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In this work we aim at discussing the effects of the higher order curvature terms on the Lovelock AdS
black holes quasinormal spectrum and, in the context of gauge/gravity correspondence, their consequences
for the formation of holographic superconductors. We also explore the hydrodynamic limit of the Uð1Þ
gauge field perturbations in d dimensions.
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I. INTRODUCTION

The AdS/CFT relation, discovered in the framework of
string theory [1,2], has surpassed its natural cradle to spread
into the realm of condensed matter by means of the
holographic construction [3–5]. In such a case, it does
not matter much what is the type of the black hole in the
AdS space as a physical object, but rather what is the CFT
theory described in the process. Indeed, the CFT theory is
the backbone of the construction and classical perturbations
of the gravity set up may lead, changing the black hole, or
generally speaking changing the AdS set up, to valuable
information about the CFT counterpart. We move to new
condensed matter systems, thus to new physics.
Recently, a series of models have been considered, with

various degrees of success to obtain models concerning
condensed matter systems, see [6,7] for a partial and
incomplete list. Several different physical situations have
been touched, such as superconductivity, for perturbations
of Reissner-Nordstrom solutions [3] and superfluidity [7],
as well as when dealing with time dependent solutions [8],
density waves [9]. Applications in high energy physics
have been particularly important [10,11]. Higher order
corrections to the gravity counterpart have been often used,
but a general discussion is still missing [12–15].
Here, we are going to discuss details of the higher order

corrections to gravity and their consequences for the
holographic field theory. In particular, we consider
Lagrangians whose field equations are at most of second
order [16] which, in the case of generalizations of gravity
lead us to the Lovelock Lagrangians [17]. The paper is
organized as follows. Section II provides a review of the
d-dimensional Lovelock gravity and the black hole sol-
utions considered in this work. In Sec. III we obtain the
quasinormal spectrum of d-dimensional charged Lovelock
black holes due to a scalar probe field. In Secs. IVand V we
explore in the probe limit the formation of holographic

superconductors in the presence of higher order corrections
to the curvature. Also we compute the real time R-current
correlators due to electromagnetic perturbations due to
electromagnetic field. In Sec. VI we discuss the results and
some final comments are given.

II. THE LOVELOCK GRAVITY

String theory brought the idea that higher dimensional
curvature terms in the gravity action are basically man-
datory to cope with quantum corrections at the Planck scale
[18]. On the other hand, field equations with higher time
derivatives are unstable. Such a result, originally relying
upon Ostrogradsky [19] long ago on very general grounds
has been rederived in simple terms [20]. Nevertheless, there
are theories with complex dynamics involving higher order
terms in the Lagrangian but whose equations of motion are
at most second order in time [16,17,21]. We discuss here
the cases of Lovelock gravity as discussed in [22], where,
in several space-time dimensions we have Einstein gravity
corrected by higher order terms but with second order
differential equations for the fundamental metric fields.
The solutions of the field equations we are considering
are those of Refs. [22] with nonvanishing charge, that is, the
gravity sector in d dimensions is described by the action

S ¼ −
1

16πG

Z
ddx

Xk
p¼0

LðpÞ; ð1Þ

where k is an integer strictly smaller than dþ1
2

labeling
inequivalent theories, the individual Lagrange densities are

LðpÞ ¼ lp−2k

d−2k

�
k
p

�
ϵμ1·μdϵ

a1…adRμ1μ2
a1a2…R

μ2p−1μ2p
a2p−1a2pe

μ2pþ1
a2pþ1

…eμdad ;

with l denoting the d-dimensional AdS radius related to the
cosmological constant Λ by

Λ ¼ − ðd − 1Þðd − 2Þ
2l2
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and the curvature is

Rμν
ab ¼ Rμν

ab þ
1

l2
eμaeνb;

where eμa is the vielbein.
It is an established result that the equations of motion are

second order in the time derivatives. The Einstein equations
have been solved [22] and a series of AdS black hole
solutions emerge from these actions, the most important
result used in the present work. Solutions are labeled by the
space-time dimension d, the integer k defined above.
In order to consider charged solutions, the gravity action

(1) has to be supplemented by the Maxwell action

SM ¼ −
1

4ϵ

Z
ddx

ffiffiffiffiffiffi
−g

p
gμρgνσFμνFρσ; ð2Þ

where ϵ is related to the vacuum permeability ϵ0.
Solutions to the Einstein-Maxwell system are labeled by

the space-time dimension d, the integer k defined above
and the charge Q. From [22,23], those solutions read

ds2 ¼ −
�
ηþ r2

l2
− gkðrÞ

�
dt2 þ dr2

ηþ r2

l2 − gkðrÞ
þ r2dΣ2

d−2;

