event horizon,

d-1 _
flr) = 72 = rE R

’

d—1—y"32d -4 —y='(d - 3)] .
4k(1 —y™3z +

T. = (15)

In order to obtain the phase transition, we consider the
Lovelock gravity action (1) coupled to a classical charged
scalar field y and the electromagnetic gauge field A,
whose action is

1 .
S = [ @27 g Ful = 9y = iaaw = P

4e
(16)

where V is the covariant derivative, ¢ and m are the scalar
field charge and mass, respectively.

We consider the equation of motion of the matter and
gauge fields, in such a way that scalars are functions of
the radial variable in order to define an order parameter at

the border. The scalar potential corresponding to the gauge
field (¢ = Ap) is, consequently, a function of the radial
variable. The vectorial components of the gauge field are
functions of ¢ and r. Without loss of generality we consider
only A,, whose time dependence is harmonic, that
is, A (X, 1) = A (X)e™",

We are going to consider the equations of motion of the
electric potential A; = ®(r), of the scalar field ¥(r) and
the x-component of the vector potential, A, (r). Moreover,
it is useful to change variables from r to z = 1r Also,
foreseeing the asymptotic behavior of the fields, we
redefine them as ¢(z) = ®(1/2), w(z) =¥ (1/z)z7%,
A,(z) = A.(1/z). We in this paper use the shooting
method to calculate numerically the holographic super-
conductor and the conductivity. The Maxwell-Klein
Gordon equations in the probe limit for k =1 and d =5
read

3+ ) - (2 + 1) -3

WS, + @ -+ -2 Vs
LU= +r)E -2 -+
@ =2l + ) =2 = 1P S
0o @ _ 2‘/’%,14’5.1 —0
5.1 ’

: 2@ -DF+A)A-2-1]

5+ )2 =30 + P+ D -1,

(@ -+t -2-1

Po* = 2(2 = 1) + ) - 22 - 1yl
(2 =2 + )t =2 = 1]

Ax,S.l =0.

By the shooting method, we choose the value of the
fields near the horizon, solve the differential equations to
the spatial infinity and compare with the boundary con-
dition. For solving the differential equation we choose the
functions as power series of z — 1. We thus obtain the value
of the function at the boundary and compare with the
boundary condition. We subsequently consider the cases
d=5k=2,d=6,k=1,andd = 6,k = 2, whose equa-
tions of motion are given in the Appendix.

A. Numerical analysis

Let us first concentrate on the 5-dimensional case, where
the function f(r) defining the metric is given by

124071-5
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Here, n = +1, 0, —1 depending on whether the solution has
positive, zero or negative curvature. The parameter b is a
measure of the charge of the black hole, R is the inverse of
the cosmological constant and r, the event horizon.

We search for static solutions for the electric potential
and for the scalar field seeking at the order parameter at the
border. Moreover, we look for a vector potential at a given
frequency (as above) in order to test the Ohm’s law.
The fields obey the coupled differential equations

o (12

(18)

, d=2 ., 2q¢7y*(r)
A )

$(r) =0, (19)

025 T oT—- B
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0.15F
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FIG. 6 (color online).
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Condensation of operators (O;) and (O;) for the five-dimensional uncharged case (b = 0).
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X A(r) = (20)

B. Results for phase transition

According to the usual AdS/CFT dictionary, when we
approach the AdS boundary the expansion of the pertur-
bations near the boundary leads to CFT fields with well-
defined physical interpretation [2,3]. For the scalar field, in
particular, we have the expansion

w(r) =yl % +y@ % + higher order in <;> . (21)
The expansion coefficients (O;) = /2! are, according
to the above mentioned dictionary, order parameters of the
boundary theory, as long as we choose appropriated
boundary conditions, that is, if q/(l) =0 we define (O,)
and for y(?) = 0 we define (O, ). The computation of either
field uses the shooting method found by [4].

We considered various choice of parameters. Generally
speaking, the order parameter (O,) is larger than (O, ), and
the one corresponding to k = 2 larger than the one corre-
sponding to k = 1, see Figs. 5 and 6. This result about k
means that the nonlinearity enhances the order parameter,
but strangely enough the conductivity goes the other way

T, d=5 b=0.25
— k=1

0.0 0.2 0.4 0.6 0.8 1.0

T
T.

Condensation of operators (O;) and (QO,) for the five-dimensional charged case (b = 0.25).
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FIG. 7 (color online).

(see next subsection), namely the conductivity (both real and
imaginary part) are smaller for k = 2. Thus, order does not
mean, in this case, better conductivity properties.

The effect of dimensionality upon the phase transition is
to lower the value of the condensate as the number of
spatial dimensions increase. Such an effect is present in
both condensates (O, ) and (O,), see Fig. 7 for an example.

