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Achieving precise control of light intensity in 3D volumes is highly in demand in many applications in optics. Various
wavefront shaping techniques have been utilized to reconstruct a target amplitude profile within a 3D space. However,
these techniques are intrinsically affected by cross-talk, which limits the quality of the reconstructed profile. We develop
and experimentally demonstrate an approach that creates light waves with efficient energy distribution based on a linear
superposition of the optimum orthogonal communication modes connecting a source plane and a receiving volume. We
employ these modes to construct arbitrarily chosen 2D and 3D structured light waves with continuous depth of field
within the output receiving volume and optically generate these waves using a spatial light modulator. Our generated
intensity profiles exhibit a minimal level of cross-talk, great fidelity, and strong contrast. We envision our work to inspire
new directions, to our knowledge, in any domain that requires controlling light intensity in 3D with high precision and
also to serve as a benchmark for other wavefront shaping techniques. © 2025 Optica Publishing Group under the terms of the

Optica Open Access Publishing Agreement
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1. INTRODUCTION

Understanding how light interacts with matter is central to explor-
ing the universe. High-resolution imaging through disordered
media, for example, can reveal new insights into both cellular
structures and distant galaxies. Similarly, the ability to manipulate,
store, and detect light unlocks a wide range of photonic technolo-
gies, including quantum computing, communication, and sensing
[1–7]. At the heart of these developments lies the need for tailoring
the properties of incoming light in a nontrivial manner [8–13].
Early pursuits in structured light waves include the development
of custom two-dimensional (2D) light intensity patterns at a par-
ticular transverse plane using modal bases such as Laguerre–Gauss,
Hermite–Gauss, and Ince–Gauss modes [14–17], or by deploying
iterative algorithms that solve inverse problems of light propaga-
tion, notably the Gerchberg–Saxton algorithm [18]. Although
these methods provide control over the transverse field distribution
at a given 2D plane, they lack control over the longitudinal beam
profile. Tailoring the spatial and temporal properties of light over a
3D volume is a sought-after goal in many applications, including
microscopy, spectroscopy, light–matter interactions, and optical
sensing [19,20].

A variety of wavefront shaping techniques have been proposed
and demonstrated for controlling light intensity in 3D, and the
fundamental limitations of achieving a desired 3D distribution

have been analyzed [21–33]. A common methodology employed
in computer-generated holograms (CGHs) is to discretize a target
3D light distribution into a set of independent primitives. The
incident waveform required to generate this target distribution
is then synthesized by superposing the diffraction patterns from
all the primitives in a given transverse plane. The techniques in
this methodology are often classified based on the type of their
primitive [34,35]. Point-cloud techniques, for instance, adopt a
collection of source points, each emitting a spherical wave toward
the transverse plane (CGH screen). The huge number of primitives
involved in this method, however, mandates the use of look-up
tables and optimization algorithms to reduce memory consump-
tion [36]. Although polygon mesh techniques involve a relatively
smaller number of primitives, they require an additional process of
shading and texture mapping to maintain the quality of the recon-
structed holograms, which inherently increases their computation
time [37]. Multi-plane techniques mitigate this by adopting a set of
parallel planes, uniformly spaced along the propagation direction.
In this case, Fresnel diffraction or angular spectrum algorithms are
implemented to compute the diffraction pattern from each plane
[38–40]. These techniques have been widely adopted for creating
3D holograms, as they demand a significantly smaller number of
primitives compared to point-cloud and polygon mesh techniques
[41,42]. However, a limiting factor of these techniques is that
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the depth of field of the transverse planes increases quadratically
along the optical path. Consequently, the overlap of focal regions
between adjacent planes often causes cross-talk, degrading the
fidelity and quality of 3D reconstructions when the planes are
evenly spaced. Although this interplane cross-talk can be reduced
using optimization algorithms [43–47], a 3D reconstruction with
high axial resolution is still challenging.

Wavefront shaping along the optical path can alternatively be
achieved via a superposition of co-propagating Bessel modes with
different longitudinal wavenumbers. By harnessing the spatial
beating between these modes, one can modulate not only the
intensity profile [48–50] but also other degrees of freedom of
light along the propagation direction, including its total angu-
lar momentum [51–53] and its polarization [54]. By assembling
many of these (nominally) non-diffracting light threads (uniformly
spaced from each other) over a horizontal Cartesian plane, oriented
parallel to the propagation direction, one can construct a 2D light
sheet whose intensity profile can be controlled at will within the
horizontal plane. By stacking several of those sheets within a vol-
ume, 3D structured light waves can also be synthesized [55–57].
Despite the continuous depth and axial resolution afforded by this
technique, the energy distribution of a single light sheet has a large
extent due to the multiple rings of the Bessel modes. This imposes
a constraint on the minimum lateral separation between the light
sheets for mitigating cross-talk, ultimately limiting the number of
images that can be simultaneously projected with a fixed aperture.
Convolutional neural networks have proven effective in reducing
cross-talk only to a certain extent, i.e., in a simple case of only three
light sheets with a low level of cross-talk [58]. In summary, creating
3D holograms with continuous depth of field and with densely
spaced image planes, while maintaining minimum cross-talk,
remains elusive.