ð3Þ

where η ¼ −1; 0; 1 defines the topology. For η ¼ 1, dΣ2
d−2

is the angular measure on the sphere, η ¼ 0 implies a flat
black hole where dΣ2

d−2 is the flat metric and η ¼ −1
corresponds to the hyperbolic metric. The metric depends
on the charge Q of the black hole by means of the
expression

gk ¼
�
2ĜM þ δd−2k;1

rd−2k−1
−

ϵĜ
d − 3

Q2

r2ðd−k−2Þ

�
1=k

; ð4Þ

where Ĝ is the gravitational constant, δd−2k;1 is the standard
Kronecker delta andM is the black hole mass. For a generic
value of k, the black holes described by the line element (3)
have two horizons (r−,rþ) located at the zeros of gtt,
satisfying r− < rþ. The black hole family describe by (3)
include the d-dimensional Reissner-Nordström AdS-black
holes for k ¼ 1 and the charged AdS-Gauss-Bonnet black
holes for k ¼ 2 and d > 5. For a discussion on the causal
structure of Gauss-Bonnet gravity, see [24]. Also, the line
element (3) is asymptotically AdS for all values of k and d.

III. LOVELOCK SCALAR QUASI
NORMAL MODES

In this section we are going to explore the quasinormal
spectrum of charged AdS-Lovelock black holes consider-
ing a probe scalar field evolving at such geometry.

The black hole quasinormal modes (QNM) of asymp-
totically AdS black holes is obtained by considering probe
fields dynamics supplemented by ingoing boundary con-
ditions at the event horizon and Dirichlet boundary con-
ditions at spatial infinity [25,26]. In the context of AdS/
CFT correspondence the decay of QNM is interpreted as
the return to equilibrium of a thermal state in the quantum
field theory at finite temperature living at the AdS boundary
[27]. For a recent review on the subject see [28,29] and the
references therein. In particular, scalar fluctuations on the
bulk geometry are related to the poles of thermal retarded
Green function [30] and the electromagnetic perturbations
are associated to the poles of retarded Green functions of
R-symmetry currents at the boundary.
The next procedure is standard but new. We consider the

scalar perturbations of the above system. Scalar perturba-
tions are easily obtained. We rewrite the metric in a form
that we use in the numerical analysis below, that is,

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΣ2
d−2; ð5Þ

with

fðrÞ ¼ ηþ r2

l2
−
�

M
rd−2k−1

−
Q2

r2ðd−k−2Þ

�1
k

: ð6Þ

Depending on the curvature (thus on η), the angular part of
(5) changes accordingly. We can rewrite the parameters
in terms of the inner horizon r− and the event horizon
rþ as

M¼ 1

rd−3þ −rd−3−

�
r2d−4−2kþ

�
ηþr2þ

l2

�
k

−r2d−4−2k−

�
ηþr2−

l2

�
k
�
;

Q2¼ 1

r3−d− −r3−dþ

�
rd−1−2kþ

�
ηþr2þ

l2

�
k

−rd−1−2k−

�
ηþr2−

l2

�
k
�
:

ð7Þ

In this paper, we study the planar black hole case, namely
η ¼ 0, and without loss the generality, we set l ¼ 1. Now, it
is standard to compute the scalar modes. Because it is an
anti-de Sitter spacetime, we should use Horowitz-Hubeny
method [27] to calculate the scalar quasinormal modes of
this black hole. According to this method, we set
v ¼ tþ R

dr
fðrÞ, so the metric is rewritten as

ds2 ¼ −fðrÞdv2 þ 2dvdrþ r2dΣ2
d−2; ð8Þ

and then the scalar equation is given by

fðrÞϕ00 þ ðf0 − 2iωÞϕ0 − VðrÞϕ ¼ 0; ð9Þ

where V ¼ ðd−2Þf0
2r þ ðd − 4Þðd − 2Þ f

4r2 þ ðd − 2Þ L2

r2 . The
transformation z ¼ 1

r is introduced, so that the region of
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variable becomes 0 ≤ z ≤ h (h ¼ 1
rþ
). The boundary con-

dition at event horizon require ϕðrþÞ ¼ 1 but ϕ should
vanish at infinity. Therefore, the scalar field equation is
given by

sðzÞ d
2ϕ

dz2
þ tðzÞ
z − h

dϕ
dz

þ uðzÞϕ
ðz − hÞ2 ¼ 0; ð10Þ

where

sðzÞ ¼ −
z4f
z − h

;

tðzÞ ¼ −z2
�
z−2

df
dz

þ 2zf þ 2iω

�
;

uðzÞ ¼ ðz − hÞV: ð11Þ

we can expand sðzÞ ¼ P
siðx − hÞi, tðzÞ ¼ P

tiðx − hÞi,
and uðzÞ ¼ P

uiðx − hÞi and ϕðzÞ ¼ P
aiðx − hÞi at

event horizon z ¼ h. Considering the boundary condition
at horizon, we have a0 ¼ 1, and substitute s, u, t, and ϕ into
Eq. (11), we obtain the recursion relation

an ¼ −
1

Pn

Xn−1
i¼0

½iði − 1Þsn−i þ itn−i þ un−i�ai; ð12Þ

where Pn ¼ nðn − 1Þs0 þ nt0, so all the ai can be
obtained. Finally, according to another boundary condi-
tion ϕð0Þ ¼ 0, we always can get the value of ω from
equation