C. Results for conductivity

Now, we are going to compute the conductivity for each
boundary operator (O;) and (O,) following the standard
AdS/CFT recipe [3]. Solving numerically Eq. (20), impos-
ing ingoing wave boundary conditions at the black hole
event horizon and considering the asymptotic behavior of
A, for large r, we have that the leading term is the current
(J,) and the subleading one the dual source AY, both
defined at the AdS border.

Having these two quantities, we compute the conduc-
tivity o(w) through the Ohm’s law

U

o (22)

o(lw) =—

We present in Figs. 8—11 the real end imaginary part of
conductivity o(w) of (O,) and (O,) for five dimensional
black hole in charged and uncharged cases. The conductivity

Reo
30
25

20

5

FIG. 8 (color online).
varying k.

PHYSICAL REVIEW D 90, 124071 (2014)

Condensation dependence on the dimensionality and the values of k.

phenomena is qualitatively very similar in both cases k = 1
and k = 2 for the two operators, but the k = 2 corrections to
the curvature seems to lower the conductivity comparing to
the k = 1 case.

V. R-CURRENT CORRELATORS AND
HYDRODYNAMICAL QUASINORMAL
MODES

In this section we are going to apply the AdS/CFT
correspondence [2,33] in order to compute the real time
R-current correlators, which can be expressed in terms of
the boundary value of the gauge invariant quantities such as
the electric field at the spatial infinity. As one knows, the
electromagnetic fluctuations, in the AdS/CFT context, give
rise to the correlators associated to the R-symmetry at the
boundary field theory.

Following the procedure outlined in [33,34], the impo-
sition of Dirichlet boundary conditions on the gauge
invariant variables lead to the poles of the field theory
correlation functions and, according to [35], the quasinor-
mal frequency spectra of the asymptotic AdS black hole
considered. Moreover, a consequence of applying the
approach [35] is that the electromagnetic quasinormal
spectra presents a set of modes which behaves like a
diffusion wave in the long wavelength and low frequency
limit, such a limit is called hydrodynamic limit of

—Imo
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60
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20

Real (left) and imaginary (right) parts of (O,) conductivity for zero black hole charge in five dimensions and
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Real (left) and imaginary (right) parts of (O,) conductivity for zero black hole charge in five dimensions

and varying k.
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FIG. 10 (color online).
varying k.
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Real (left) and imaginary (right) parts of (O;) conductivity for charged black hole in five dimensions and
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FIG. 11 (color online).
varying k.

perturbations. The two main results of the section is the
explicit form of correlators in the field theory defined at the
boundary of Lovelock black holes and the frequency of
diffusion quasinormal modes for dimension d > 4. P

A. Correlators due to electromagnetic field

_40f

Real (left) and imaginary (right) parts of (©O,) conductivity for charged black hole in five dimensions and

2 d-3 2
2 o 2 2 o 2
ds®> = ERES) {—g(u)dt + Z dxl-] + ) d¢

+—(d mEYCRo du?. (23)

The function g(u) is the horizon function given by

We are going to consider as our bulk geometry the

uncharged d-dimensional planar Lovelock black hole,
represented by the following line element

(d-1)

glu) =1-u, K3

]/:

124071-8
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The event horizon is located at r = ry or u = 1, the radial
coordinate r € [rg, +o0| is mapped to u € [1,0] through
u=ry/r. In order to have a black hole with planar
topology, at least one of the extra dimensions has to be
compact [23], so in the above metric ¢ € [0, 2z], and the
remaining directions have the domain x; € [—o0, +0],
where i = 1...d - 3.

In AdS/CFT context, the electromagnetic field evolving
in the region near the AdS boundary couples to the
holographic field theory current-current two-point corre-
lation function. Therefore, we have to compute the
perturbations on the electromagnetic potential A,, whose
equations governing its dynamics are the Maxwell
equations,

Au(v/=gF") =0, (24)

where F,, =0,A, —0,A,, and the metric components
which enter in Maxwell equation are those given by (23).
Using the isometries of black hole spacetime, we can
decompose the gauge field A, in Fourier as following

1

A1) = / (dw)(dm) ()"

« e—iwt+im¢+i‘]rxiAM (@, m, q;,u). (25)

It is possible, without loss of generality, choose a
(d —1)- dimensional wave vector p = (—w,Q,) (with
a=1,...,d=2), where Q, = (m,q;) = (0,¢,0), so, as
initial configuration, have the gauge field A, propagating in
one of the planar directions x; = (x, 0). Such choice allows
us to consider the perturbations on the gauge field as two
orthogonal sets [36] [34], the odd perturbations A, and the
even perturbations A,,A,,A,.