In this work, we propose and experimentally demonstrate
an approach to holography that addresses the above limitations.
Using the singular value decomposition (SVD) modal optics [59],
we compute the communication modes between two spaces, a
source and a receiving space. The receiving space constitutes the
3D domain in which the target light intensity profile is defined.
Meanwhile, the source space is a transverse plane where the
required source waveform to reconstruct the target profile is com-
puted as a linear superposition of the communication modes. We
develop a procedure to encode the light waves from the source
waveform in a CGH to be implemented by a phase-only spatial
light modulator (SLM). Since the communication modes establish
the optimum orthogonal channels connecting these two spaces,
the required incident waveform leads to a light wave with the
highest connectivity between the spaces, with the most efficient
energy distribution in the receiving space. In principle, such opti-
mal energy distribution of the individual modes produces 3D
profiles with low cross-talk by ensuring that light is concentrated
at the locations of interest. Communication modes for volume
fields have previously been explored only in simplified theoretical
cases—such as thin longitudinal volumes, spherical surfaces, or
paraxial approximations using prolate spheroidal functions [60–
64]. To our knowledge, this work presents the first comprehensive
framework that unifies theory, numerics, and experiment for deter-
mining which arbitrary volume fields can be generated and how to
realize them.

2. CONCEPT

First, we define the source and receiving spaces to compute the
communication modes associated with these spaces. To do this,
we describe the spaces as a collection of NS source points and NR

receiving points, which results in each mode being described by a
pair of eigenfunctions, one in the source space |9S, j 〉with dimen-
sion NS and another in the receiving space |8R 〉 with dimension
NR . The connection between the spaces is then established by a
coupling operator GSR, with dimensions NS × NR , as illustrated
in Fig. 1(a). For free-space operation, scalar Green’s function
provides an appropriate description for GSR (see Section 6). The
source and receiving eigenfunctions are then related to each other
by GSR|9S, j 〉 = s j |8R 〉, where s j are the singular values com-
puted from GSR. The modulus squared of the singular values, |s j |

2,
namely coupling strengths, quantifies how efficiently each source
eigenfunction |9S, j 〉 creates its corresponding receiving eigen-
function. A full description of the communication mode theory is
detailed in Section 6 and in Ref. [63].

We assume Cartesian coordinate systems (xs , y s , zs ) and (xr , yr ,
zr ) to describe the source and receiving spaces, and we separate the
origins of these two coordinate systems by a longitudinal distance
L . Then, we distribute source and receiving points to compose
these spaces. Specifically, we arrange the source points as an array
of px × p y points in a transverse plane and space them from
each other by distances dx and dy along the xs and y s directions,
resulting in a source plane with dimensions X s = (px − 1)dx

and Ys = (p y − 1)dy . Similarly, the receiving points are disposed
in a 2D or 3D domain where we define their amplitude values
according to a target light intensity profile |8T |

2. Figures 1(b)–
1(d) show examples of receiving point distributions we explore in
this work. In Fig. 1(b), the receiving points are distributed in the
horizontal plane yr = 0 as an array of px ,r × pz,r points. They
are spaced from each other by distances dx ,r and dz,r along the xr

and zr directions, leading to a horizontal plane with dimensions
X r = (px ,r − 1)dx ,r and Zr = (pz,r − 1)dz,r . A 3D distribution
of receiving points is shown in Fig. 1(c), in which a set of p y ,r

horizontal receiving planes is uniformly spaced from each other by
a distance dy ,r . Finally, a non-Cartesian distribution is depicted in
Fig. 1(d). In this case, the receiving points are disposed in a set of
pz,r rings placed along the optical axis, uniformly spaced from each
other by a distance dz,r , forming the lateral surface of a cylinder
with radius Rr and longitudinal length Zr . Along each ring, we
uniformly place pφ,r receiving points.

It is important to consider configurations of source and receiv-
ing spaces that provide a reasonable number of well-coupled
modes, i.e., modes with sufficiently high coupling strengths. The
values of all the parameters we adopted for each source and receiv-
ing point distributions of Fig. 1 are listed in Table 1. First, we fix
the parameters of the receiving space and all the spacing distances.
Next, we set the dimension X s of the source plane to be slightly
larger than that of the receiving space X r . Finally, the separation
distance L and the vertical dimension Ys of the source plane are
chosen to satisfy a criterion on the maximum allowed value for
the source spacing distances dx and dy (see Supplementary Note 2
of Supplement 1). This criterion guarantees that the resulting
wave created by the NS source points over the entire receiving
space is essentially the same as if we had a continuous source. In
our examples, we set L = X s and then Ys is determined by this
criterion. The total number of horizontal planes we can allocate in
the receiving space of Fig. 1(b) is constrained by our choice of the

https://doi.org/10.6084/m9.figshare.29931104
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Fig. 1. General concept of communication modes and examples of source and receiving spaces. (a) Communication modes are established through a
coupling operator GSR between a source and a receiving space. These spaces are mathematically viewed as Hilbert spaces (HS and HR ), each one contain-
ing a set of eigenfunctions ({|9S〉} and {|8R 〉}). In free space, GSR is expressed by Green’s function. Assuming a collection of NS source points and NR

receiving points to describe these spaces, we can express GSR as a NR × NS matrix. Examples of source and receiving space configurations in which the
source points are distributed as an array of px × p y points in a transverse plane and the receiving points as an array of: (b) px ,r × pz,r points in a horizontal
plane, (c) px ,r × p y ,r × pz,r points within a set of uniformly spaced horizontal planes, and (d) pz,r × pφ,r points disposed within a set of uniformly spaced
rings placed along the optical axis. In all these configurations, the spaces are separated by a distance L , an on-axis distance between their coordinate systems
(x s , y s , zs ) and (xr , yr , zr ).