P
iai ¼ 0. It is very convenient to use Wolfram

Mathematica to realize the above process, so we use this
software to calculate the quasinormal modes of this black
hole. We find a sequence of quasinormal frequencies as
function of the temperature of the black hole. It is a
tedious but straightforward procedure. Nevertheless, we
find some interesting results.
The first noteworthy result with angular quantum num-

ber l ¼ 0 is the fact that spaces with higher values of k are
stiffer, namely have larger values for the imaginary part of
the frequency, as shown in Figs. 1–4. Also, we clearly see
that the real and imaginary part of frequencies scales
linearly with the Hawking temperature, which is expected
of AdS black holes [27]. We have the results for various
values of the temperature as given in Table I, where b is the
value of black hole charge Q.
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FIG. 1 (color online). Real (left) and imaginary (right) quasinormal modes behavior in terms of the Hawking temperature for
d ¼ 4; k ¼ 1.
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FIG. 2 (color online). Real (left) and imaginary (right) quasinormal modes behavior in terms of the Hawking temperature for
d ¼ 5; k ¼ 1.
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As we see in Fig. 3, the scalar quasinormal frequencies
for a five and seven-dimensional Lovelock black hole, with
k ¼ 2 and k ¼ 3, respectively, are purely damped, namely
there is no oscillatory phase for the perturbation. Such a
result seems to be a general feature of Lovelock theories
with d ¼ 2kþ 1 since the gravity theory reduces to
Chern-Simons gravity in these cases. The purely damped
frequencies are not new in literature. The same result has
been found in the behavior of scalar quasinormal modes of
the three dimensional Lifshitz black hole [31], whose
gravity theory is the new massive gravity (NMG). The
corresponding action, as in the Lovelock case, contains

higher order corrections in the curvature. The dynamics of
probe scalar fields in higher dimensional Lifshitz black
holes (d ¼ 5;…; 10) do not show an oscillating phase
either [32]. Thus, at least in case of Lovelock gravity with
d ¼ 2kþ 1 and Lifshitz black holes, the purely damped
modes are related to the higher curvature terms.
Also, we observe that the effect of adding charge to the

black hole is to increase the quasinormal frequency value.
There is also a quite important increase in the imaginary
part of the frequencies for k ¼ 2, when the models seems
to get stiffer. This effect is less pronounced for the six-
dimensional case, see Fig. 4.
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FIG. 3 (color online). Purely damped quasinormal modes behavior in terms of the Hawking temperature for d ¼ 5; k ¼ 2 and
d ¼ 7; k ¼ 3.
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FIG. 4 (color online). Effect on the real part (left) and imaginary part (right) of quasinormal frequencies by adding charge to the
six-dimensional case for k ¼ 1; k ¼ 2.
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IV. THE PHASE TRANSITION AND
CONDUCTIVITY

According to the AdS/CFT dictionary, the scalar per-
turbation ψ corresponds, at the AdS border, to the order
parameter of the conformal field theory. The gauge field
perturbation gives rise to the border source and to the
current. We can thus analyze whether we can have a
superconducting phase and compute the conductivity. As
it turns out, we have the conductivity as a function of the
frequency, what is a physically relevant object to study the
properties of the conformal field theory at the border (or
else, of the condensed matter system at the border). For
later purposes it is going to be useful to write the above
function in terms of the event horizon radius rþ and the
Cauchy horizon rc ≡ γrþ. From this point on we shall work
on flat topology, η ¼ 0 and l ¼ 1. We have

M ¼ γ2d−4 − 1

bd−3 − 1
rd−1þ ; Q2 ¼ γ2d−4 − γd−3

γd−3 − 1
r2d−4þ ; ð13Þ

where γ ¼ r−
rþ
. In terms of the new parameters we have

fðrÞ ¼ r2 − r
d−1
kþ r2ð1þ2−d

k Þ
�
1 − γ2d−4

1 − γd−3
rd−3 − γd−3

1 − γd−1

1 − γd−3

�1
k

;

ð14Þ

and the Hawking temperature is given in terms of the local
gravity at the black hole event horizon,

Tc ¼
d − 1 − γd−3½2d − 4 − γd−1ðd − 3Þ�

4kð1 − γd−3Þπ rþ: ð15Þ

In order to obtain the phase transition, we consider the
Lovelock gravity action (1) coupled to a classical charged
scalar field ψ and the electromagnetic gauge field Aμ,
whose action is

Sc ¼
Z

ddx
ffiffiffiffiffiffi
−g

p �
−

1

4ϵ
FμνFμν − j∇ψ − iqAψ j2 −m2jψ j2

�
;