Our gauge choice is the radial gauge where A, =
A, =0, and the fundamental gauge invariant variables
for the two classes of perturbations are the transverse
component of electric field £ for the odd perturbations and
the component E, for the even perturbations. The equations
governing the dynamics are obtained from the Maxwell
equations (24) written on the spacetime (23):

gw)’ w? — q’g(u
E" + E, + —E,=0, (26
P gw) T (d = 3)2g(u)22E Y 26)
I4ye2 2 _ a2
pry 9w & W oag) po_ g

g(u)[w* — q*g(u)]

where the primes refers to derivatives with respect to u
direction. For convenience, we have normalized the quan-
tities v and q in terms of black hole Hawking temperature

PHYSICAL REVIEW D 90, 124071 (2014)

(d-1)
= T
dzlPk

namely,

:(d—l)a)

o _d-1gq
4ok T’

dnk T

Following the AdS/CFT recipe [30], the current-current
two point correlators are given by the field E, (u = ¢, x)
near the AdS boundary, which in our case, is obtained
through the solution of Egs. (26) and (27) at u ~ 0:

E(p = a¢(m, q) + b¢(m, q)l/l, (28)

E, = a.(w,q) + b,(w. q)u. (29)
furthermore, close to the event horizon E, = g(u)idlfkl‘“,
where the positive exponent corresponds to outgoing waves
and the negative exponent to ingoing waves at the event
horizon, also the choice of sign means the electric field at
AdS boundary is taken as classical source of retarded
(negative) or advanced (positive) current-current two point
correlators. The ingoing waves at the event horizon are
physically motivated boundary conditions for a classical
black hole, thus, we are going to adopt the negative
exponent for the electrical field E, meaning that we are
considering the retarded correlators of the holographic field
theory.

The next step is to consider the electromagnetic action at
the AdS boundary (u =~ 0) with the results (28) and (29) we
have

B (d- 3)r(<)d_3) dwdg g(u)
5= | Gy ngw) —w?
- g(u)

X E(u,—p)E\(u. p) Ey(u. —p)Ey(u. p)|-

(30)

T

where 72 is the normalization of the action, from [37] one
finds

with N, representing the number of D-branes. Also, we can
rewrite the electric field at the AdS boundary in terms of
the gauge field in the same region A%(p) = A,(u — 0, p)
and applying the Lorentzian prescription [30],

- 25%8

Cu(o,p) = SAY(3)5A0(=5)" (31)

one finds the current-current correlators
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(d_3)r(d)_3 bx(mv CI) C[2

N O T r
Culong) =L )
Copl@.q) = (d,;fd)_ﬁg_S ZEZ: :; : (34)
Coulw.q) = A= balw.a) _1wg (39)

P17 ay(w.q)w? —q*
Using the components of C,, it is possible to express the

transversal I17(w,q) and longitudinal T*(w,q) self-
energies of the (d — 1) holographic thermal field theory

(d=3)rd= by(m.q)

" (w, q) =
@0 =50 oy,

, (36)

(d—3)rg by(w. q)
n*14=3 a,(w, q)

It (w. q) = (37)

Therefore, the electromagnetic correlation functions are
fully determined by the relations b, (v, q)/a,(w.q) and
b.(w,q)/a.(w,q) and the poles of the correlators are the
same as the zeros of a,(w,q) and a,(w. q) [35]. To find
the poles, we impose Dirichlet boundary conditions on the
electric field at AdS boundary and ingoing wave conditions
at the black hole event horizon.

B. Diffusion quasinormal modes

To determine the self-energies found in the preceding
computation, we have to solve the differential equations for
E, and E . Analytical solutions are unknown, unless in the
so-called hydrodynamical limit of the perturbations. Such a
limit is achieved by considering a set of perturbations with
small frequencies and small wave numbers,

<1, gk 1.

From the point of view of the thermal field theory, at
least one of the electromagnetic quasinormal frequencies
has to behave as a diffusion mode in the hydrodynamical
limit. So, if we impose Dirichlet and ingoing-wave boun-
dary conditions to the differential equations (26) and (27),
we found that there is not a transversal diffusion mode,
namely, does not exist a value of @ that is compatible with
E; =0 at AdS boundary. Such a result is independent
on the dimensionality of the bulk and the flavor of the
Lovelock theory, in other words, independent on d and k.
However, we found that for the longitudinal mode, there is
a hydrodynamical mode given by

PHYSICAL REVIEW D 90, 124071 (2014)
CI2 . (d - 1) 2

m=—i =—i——q", 38
A= "C" maoaa? ¥
whose diffusion coefficient can be read off
(d-1)
D=—"F1—+". 39
4dr(d — 3)kT (39)

This is the main result of the section. We found that the
diffusion coefficient depends crucially on the flavor of
Lovelock gravity. As we increase the corrections to the
curvature in Lovelock Lagrangian the diffusion coefficient
tend to zero, so the charge diffusion in longitudinal
direction in thermal field theory is diminished in gravity
duals with corrections to the curvature.