Table 1. Number of Source and Receiving Points, Their Spacing Distances, and the Longitudinal Separation
between the Source and Receiving Spaces for Each Example of Source and Receiving Space Distributions of Fig. 1

a

Source Plane Receiving Space

Distribution px × py dx , dy L Array of Points Spacing Distances

Fig. 1(b) 111× 222 λ 110λ px ,r × pz,r = 101× 101 dx ,r = dy ,r = dz,r = λ

Fig. 1(c) 111× 301 0.5λ 50λ px ,r × pz,r = 51× 51 dx ,r = dz,r = λ

p y ,r = 10 dy ,r = 15λ
Fig. 1(d) 201× 201 0.5λ 50λ pz,r = 101 dz,r = 0.5λ

pφ,r = 101 Rr = 25λ
aFor the example of Fig. 1(d), we present the radius Rr of each ring that compose the receiving surface. The separation distance of the receiving points along each ring

is dφ,r = (2π/pφ,r )Rr = 1.55λ, which corresponds to an angular separation of 3.56◦.

spacing distance dy ,r and the aperture size Ys . Finally, we show in
Table 2 the memory storage and the computation time needed to
compute the communication modes of the distributions of Fig. 1,
parameterized according to Table 1.

For operation at λ= 532 nm, the coupling strengths |s j |
2 in

order of decreasing size of their magnitude associated with the
distribution of Fig. 1(b) are shown in Fig. 2(a) for different values
of the separation distance L and in Fig. 2(b) for different values
of the source plane y -dimension Ys (i.e., different values of p y ,
keeping dy = λ). Notice that the coupling strength values of the
well-coupled modes in this distribution are closely characterized
by a series of steps. Larger values of the source plane Ys dimension
and smaller values of L increase the number of steps. In addition,

Table 2. Memory Storage and Computation Time
Needed to Compute the Communication Modes of the
Distributions of Fig. 1 Parametrized, as Listed in Table 1
a

Distribution Fig. 1(b) Fig. 1(c) Fig. 1(d)

Number of modes 1300 4000 1000
Memory storage (GB) 0.516 3.09 0.657
Computation time (min) 105 712 166

aWe deployed a dedicated server with processor Intel Xeon CPU
ES-2690 0 at 2.90 GHz.

small L values also promote more modes in each step. After the
series of steps, which for the red dashed curve of Fig. 2(b) is roughly
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Fig. 2. Communication modes and their coupling strengths associated with a transverse source plane and a set of horizontal receiving planes. Coupling
strengths in order of decreasing size of their magnitude of a single horizontal receiving plane computed at λ= 532 nm for (a) different values of the lon-
gitudinal separation distance L between the spaces and (b) for different values of the source plane y -dimension Ys = (p y − 1)dy . The other parameters,
which remained fixed, follow Table 1. The coupling strength curves are closely characterized by a series of steps after which the singular values decrease in a
rapid fall-off fashion. The width of each step and the number of steps correspond, respectively, to the number of effective transverse and longitudinal modes.
(c) Coupling strengths on a logarithmic scale for a set of 10 equally spaced horizontal planes for different values of spacing distances dy ,r between them.
Normalized squared amplitude of (d) the first three odd-numbered communication modes and (e) the last mode of each of the first three steps of the red
dashed line of (b). In each sub-figure in (d) and (e), the source eigenfunction is shown on the left and its associated receiving eigenfunction on the right.

the region after the mode j = 1200, we find weakly coupled modes
whose singular values decrease in a rapid fall-off fashion. This kind
of fall-off, which limits the number of usable modes, is a univer-
sal behavior that was recently understood as following from the
onset of a tunneling behavior of waves in and out of volumes [64].
Finally, Fig. 2(c) shows the coupling strengths |s j |

2, in order of
decreasing size of their magnitude of the distribution of Fig. 1(c),
on a logarithmic scale for different values of the spacing distance
dy ,r between the horizontal planes. Notice that the number of
well-coupled modes decreases for smaller values of dy ,r , imposing
a fundamental constraint on the number of usable modes in this
distribution.

The profiles of the source and receiving eigenfunctions asso-
ciated with the distributions listed in Table 1 do not correspond
to any of the standard beams (e.g., Bessel and Airy beams). To
illustrate this, in Fig. 2(d), we show the normalized intensity profile
of the first three odd-numbered communication modes associated
with the red dashed curve of Fig. 2(b) at the source plane (on the
left of each sub-figure) and at the receiving horizontal plane (on the
right). As expected for this distribution, the intensity profiles of
the source eigenfunctions are symmetric with respect to the y s = 0
axis, where the horizontal receiving plane is located. Additionally,
the intensity profiles of the modes give us insight to understand

the coupling strength curve of this distribution. Specifically, the
width of each step determines the number of effective transverse
modes along the receiving plane xr direction, while the number of
steps corresponds to the number of effective longitudinal modes
along the zr direction. This is illustrated in Fig. 2(e), which shows
the normalized intensity profile of the last mode of each of the
first three steps of the red dashed curve of Fig. 2(b). Essentially,
obtaining high longitudinal spatial frequencies in the horizontal
receiving plane requires modes with lower coupling strengths.
A complete analysis of the number of effective modes and how
they are related to the parameters of the distribution of Fig. 1(a) is
provided in Supplementary Note 3 of Supplement 1. This section
also analyzes the intensity profiles of the communication modes
and their coupling strengths for the other distribution examples of
Fig. 1. Additionally, the intensity profiles of the first well-coupled
communication modes associated with these distributions are
shown in Visualization 1, Visualization 2, and Visualization 3.