ð16Þ

where ∇ is the covariant derivative, q and m are the scalar
field charge and mass, respectively.
We consider the equation of motion of the matter and

gauge fields, in such a way that scalars are functions of
the radial variable in order to define an order parameter at

the border. The scalar potential corresponding to the gauge
field (ϕ≡A0) is, consequently, a function of the radial
variable. The vectorial components of the gauge field are
functions of t and r. Without loss of generality we consider
only Ax, whose time dependence is harmonic, that
is, Axð~x; tÞ ¼ Axð~xÞe−iωt.
We are going to consider the equations of motion of the

electric potential A0 ¼ ΦðrÞ, of the scalar field ΨðrÞ and
the x-component of the vector potential, AxðrÞ. Moreover,
it is useful to change variables from r to z ¼ 1

r. Also,
foreseeing the asymptotic behavior of the fields, we
redefine them as ϕðzÞ ¼ Φð1=zÞ, ψðzÞ ¼ Ψð1=zÞz−λf ,
AxðzÞ ¼ Axð1=zÞ. We in this paper use the shooting
method to calculate numerically the holographic super-
conductor and the conductivity. The Maxwell-Klein
Gordon equations in the probe limit for k ¼ 1 and d ¼ 5
read

ψ 00
5;1 þ

3ðγ4 þ b2Þz6 − ðγ4 þ b2 þ 1Þz4 − 3

ðz3 − zÞ½ðγ4 þ γ2Þz4 − z2 − 1� ψ 0
5;1

þm2ð1 − z2Þ½ðγ4 þ γ2Þz4 − z2 − 1� þ z2ϕ5;1

ðz3 − zÞ2½ðγ4 þ γ2Þz4 − z2 − 1�2 ψ5;1 ¼ 0;

ϕ00
5;1 −

ψ 0
5;1

z
−

2ψ2
5;1ϕ5;1

z2ðz2 − 1Þ½ðγ4 þ γ2Þz4 − z2 − 1� ¼ 0;

A00
x;5;1 þ

5ðγ4 þ γ2Þz6 − 3ðγ4 þ γ2 þ 1Þz4 − 1

ðz3 − zÞ½ðγ4 þ γ2Þz4 − z2 − 1� A0
x;5;1

þ z2ω2 − 2ðz2 − 1Þ½ðγ4 þ γ2Þz4 − z2 − 1�ψ2
5;1

ðz3 − zÞ2½ðγ4 þ γ2Þz4 − z2 − 1�2 Ax;5;1¼ 0:

By the shooting method, we choose the value of the
fields near the horizon, solve the differential equations to
the spatial infinity and compare with the boundary con-
dition. For solving the differential equation we choose the
functions as power series of z − 1. We thus obtain the value
of the function at the boundary and compare with the
boundary condition. We subsequently consider the cases
d ¼ 5; k ¼ 2, d ¼ 6; k ¼ 1, and d ¼ 6; k ¼ 2, whose equa-
tions of motion are given in the Appendix.

A. Numerical analysis

Let us first concentrate on the 5-dimensional case, where
the function fðrÞ defining the metric is given by

TABLE I. Various values of quasinormal frequencies, where T is the Hawking temperature.

b d ¼ 4 d ¼ 5, k ¼ 1 d ¼ 5, k ¼ 2 d ¼ 6, k ¼ 1 d ¼ 6, k ¼ 2

0 ð7.747 − 11.158iÞT ð9.800 − 8.620iÞT ð−25.133iÞT ð10.394 − 6.769iÞT ð8.854 − 25.320iÞT
0.25 ð6.712 − 14.240iÞT ð9.981 − 9.257iÞT ð−26.899iÞT ð10.483 − 6.902iÞT ð9.021 − 25.235iÞT
0.5 ð9.156 − 22.211iÞT ð11.416 − 12.4206iÞT ð−30.480iÞT ð11.33 − 8.069iÞT ð9.361 − 27.322iÞT
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fðrÞ ¼ ηþ r2

R2
−

r
4
k−2
e r2−

6
k

ðb2 − 1Þ1kb2
�
b6ðr2 − r2eÞ

�
b2r2e
R2

þ η

�
k

− b2kðr2 − r2eb2Þ
�
r2e
R2

þ η

�
k
�1

k

: ð17Þ

Here, η ¼ þ1; 0;−1 depending on whether the solution has
positive, zero or negative curvature. The parameter b is a
measure of the charge of the black hole, R is the inverse of
the cosmological constant and re the event horizon.
We search for static solutions for the electric potential

and for the scalar field seeking at the order parameter at the
border. Moreover, we look for a vector potential at a given
frequency (as above) in order to test the Ohm’s law.
The fields obey the coupled differential equations

ψ 00ðrÞ þ
�
f0ðrÞ
fðrÞ þ

d − 2

r

�
ψ 0 þ

�
φ2ðrÞ
f2ðrÞ −

m2

fðrÞ
�
ψðrÞ ¼ 0;

ð18Þ

ϕ00 þ d − 2

r
ϕ0 −

2q2ψ2ðrÞ
fðrÞ ϕðrÞ ¼ 0; ð19Þ

A00
xðrÞ þ

�
f0ðrÞ
fðrÞ þ

d − 4

r

�
A0
xðrÞ þ

�
ω2

f2ðrÞ −
2ψ2ðrÞ
fðrÞ

�
× AxðrÞ ¼ 0: ð20Þ

B. Results for phase transition

According to the usual AdS/CFT dictionary, when we
approach the AdS boundary the expansion of the pertur-
bations near the boundary leads to CFT fields with well-
defined physical interpretation [2,3]. For the scalar field, in
particular, we have the expansion