VI. CONCLUDING REMARKS

In this work we have studied the effects of higher order
corrections to the gravity upon the scalar and hydrody-
namical quasinormal modes spectrum, the condensation of
holographic operators and their conductivity.

Regarding to the scalar quasinormal modes, we found
that the corrections to the curvature diminish the quasi-
normal modes oscillating phase, it is similar to the
dynamics of a perturbation in a very dense material
medium. We see from Fig. 3 the case where the real part
of the frequencies are zero, so these modes are purely
damped. Moreover, we found in the hydrodynamical limit
a purely damped diffusive quasinormal mode @ = —i(d—
1)q?/4n(d — 3)kT, which depends strongly on the k
parameter.

We obtained explicitly the phase transition giving the
condensation of operators (O;) and (O,). The influence of
curvature corrections of the Lovelock gravity is to increase
the value of the condensate, in both charged and uncharged
cases. Also, we compute the conductivity, where we found
that the considered gravity bulk diminish the real part and
imaginary part of o(w) as we add more corrections to
curvature.

As an extension of this work, it would be interesting to
consider charged fermions fields evolving on the gravity
bulk given by the family of Lovelock black holes in order
to investigate if purely damped quasinormal frequencies
are allowed in this case. Another problem which will be
address in a future work is the question of gravitational
stability of Lovelock black holes and the computation of
holographic stress-energy tensor of field theory on the
spacetime AdS boundary.

ACKNOWLEDGMENTS

This work was supported by FAPESP No. 2012/08934-0
and CNPq, Brazil.

124071-10



HOLOGRAPHIC PHASE TRANSITION AND QUASINORMAL ... PHYSICAL REVIEW D 90, 124071 (2014)
APPENDIX EQUATIONS OF MOTION FOR (d =5k =2), (d=6k =1) AND (d =6k =2)

The general equations of motion of the scalar and gauge fields are

” (b* + 1%+ 1)22 =3/1 = > (B> +1)( - 1)) ,
VIR D)) + (b + ) = (B 2+ DB
(mz(zzx/l P(0* +1)(27 = 1) = 1) + 2°93,) 0
I//5,2 =Y,
22\ /1T-bP B2+ 1) (2 -1)—1)°
I (Pls > 205 2W5 >
#5207~ + 2 20 1 (2 =0,
(V1= + 1) (2 =1)=1)
(% ~2) 2 I 5 -
A R +1)(2-1) & H oy \/1 b (b* +1)(22 — 1) = )yi, + 0’z .
xs2 2012 2 T x,5.2+ 2 2002 + 5 2 x52 =Y.
L-V1-Pp*+1)(2-1) z (/1= +1)(2-1)=1)
- 2> +b+1)=30b+1)(B*+1)(b* + 1) + 6b3(b4 +b+ P +b+ 1) 2
Vel T bt )P+ D)+ )+ PG+ P+ PR+ bt )B+b+1) 270!
S_ 3_78
(pé,l - mz{z% - 16( l(7b3 1]) + I;ﬁ bl )]
+ 471 6/ b3—1 » bs Vel =0,
Z [;2 —Z (23(b3—1 )]
g0// —%gol _ (b3 - 1)(06.11”%‘1 _ 0
6,1 z 6,1 (b3—1>Z2—(b8—1>Z7+(b3—b8)Z10 ’
3(1-b%)2% | 6P (b +D3+P2+b+1) o 2 Al _ 6(_b%-1 b =bb 2
A"+ b3—1Z b bil : I 2[22 N ( (17z 1> T ) (z) A1 =0
x,6,1 8_ 3_7,8 ,6.1 3_p8\12 x,6,1 — Y-
R )
b8—4(b5—])b313—l ; bg bi 1 ]73 1_1
po (VPN (-1 ) te +g , mz?| A= ) Aol o2 4 22 (/76 _0
62 Y O z) Vo2 W Vo2 =5
Z b=1
2 2062W¢ 5
R =0,
o2 Z(p6’2 4 [z (b3—(p— 1)b3z = V)
s Ui Vi) W)
N (8- bs 1b33 I z 2 2= -1)b3E-1) o 2.2 _ 9,2
. 2(b3-1 \/ ) 220\ Wep T @z 21//6_2A 0 (A1)
we2 z(bs—(bf'—l)lﬁ N 22, B -pE) ) o2
2V z(z T 1)
We get the results for different values of b (representing the charge) k and the dimension d.
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