Next, we structure light waves in the receiving spaces of the dis-
tributions shown in Figs. 1(b)–1(d). We begin by representing the
target profile as a vector of amplitudes at the receiving points. This
vector is then decomposed onto the receiving space basis. Finally,
at the source space basis, we compute the corresponding source
function by superposing the source components that generate each

https://doi.org/10.6084/m9.figshare.29931104
https://doi.org/10.6084/m9.figshare.28400045
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receiving contribution of the target profile. This concept of syn-
thesizing light waves using communication modes, first proposed
in Ref. [32], is detailed in Section 6. Since the required source func-
tion |9T〉 is inversely proportional to the singular values s j , adding
weakly coupled modes results in extremely large source ampli-
tudes. This hinders the efficient generation of the resulting light
wave, in practice, due to limitations imposed by the SLM’s phase
modulation depth, as will be shown in Section 4 . Nevertheless, the
use of weakly coupled communication modes has been related to
passing conventional diffraction limits [63], being consistent with
sub-diffraction imaging, which requires large source amplitudes
to image sub-diffraction features [65]. Therefore, for a physically
realizable source solution, we incorporate only the well-coupled
communication modes in the summation of Eq. (3), identified
here as the first M communication modes, ranked by decreasing
order of their coupling strengths. The value of M for a given distri-
bution is roughly estimated from the rapid fall-off in the coupling
strength curve. Equivalently, as the sum of the coupling strengths
is finite, bounded by a sum rule S (see Supplementary Note 1 of
Supplement 1), we can choose a number M of modes that nearly
provide S, avoiding the incorporation of modes ( j > M) with neg-
ligible coupling strengths. As noticed in Ref. [32], the evaluation of
this number M of well-coupled modes gives us a definition of the
number of effective degrees of freedom within a receiving space to
construct feasible 3D light waves in that space.

Projecting the entire content of the target amplitude profile
onto the range of well-coupled modes of the receiving space set
is generally not possible for the distributions of Figs. 1(b)–1(d)
when the target phase is a free parameter. Thus, to obtain a physi-
cally realizable source function, we need to specify a phase front
to modulate the target amplitude profile. Here we adopt a phase
front of the form exp(iQzr ), in which Q is a positive real con-
stant with Q ≤ k = 2π/λ. We do this because we understand
that any wave we generate from our source plane is physically
going to have predominantly some underlying phase variation
along the longitudinal direction, and so we can only reasonably
generate patterns that have a similar underlying phase variation.
This plane wave phase front is the simplest one that provides this
variation since now the waves from the source are subjected to a
propagation with longitudinal wavenumber given by the param-
eter Q, and thus with an angle of θ = cos−1(Q/k) with respect
to the longitudinal direction. With this phase front, the inten-
sity profile of the source function is localized around the vertical
positions YT,s =±(L + Zr /2) tan[cos−1(Q/k)] in the source
plane. To illustrate this procedure, we consider the configuration
of the receiving and source space depicted in Fig. 3(a), parame-
terized according to Table 1, and the binary 2D image shown in
Fig. 3(b) as our target receiving intensity profile |8T |

2. Adopting
Q = 0.95k, the entire content of this target profile is projected
onto the range of the first 1200 coupled modes, as depicted in
Fig. 3(c), which shows the inner product coefficients between
the receiving eigenfunctions {|8R, j 〉} and the modulated target
profile 8T exp(iQzr ) by the blue dots. For reference, we also
show in this plot the coupling strengths |s j |

2 (in arbitrary units)
in a red dashed line. Figure 3(d) shows the squared amplitude
of the required source function |9T |

2 and the resulting wave
intensity |φ|2, calculated using the first 1200 modes. This value
of Q yields YT,s =±52.59λ, which corresponds to the vertical
positions occupied by the source function (≈±Ys /4) and results
in a fully reconstructed profile in the receiving horizontal plane.

Finally, notice that the incorporation of the phase front exp(iQzr )

increases the extent 1Y of the source profile along the source
plane y s dimension. As reconciled with the intensity profiles of the
modes of this distribution at the source plane, a higher extent along
the source plane y s dimension creates waves with high longitudinal
spatial frequencies in the receiving space. In Supplementary Note
4 of Supplement 1, we relate the extent 1Y of the source profile
to the characteristic minimum length of the wave field (minimum
spot) 1z that we can create along the longitudinal direction at
a certain position z0 from our finite source transverse aperture.
Additionally, the incorporation of the plane wave phase front is
analyzed for different values of Q in Supplementary Figure S9 of
Supplement 1.