ψðrÞ ¼ ψ ð1Þ 1
r
þ ψ ð2Þ 1

r2
þ higher order in

�
1

r

�
: ð21Þ

The expansion coefficients hOii ¼
ffiffiffi
2

p
ψ ðiÞ are, according

to the above mentioned dictionary, order parameters of the
boundary theory, as long as we choose appropriated
boundary conditions, that is, if ψ ð1Þ ¼ 0 we define hO2i
and for ψ ð2Þ ¼ 0 we define hO1i. The computation of either
field uses the shooting method found by [4].
We considered various choice of parameters. Generally

speaking, the order parameter hO2i is larger than hO1i, and
the one corresponding to k ¼ 2 larger than the one corre-
sponding to k ¼ 1, see Figs. 5 and 6. This result about k
means that the nonlinearity enhances the order parameter,
but strangely enough the conductivity goes the other way
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FIG. 5 (color online). Condensation of operators hO1i and hO1i for the five-dimensional uncharged case (b ¼ 0).
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FIG. 6 (color online). Condensation of operators hO1i and hO1i for the five-dimensional charged case (b ¼ 0.25).
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(see next subsection), namely the conductivity (both real and
imaginary part) are smaller for k ¼ 2. Thus, order does not
mean, in this case, better conductivity properties.
The effect of dimensionality upon the phase transition is

to lower the value of the condensate as the number of
spatial dimensions increase. Such an effect is present in
both condensates hO1i and hO2i, see Fig. 7 for an example.

C. Results for conductivity

Now, we are going to compute the conductivity for each
boundary operator hO1i and hO2i following the standard
AdS/CFT recipe [3]. Solving numerically Eq. (20), impos-
ing ingoing wave boundary conditions at the black hole
event horizon and considering the asymptotic behavior of
Ax for large r, we have that the leading term is the current
hJμi and the subleading one the dual source Að0Þ

x , both
defined at the AdS border.
Having these two quantities, we compute the conduc-

tivity σðωÞ through the Ohm’s law

σðωÞ ¼ −
ihJμi
ωAx

: ð22Þ

We present in Figs. 8–11 the real end imaginary part of
conductivity σðωÞ of hO1i and hO2i for five dimensional
black hole in charged and uncharged cases. The conductivity

phenomena is qualitatively very similar in both cases k ¼ 1
and k ¼ 2 for the two operators, but the k ¼ 2 corrections to
the curvature seems to lower the conductivity comparing to
the k ¼ 1 case.

V. R-CURRENT CORRELATORS AND
HYDRODYNAMICAL QUASINORMAL

MODES

In this section we are going to apply the AdS/CFT
correspondence [2,33] in order to compute the real time
R-current correlators, which can be expressed in terms of
the boundary value of the gauge invariant quantities such as
the electric field at the spatial infinity. As one knows, the
electromagnetic fluctuations, in the AdS/CFT context, give
rise to the correlators associated to the R-symmetry at the
boundary field theory.
Following the procedure outlined in [33,34], the impo-

sition of Dirichlet boundary conditions on the gauge
invariant variables lead to the poles of the field theory
correlation functions and, according to [35], the quasinor-
mal frequency spectra of the asymptotic AdS black hole
considered. Moreover, a consequence of applying the
approach [35] is that the electromagnetic quasinormal
spectra presents a set of modes which behaves like a
diffusion wave in the long wavelength and low frequency
limit, such a limit is called hydrodynamic limit of
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FIG. 7 (color online). Condensation dependence on the dimensionality and the values of k.
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perturbations. The two main results of the section is the
explicit form of correlators in the field theory defined at the
boundary of Lovelock black holes and the frequency of
diffusion quasinormal modes for dimension d ≥ 4.

A. Correlators due to electromagnetic field

We are going to consider as our bulk geometry the
uncharged d-dimensional planar Lovelock black hole,
represented by the following line element

ds2 ¼ r20
l2u2=ðd−3Þ

�
−gðuÞdt2 þ

Xd−3
i

dx2i

�
þ r20
u2=ðd−3Þ

dϕ2

þ l2

ðd − 3Þ2u2gðuÞ du
2: ð23Þ

The function gðuÞ is the horizon function given by

gðuÞ ¼ 1 − uγ; γ ¼ ðd − 1Þ
kðd − 3Þ :
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FIG. 9 (color online). Real (left) and imaginary (right) parts of hO2i conductivity for zero black hole charge in five dimensions
and varying k.

Tc

Re

k 2

k 1

d 5 b 0.5

Tc

Im

k 2

k 1

d 5 b 0.5

5

10

15

20

25

10

20

30

40

50

5 10 15 20 25 30 5 10 15 20 25 30

FIG. 10 (color online). Real (left) and imaginary (right) parts of hO1i conductivity for charged black hole in five dimensions and
varying k.