3. EXPERIMENTAL GENERATION

We optically reconstructed light waves at operating wavelength
λ= 532 nm using a phase-only reflective SLM (SANTEC 200)
with a pixel pitch δ = 8 µm. Because the SLM only modulates the
phase of the incident wavefront, it cannot act as the source plane of
the configurations of Fig. 1, which assume self-propagating light
from the source. Instead, the SLM serves as a platform where the
resulting waves from the complex amplitude source profiles are
encoded into a phase mask. In this encoding process, we aim for a
high reconstruction accuracy of the wave solutions computed via
SVD. To encode on the SLM the wave solutions computed from
the distributions listed in Table 1, first, as illustrated in Fig. 3(e), we
compute the resulting wave at the plane zs = L , i.e., φ(xs , y s , L)
from the required source function using Eq. (4), and we scale it
up to match the utilized SLM display area. We then convert its
complex field into a phase-only mask using a phase CGH encoding
algorithm. Finally, we add a blazed grating profile to the phase-only
mask to operate off-axis, separating the hologram’s spectrum from
the SLM zeroth diffraction order in k space. Our experimental
setup is shown in Fig. 3(f ). The laser beam is first expanded and
collimated to illuminate the utilized SLM display area as a uniform
plane-like wave. After the SLM, we place a standard 4 f lens system
whose purpose is to recover the complex field φ(xs , y s , L) at
the front focal plane of the second lens. The first lens performs a
Fourier transform operation, projecting the phase mask spectrum
(which contains both amplitude and phase information) at the
Fourier plane, i.e., at the mutual focal point plane of the two lenses.
In this plane, we place an iris to spatially filter the desired spectrum,
encoded on the first diffraction order of the incoming beam, while
blocking the undesired zeroth diffraction order in k-space. The
second lens performs an inverse Fourier operation, transforming
the filtered spectrum into real space, recovering the complex field
φ(xs , y s , L) in the front focal plane of this lens. Finally, using a
CCD camera mounted on a translational stage, we record trans-
verse intensity distributions of the resulting wave at different zr

positions. Stacking these transverse distributions, we obtain the
optical reconstruction of the resulting wave intensity.

We implemented a phase CGH encoding algorithm that trans-
forms an input scalar complex field into a phase CGH with high
accuracy using a lookup table. Its methodology is described in
Ref. [66] and in Supplementary Note 5 of Supplement 1. The
high performance of this algorithm comes at the expense of pro-
viding a relatively low diffraction efficiency, as the intensity of the
high-order diffraction contributions of the phase mask spectrum is
significantly reduced (see Supplementary Note 5 of Supplement 1).
However, from the output of the 4 f system onward, the energy

https://doi.org/10.6084/m9.figshare.29931104
https://doi.org/10.6084/m9.figshare.29931104
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https://doi.org/10.6084/m9.figshare.29931104
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Fig. 3. Optical reconstruction of structured light waves based on communication modes using a reflective phase-only SLM. For a given source and
receiving space configuration (a), we compute the associated communication modes and their coupling strengths. (b) We define a target light intensity dis-
tribution (c) and project it onto the set of receiving eigenfunctions. (d) We compute the required source function9T at the source plane and its associated
resulting waveφ within the receiving space. (e) Encoding process: we evaluate the resulting wave from the required source profile at the plane zs = L , scale it
up to match the utilized SLM display area, and convert its complex field distribution into a phase-only CGH by means of a phase CGH encoding algorithm.
(f ) Optical setup: after the SLM, we employ a standard 4 f lens system to recover the complex field φ(x s , y s , L) at the front focal plane of the second lens.
At the Fourier plane (mutual focal point plane of the two lenses), an iris is used to filter the desired spectrum (encoded on the first diffraction) and to block
the unmodulated SLM zeroth diffraction order. A CCD camera on a translational stage records transverse intensity distributions of the resulting wave at
different longitudinal positions.

is transmitted through the optimal communication channels.
Finally, the reason why we encoded the resulting wave at the plane
zs = L instead of directly encoding the required source func-
tion (at the plane zs = 0) is because the source functions related
to the distributions listed in Table 1 are generally complicated
complex-valued functions with high variations and oscillations in
amplitude. When these functions are implemented in the phase
mask and encoded on the SLM, they are not fully reconstructed
after the 4 f system due to the finite SLM pixel pitch. In contrast,
the resulting wave at zs = L is a smooth function with lower varia-
tions in amplitude, leading to high-accuracy reconstruction by the
SLM. In Supplementary Figure S11 of Supplement 1, we encode
the resulting wave at different longitudinal distances from the

source plane and evaluate the mean squared error between that
wave and the one recovered after the 4 f system. Encoding the wave
solution at the plane zs = L onto the SLM enables high-fidelity
reconstruction of the SVD-computed solution, with minimal
mean squared error.

Because the wave solutions computed from the distributions
listed in Table 1 are scaled up to match the utilized SLM display
area, the 1:1 aspect ratio of our original (simulated) light wave in
the receiving space is not preserved in our optically reconstructed
light waves. This results in waves that are substantially stretched
along the propagation direction. This is not a fundamental limita-
tion of our approach but rather a technical one because of the use
of an SLM, which has a large pixel pitch compared to the incident

https://doi.org/10.6084/m9.figshare.29931104
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wavelength (δ ≈ 15λ). Metasurfaces, with their subwavelength
pixel pitch, would allow us to encode the wave solution without
any magnification, thus preserving the original 1:1 aspect ratio.
However, a drawback of a metasurface is its lack of tunability.
Different metasurfaces need to be fabricated to create distinct
target intensity profiles. In our implementation, the utilized
SLM display area was set to occupy 600 pixels along the vertical
direction, resulting in a magnification of 9007.519λ/Ys for the
encoded CGH. For details on the aspect ratio of our reconstructed
light waves and how a 1:1 aspect ratio could be achieved by means
of a de-magnification 4 f system, see Supplementary Note 6 of
Supplement 1. Finally, since the computation time and memory
storage of the communication modes associated with our consid-
ered distributions described by Table 1 are already quite large, as
presented in Table 2, performing the SVD computation for scaled
versions of these distributions becomes highly unfeasible. To give
a perspective, scaling the dimensions of the distribution shown in
Fig. 3(a) by a factor of α = 40.5 to match our utilized SLM display
area leads to an SVD problem with an estimated number of almost
1,619,000 well-coupled modes, requiring a memory storage of
around 132 TBytes (see Supplementary Note 7 of Supplement 1
for details).

4. RESULTS

First, examples of different 2D structured light waves, using the
first 1200 communication modes associated with the distribution
of Fig. 3(a), are presented in Fig. 4. On the left of each sub-figure,
we show the target receiving amplitude |8T |; in the middle, the
simulated resulting wave intensity |φ|2 in the receiving horizontal
plane; and on the right, the optically reconstructed wave using the
optical setup of Fig. 3(f ). In all the examples, the target profile is
modulated by a phase front exp(iQzr ) with Q = 0.95k, leading
to source functions localized around≈±Ys /4 at the source plane.
Figures 4(a) and 4(b) exhibit examples of target binary images
containing bright digits on a dark background, while examples
involving dark geometric shapes on a bright background and a
checkerboard pattern are shown in Figs. 4(c) and 4(d), respectively.
In Table 3, we evaluate metrics to quantify the reconstruction
quality of these measured holograms, compared to their target
profiles, including mean squared error (MSE), Michelson contrast,
uniformity of the illuminated regions, and signal-to-background
ratio (SBR). The diffraction efficiency of these holograms is also
presented in Table 3. Notice that our approach provides recon-
structed patterns with great fidelity, strong contrast, and good
uniformity. In particular, our measured holograms present MSE
values lower than those of holograms created from the HoloTile
modality, such as the TMultiplexing-Tile hologram applied to
volumetric printing in Ref. [67], which has an MSE around 0.09
for the reconstructed profile of a letter “A.”

An example involving a target grayscale image containing
features with high spatial frequencies is provided in Fig. 4(e).
Notice that the fine rectangular features located in the middle
of the receiving plane (which represent the raindrops) present a
better reconstruction than the rectangular features located at the
end of the receiving plane (which represent the sun rays). This
phenomenon is intrinsically due to the finite dimension Ys of
our source aperture and is independent of the modes (or basis
functions) used to create the structured light wave. In particular,
the characteristic minimum length of the wave field 1z that our
(finite) source aperture can create varies along the longitudinal

MeasuredSimulatedTarget
Intensity ( a.u.)

(a)

(b)

(c)

(d)

(e)

Fig. 4. Examples of 2D structured light waves projected in a hori-
zontal receiving plane. These waves are computed from the first 1200
well-coupled communication modes associated with the source and
receiving space configuration of Fig. 1(b) with parameters listed on
Table 1. From left to right: target receiving amplitude, simulated resulting
wave intensity at the receiving horizontal plane, and optical reconstruc-
tion of the resulting wave using a phase-only SLM. (a), (b) Bright digits
on a dark background with distinct orientations. (c) Dark geomet-
ric shapes on a bright background. (d) A checkerboard pattern. (e) A
grayscale image. Since the wave solutions are scaled up to match the
utilized SLM display area, the 1:1 aspect ratio of the simulated waves is
not preserved in the measured results. Their measured dimensions are
Zr × X r = 49.7 mm× 1.63 mm.

position zr of the receiving space, being higher for points located
further away from the source plane (Supplementary Note 4 of
Supplement 1). To fully resolve these fine features in our wavefront
shaping method, we would need to consider a source plane with a
higher dimension Ys and with a denser array of source points for
this additional increment in the dimension Ys to satisfy the crite-
ria for the source spacing distances (Section 2 of Supplement 1).
Additionally, the target profile must be modulated by a plane wave
phase front exp(iQzr )with a lower value of Q so that the required
source function has a higher extent at the source plane.

Next, we present examples of 3D structured light waves com-
puted using the first 3500 modes associated with the source and
receiving space distribution of Fig. 1(c), parameterized as listed
in Table 1. First, we project simultaneously eight distinct digits,
from “1” to “8,” assigning each digit a binary amplitude profile
to one of the eight inner horizontal receiving planes. In Fig. 5(a),
we show the target intensity profile |8T |

2 and the intensity of
the corresponding required source function |9T |

2. The optical
reconstruction of the resulting wave implemented on the SLM is
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Table 3. Accuracy and Reconstruction Quality
Metrics of the Measured 2D Holograms of
Figs. 4(a)–4(d) and Their Diffraction Efficiency

a

Metrics Fig. 4(a) Fig. 4(b) Fig. 4(c) Fig. 4(d)

Mean squared error (MSE) 0.0256 0.0466 0.0475 0.0388
Contrast:
(Imax − Imin)/(Imax + Imin)