5 10 15 20 25 30 Tc

40

20

Im

k 2

k 1

d 5 b 0.5

Tc

Re

k 2

k 1

d 5 b 0.5 20

40

60

20

40

60

80

100

5 10 15 20 25 30

FIG. 11 (color online). Real (left) and imaginary (right) parts of hO2i conductivity for charged black hole in five dimensions and
varying k.

KAI LIN, JEFERSON DE OLIVEIRA, AND ELCIO ABDALLA PHYSICAL REVIEW D 90, 124071 (2014)

124071-8



The event horizon is located at r ¼ r0 or u ¼ 1, the radial
coordinate r ∈ ½r0;þ∞� is mapped to u ∈ ½1; 0� through
u ¼ r0=r. In order to have a black hole with planar
topology, at least one of the extra dimensions has to be
compact [23], so in the above metric ϕ ∈ ½0; 2π�, and the
remaining directions have the domain xi ∈ ½−∞;þ∞�,
where i ¼ 1…d − 3.
In AdS/CFT context, the electromagnetic field evolving

in the region near the AdS boundary couples to the
holographic field theory current-current two-point corre-
lation function. Therefore, we have to compute the
perturbations on the electromagnetic potential Aμ, whose
equations governing its dynamics are the Maxwell
equations,

∂μð
ffiffiffiffiffiffi
−g

p
FμνÞ ¼ 0; ð24Þ

where Fμν ¼ ∂μAν − ∂νAμ, and the metric components
which enter in Maxwell equation are those given by (23).
Using the isometries of black hole spacetime, we can
decompose the gauge field Aμ in Fourier as following

Aμðt; xi;ϕ; uÞ ¼
1

ð2πÞd−1
Z

ðdwÞðdmÞðdqiÞd−3

× e−iωtþimϕþiqix
i
Aμðω; m; qi; uÞ: ð25Þ

It is possible, without loss of generality, choose a
ðd − 1Þ- dimensional wave vector ~p ¼ ð−ω; QaÞ (with
a ¼ 1;…; d − 2), where Qa ¼ ðm; qiÞ ¼ ð0; q; ~0Þ, so, as
initial configuration, have the gauge field Aμ propagating in
one of the planar directions xi ¼ ðx; ~0Þ. Such choice allows
us to consider the perturbations on the gauge field as two
orthogonal sets [36] [34], the odd perturbations Aϕ and the
even perturbations At; Ax; Au.
Our gauge choice is the radial gauge where Ar ¼

Au ¼ 0, and the fundamental gauge invariant variables
for the two classes of perturbations are the transverse
component of electric field Eϕ for the odd perturbations and
the component Ex for the even perturbations. The equations
governing the dynamics are obtained from the Maxwell
equations (24) written on the spacetime (23):

E00
ϕ þ

gðuÞ0
gðuÞ E

0
ϕ þ

w2 − q2gðuÞ
ðd − 3Þ2gðuÞ2u2d−4d−3

Eϕ ¼ 0; ð26Þ

E00
xþ

gðuÞ0w2

gðuÞ½w2 − q2gðuÞ�E
0
x þþ w2 − q2gðuÞ

ðd − 3Þ2gðuÞ2u2d−4d−3
Ex ¼ 0;

ð27Þ

where the primes refers to derivatives with respect to u
direction. For convenience, we have normalized the quan-
tities w and q in terms of black hole Hawking temperature

T ¼ ðd − 1Þ
4πl2k

r0;

namely,

w ¼ ðd − 1Þ
4πk

ω

T
; q ¼ ðd − 1Þ

4πk
q
T
:

Following the AdS/CFT recipe [30], the current-current
two point correlators are given by the field Eμ (μ ¼ ϕ; x)
near the AdS boundary, which in our case, is obtained
through the solution of Eqs. (26) and (27) at u ≈ 0:

Eϕ ¼ aϕðw; qÞ þ bϕðw; qÞu; ð28Þ

Ex ¼ axðw; qÞ þ bxðw; qÞu; ð29Þ

furthermore, close to the event horizon Eμ ¼ gðuÞ� ik
d−1w,

where the positive exponent corresponds to outgoing waves
and the negative exponent to ingoing waves at the event
horizon, also the choice of sign means the electric field at
AdS boundary is taken as classical source of retarded
(negative) or advanced (positive) current-current two point
correlators. The ingoing waves at the event horizon are
physically motivated boundary conditions for a classical
black hole, thus, we are going to adopt the negative
exponent for the electrical field Eμ meaning that we are
considering the retarded correlators of the holographic field
theory.
The next step is to consider the electromagnetic action at

the AdS boundary (u ≈ 0) with the results (28) and (29) we
have

S ¼ ðd − 3Þrðd−3Þ0

2η2ld−3

Z
dωdq
ð2πÞ2

�
gðuÞ

q2gðuÞ −w2

× Exðu;−~pÞE0
xðu; ~pÞ −

gðuÞ
w2

Eϕðu;−~pÞE0
ϕðu; ~pÞ

�
:

ð30Þ

where η2 is the normalization of the action, from [37] one
finds

1

η2
¼ ðd − 1ÞΓ½d

2
�

2ðd−1Þπd
2Γ½d� ðN

2
c − 1Þ;

with Nc representing the number ofD-branes. Also, we can
rewrite the electric field at the AdS boundary in terms of
the gauge field in the same region A0

μð~pÞ ¼ Aμðu → 0; ~pÞ
and applying the Lorentzian prescription [30],

Cμνðω; ~pÞ ¼
2δ2S

δA0
μð~pÞδA0

νð−~pÞ ; ð31Þ

one finds the current-current correlators
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Cttðω; qÞ ¼
ðd − 3Þrd−30

η2ld−3
bxðw; qÞ
axðw; qÞ

q2

w2 − q2
; ð32Þ

Cxxðω; qÞ ¼
ðd − 3Þrd−30

η2ld−3
bxðw; qÞ
axðw; qÞ

w2

w2 − q2
; ð33Þ

Cϕϕðω; qÞ ¼
ðd − 3Þrd−30

η2ld−3
bϕðw; qÞ
aϕðw; qÞ

; ð34Þ

Ctxðω; qÞ ¼
ðd − 3Þrd−30

η2ld−3
bxðw; qÞ
axðw; qÞ

wq
w2 − q2

: ð35Þ

Using the components of Cμν it is possible to express the
transversal ΠTðω; qÞ and longitudinal ΠLðω; qÞ self-
energies of the ðd − 1Þ holographic thermal field theory

ΠTðω; qÞ ¼ ðd − 3Þrd−30

η2ld−3
bϕðw; qÞ
aϕðw; qÞ ; ð36Þ

ΠLðω; qÞ ¼ ðd − 3Þrd−30

η2ld−3
bxðw; qÞ
axðw; qÞ : ð37Þ

Therefore, the electromagnetic correlation functions are
fully determined by the relations bϕðw; qÞ=aϕðw; qÞ and
bxðw; qÞ=axðw; qÞ and the poles of the correlators are the
same as the zeros of aϕðw; qÞ and axðw; qÞ [35]. To find
the poles, we impose Dirichlet boundary conditions on the
electric field at AdS boundary and ingoing wave conditions
at the black hole event horizon.

B. Diffusion quasinormal modes

To determine the self-energies found in the preceding
computation, we have to solve the differential equations for
Ex and Eϕ. Analytical solutions are unknown, unless in the
so-called hydrodynamical limit of the perturbations. Such a
limit is achieved by considering a set of perturbations with
small frequencies and small wave numbers,

w ≪ 1; q ≪ 1:

From the point of view of the thermal field theory, at
least one of the electromagnetic quasinormal frequencies
has to behave as a diffusion mode in the hydrodynamical
limit. So, if we impose Dirichlet and ingoing-wave boun-
dary conditions to the differential equations (26) and (27),
we found that there is not a transversal diffusion mode,
namely, does not exist a value of ω that is compatible with
Eϕ ¼ 0 at AdS boundary. Such a result is independent
on the dimensionality of the bulk and the flavor of the
Lovelock theory, in other words, independent on d and k.
However, we found that for the longitudinal mode, there is
a hydrodynamical mode given by

w ¼ −i
q2

ðd − 3Þ ⇒ ω ¼ −i
ðd − 1Þ

4πðd − 3ÞkT q2; ð38Þ

whose diffusion coefficient can be read off

D ¼ ðd − 1Þ
4πðd − 3ÞkT : ð39Þ

This is the main result of the section. We found that the
diffusion coefficient depends crucially on the flavor of
Lovelock gravity. As we increase the corrections to the
curvature in Lovelock Lagrangian the diffusion coefficient
tend to zero, so the charge diffusion in longitudinal
direction in thermal field theory is diminished in gravity
duals with corrections to the curvature.

VI. CONCLUDING REMARKS

In this work we have studied the effects of higher order
corrections to the gravity upon the scalar and hydrody-
namical quasinormal modes spectrum, the condensation of
holographic operators and their conductivity.
Regarding to the scalar quasinormal modes, we found

that the corrections to the curvature diminish the quasi-
normal modes oscillating phase, it is similar to the
dynamics of a perturbation in a very dense material
medium. We see from Fig. 3 the case where the real part
of the frequencies are zero, so these modes are purely
damped. Moreover, we found in the hydrodynamical limit
a purely damped diffusive quasinormal mode ω ¼ −iðd−
1Þq2=4πðd − 3ÞkT, which depends strongly on the k
parameter.
We obtained explicitly the phase transition giving the

condensation of operators hO1i and hO2i. The influence of
curvature corrections of the Lovelock gravity is to increase
the value of the condensate, in both charged and uncharged
cases. Also, we compute the conductivity, where we found
that the considered gravity bulk diminish the real part and
imaginary part of σðωÞ as we add more corrections to
curvature.
As an extension of this work, it would be interesting to

consider charged fermions fields evolving on the gravity
bulk given by the family of Lovelock black holes in order
to investigate if purely damped quasinormal frequencies
are allowed in this case. Another problem which will be
address in a future work is the question of gravitational
stability of Lovelock black holes and the computation of
holographic stress-energy tensor of field theory on the
spacetime AdS boundary.
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APPENDIX EQUATIONS OF MOTION FOR ðd ¼ 5;k ¼ 2Þ, ðd ¼ 6;k ¼ 1Þ AND ðd ¼ 6;k ¼ 2Þ
The general equations of motion of the scalar and gauge fields are