0.994 0.996 0.9736 0.991

Mean value of bright
regions: Īb

0.923 0.867 0.964 0.933

Uniformity of bright
regions: 1− σIb / Īb

0.757 0.711 0.789 0.7414

Mean value of dark regions:
Īd

0.0561 0.0969 0.163 0.0881

Signal-to-background ratio
(SBR): Īb/ Īd

16.55 8.95 5.90 10.59

Diffraction efficiency 2.11% 2.66% 4.12% 2.85%
aBright regions (i.e., illuminated regions) are defined as the ones in which the

normalized measured intensity is I ≥ 0.5. Similarly, dark regions are those in
which I < 0.5. The parameter σIb

refers to the standard deviation of the bright
regions.

shown in Fig. 5(b), in which we can clearly identify and distinguish
all the eight digits, indicating the low level of cross-talk between
their reconstructed intensity profiles. This can also be noticed from
the measured transverse planes of the optical reconstruction as seen
in the same figure at the mid (zr = Zr /2) and quarter (zr = Zr /4)
longitudinal distances. In Fig. 5(c), we compare the measured and
simulated results of the structured light wave intensity in all the
eight inner horizontal receiving planes. The reconstructed digits
have great fidelity with a mean MSE of 0.0556, a mean Michelson
contrast of 0.944, and a mean uniformity of the illuminated
regions of 0.7345. See Supplementary Note 8 of Supplement 1 for
the values of these metrics in each horizontal plane. The diffraction
efficiency is 1.66%. An additional example of a structured light
wave involving the projection of eight layers of an ellipsoid is pro-
vided and discussed in Supplementary Note 9 of Supplement 1. In
both cases, the phase front applied to the target profile is exp(iQzr )

with Q = 0.95k.
The example of Fig. 5 highlights the strength of our approach

in generating structured light fields with continuous depth of field,
high contrast, and minimal cross-talk across eight horizontally
spaced planes, each separated by just 0.359 mm in our optical
setup. In contrast, shaping light fields across the same planes using
the light-sheet wavefront shaping method results in significant
cross-talk between adjacent planes. This comparison is detailed
in Supplementary Note 10 of Supplement 1, where we evaluate
the level of cross-talk in all the eight horizontal planes shown in
Fig. 5. For a fair comparison, the light sheets were designed using
the same optimized parameters reported in Ref. [57], with CGHs
generated via the same SLM and phase CGH encoding algorithm
employed in our method. To substantially reduce cross-talk in the
light-sheet approach, the planes must be spaced approximately
3 mm apart at the SLM plane (see Ref. [57]). However, this spacing
constraint limits the number of projectable planes to just four, due
to the 9.6 mm aperture size of the SLM. In contrast, our method
achieves a significant improvement not only by minimizing cross-
talk but also by enabling the projection of more image planes
within the same aperture. Specifically, our system reconstructs
eight cross-talk-free planes over a vertical range of 2.5 mm (3.2
planes/mm), compared to only four planes over 6.75 mm (0.59

planes/mm) in the light-sheet method, demonstrating enhanced
vertical resolution in 3D holography.

Since the feasible 3D light waves that can be constructed
in a given receiving space are constrained by the number of
well-coupled modes supported in that space, we can determine
fundamental constraints in 3D distributions that hinder the
reconstruction of desired intensity profiles. For the distribution
of Fig. 1(c), a constraint is imposed by the spacing distance dy ,r

between the horizontal planes, as smaller values of dy ,r lead to
a reduced number of well-coupled modes [see Fig. 2(c)]. For a
separation distance of dy ,r = 7.5λ, the target intensity profile
applied in the example of Fig. 5 is not accurately reconstructed
using only the well-coupled modes. In Supplementary Figure S17
of Supplement 1, we show the source function intensity profile and
the simulated resulting wave computed from the first 3500 modes
and the first 4500 modes. Notice that, although the incorporation
of weakly coupled modes provides a full reconstruction of the
target profile in simulation, the intensity of the source function
acquires extremely high intensity variations, with its peak value
reaching more than 2200 times higher than that in the receiving
planes. The SLM is not able to recover the resulting wave from this
high-energy source function after the 4 f system due to its finite
phase modulation depth, leading to reconstructed profiles with
significant distortions, as shown in Supplementary Figure S18 of
Supplement 1. Ultimately, creating highly densely packed 3D light
structures (very small dy ,r values) requires passing conventional
diffraction limits and thus the use of sub-diffraction systems for a
full reconstruction.

Finally, an example of a structured light wave projected onto the
cylinder surface of Fig. 1(d) and parameterized as listed in Table 1
is presented in Section 11 of Supplement 1. The generation of light
waves along a body with rotational symmetry using a multi-plane
approach [68] leads to reconstructed waves with low resolution
along the longitudinal direction. Our results, on the other hand,
show reconstruction of an arbitrary intensity profile with continu-
ous depth of field. Moreover, the intensity distribution of the light
wave is well localized around the cylinder surface with a complete
dark intensity around the optical axis over the entire longitudinal
distance of the cylinder.