ψ 00
5;2 þ

ððb4 þ b2 þ 1Þz2 − 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2ðb2 þ 1Þðz2 − 1Þ

p
Þ

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2ðb2 þ 1Þðz2 − 1Þ

p
þ ðb4 þ b2Þz5 − ðb4 þ b2 þ 1Þz3 ψ

0
5;2

þ ðm2ðz2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2ðb2 þ 1Þðz2 − 1Þ

p
− 1Þ þ z2φ2

5;2Þ
z2ðz2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2ðb2 þ 1Þðz2 − 1Þ

p
− 1Þ2 ψ5;2 ¼ 0;

φ00
5;2 −

φ0
5;2

z
þ 2φ5;2ψ

2
5;2

z2ðz2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2ðb2 þ 1Þðz2 − 1Þ

p
− 1Þ ¼ 0;

A00
x;5;2 þ

" ð ðb4þb2Þzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−b2ðb2þ1Þðz2−1Þ

p − 2
z3Þ

1
z2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2ðb2 þ 1Þðz2 − 1Þ

p þ 1

z

#
A0
x;5;2 þ

2ðz2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2ðb2 þ 1Þðz2 − 1Þ

p
− 1Þψ2

5;2 þ ω2z2

z2ðz2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2ðb2 þ 1Þðz2 − 1Þ

p
− 1Þ2 Ax;5;2 ¼ 0.

ψ 00
6;1 þ

−2ðb2 þ bþ 1Þ − 3ðbþ 1Þðb2 þ 1Þðb4 þ 1Þz5 þ 6b3ðb4 þ b3 þ b2 þ bþ 1Þz8
zðb2 − ðbþ 1Þðb2 þ 1Þðb4 þ 1Þz5 þ b3ðb4 þ b3 þ b2 þ bþ 1Þz8 þ bþ 1Þ −

2

z
ψ 0
6;1

þ
φ2
6;1 −m2½ 1z2 − z6ð b8−1

z3ðb3−1Þ þ b3−b8
b3−1 Þ�

z4½ 1z2 − z6ð b8−1
z3ðb3−1Þ þ b3−b8

b3−1 Þ�2
ψ6;1 ¼ 0;

φ00
6;1 −

2

z
φ0
6;1 −

2ðb3 − 1Þφ6;1ψ
2
6;1

ðb3 − 1Þz2 − ðb8 − 1Þz7 þ ðb3 − b8Þz10 ¼ 0;

A00
x;6;1 þ

3ð1−b8Þz2
b3−1 þ 6b3ðb4þb3þb2þbþ1Þz5

b2þbþ1
− 2

z3

1
z2 − z6ð b8−1

z3ðb3−1Þ þ b3−b8
b3−1 Þ

A0
x;6;1

ω2 − 2½ 1z2 − z6ð b8−1
z3ðb3−1Þ þ b3−b8

b3−1 Þ�ψðzÞ2
z4½ 1z2 − z6ð b8−1

z3ðb3−1Þ þ b3−b8
b3−1 Þ�2

Ax;6;1 ¼ 0.

ψ 00
6;2 −

� b8−4ðb5−1Þb3z3−1
2
ffiffiffiffiffiffiffiffi
b3−1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðb8−ðb5−1Þb3z3−1Þ

p þ 2
z3

1
z2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðb8−ðb5−1Þb3z3−1Þ

b3−1

q þ 2

z

�
ψ 0
6;2

m2z2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðb8−ðb5−1Þb3z3−1Þ

b3−1

q
−m2 þ z2φ2

6;2

z2ðz2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðb8−ðb5−1Þb3z3−1Þ

b3−1

q
− 1Þ2

ψ6;2 ¼ 0;

φ00
6;2 −

2

z
φ0
6;2 þ

2φ6;2ψ
2
6;2

z4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðb8−ðb5−1Þb3z3−1Þ

b3−1

q
− z2

¼ 0;

A00
x;6;2 þ

− b8−4ðb5−1Þb3z3−1

2ðb3−1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðb8−ðb5−1Þb3z3−1Þ

b3−1

q − 2
z3

1
z2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðb8−ðb5−1Þb3z3−1Þ

b3−1

q A0
x;6;2

2z2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðb8−ðb5−1Þb3z3−1Þ

b3−1

q
ψ2
6;2 þ ω2z2 − 2ψ2

6;2

z2ðz2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðb8−ðb5−1Þb3z3−1Þ

b3−1

q
− 1Þ2

Ax;6;2 ¼ 0 ðA1Þ

We get the results for different values of b (representing the charge) k and the dimension d.
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