5. DISCUSSION

We introduced and experimentally verified a new approach to
holography based on a linear superposition of the optimum
orthogonal communication modes connecting a source plane and
a receiving volume. Each communication mode encompasses a
pair of eigenfunctions, one in the source space and another one
in the receiving space, both computed by means of singular value
decomposition modal optics. The high connectivity provided by
these modes renders 2D and 3D structured light waves with highly
localized energy distribution and a minimal level of cross-talk.
As a consequence, these waves can be perceived from different
angles, and thus are potentially employed in volumetric displays
and AR/VR headsets. Additionally, our method could be favored
in applications that require controlling light’s intensity within a
3D domain with high precision and contrast, notably in materials
processing, optical trapping, and bioprinting [69]. Other potential
applications include its implementation in point spread func-
tion engineering to improve the imaging performance of optical
systems [70,71].
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Fig. 5. Example of a 3D structured light wave projected in a set of uniformly spaced horizontal receiving planes. Projecting eight digits simultaneously
at the eight inner horizontal receiving planes of the source-receiving space system of Fig. 1(c) with parameters listed in Table 1. (a) Target receiving profile
|8T |

2 intensity and corresponding required source function |9T |
2 intensity computed using the first 3500 modes. (b) Optical reconstruction of the result-

ing wave using a phase-only SLM within a volume containing the horizontal receiving planes and at transverse planes located at the mid and quarter longitu-
dinal distances, zr = Zr /2 and zr = Zr /4 (Zr : longitudinal length of the planes). The wave solution is scaled up to match the utilized SLM display area and
thus the 1:1 aspect ratio of the simulated wave is not preserved in the measured results. Measured spacing distance between the horizontal planes is dy ,r =

0.359 mm, while their dimensions are Zr × X r = 54 mm× 1.20 mm. (c) Measured and simulated results of all eight reconstructed digits.

Our method reveals fundamental constraints in 3D field distri-
butions that limit the reconstruction of a desired intensity profile,
and, therefore, it can be used as a framework to tell us if a given
3D field distribution can be constructed or not. By projecting the
target field onto the communication mode basis of the receiving
volume, we assess whether it can be practically generated. Fields
that require significant contributions from weakly coupled modes
are infeasible, as they demand excessively large source amplitudes.
This limitation stems from the rapid, quasi-exponential decay
of coupling strengths—a fundamental property of wave physics
associated with wave tunneling [64]—and is independent of
source–receiver geometry. As a result, only well-coupled modes can
be effectively used to generate fields within the volume. It is worth
noting that once the communication modes are precomputed and
stored, all subsequent calculations of the necessary source field and

its resulting wave are done via linear matrix–vector multiplica-
tions and require no iterative refinement as we change the target
profile. For the 3D light wave of Fig. 5, the time to compute its
computer-generated hologram (CGH) is around 103 s, which can
be further reduced using GPUs. By comparison, in the light-sheet
method, the time to compute the CGH of the example shown in
Supplementary Note 10 of Supplement 1 is around 8 min.

A limitation of our approach, on the other hand, is the high
computation cost of initially calculating the communication
modes for a given distribution. This may limit its applicability
in scenarios where the receiving space itself is dynamic. The low
diffraction efficiency, due to the use of a phase CGH encod-
ing algorithm with low modulation depth, can also limit some
applications. This can be mitigated by deploying another algo-
rithm that balances diffraction efficiency and reconstruction

https://doi.org/10.6084/m9.figshare.29931104
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accuracy. We also note that our method relies on prior knowledge
of Green’s function between the source and receiving volume. In
principle, for linear complex media, source and receiving modes
differ from free-space modes by amplitude and phase shifts. These
can, in theory, be determined via optimization techniques, such
as power-maximizing orthogonal functions, as shown in planar
systems in Ref. [72]. We reserve such analysis for another future
work.

Creating time-reversed optical waves, with arbitrary amplitude,
phase, and polarization at every point in space and time, can be
used to control both linear and nonlinear optical phenomena [73].
Our approach can be extended to create those types of waves by
adopting full time-dependent dyadic vector potential Green’s
function for the coupling operator [63]. In this case, metasurfaces
[74,75] are an ideal wavefront shaping platform, as they offer
multi-wavelength control and polarization transformations at
the nanoscale [75]. In addition, the sub-wavelength regime of the
flat-optics platform is also beneficial in creating reconstructed 3D
light waves with higher resolution than the SLM. This extension
can potentially unlock new applications in digital holography and
structured light, as well as light–matter interaction, classical and
quantum communications, and beyond.

6. METHODS

A. Communication Modes

The optimum orthogonal communication channels (modes)
between two spaces using singular value decomposition were
introduced in the optics literature in 1998 [59] and have led to
many studies on how to maximize information transfer in wireless
communications, optical fibers, and optical systems [60,63,76].
Notably, SVD modal optics has recently enabled integrated pho-
tonic processors to determine the most efficient waves to send
information through arbitrary and scattering optical media [72],
as theoretically predicted in Ref. [77]. In diffractive optics, the
concept of communication modes was employed to analyze the res-
olution of one-dimensional optical systems in the Fresnel regime
[61] and was also applied to an axicon geometry to study axial
resolution [62].

In SVD modal optics, the source and receiving spaces are math-
ematically viewed as Hilbert spaces (HS and HR ) that host the
possible source and receiving eigenfunctions, |9S〉 and |8R 〉, as
illustrated in Fig. 1(a). The connection between these spaces is
established through a coupling operator GSR, which for free-space
scalar waves can be described by Green’s function [59]:

G S R,λ(rR , rS)=−
1

4π

exp(ik|rR − rS |)

|rR − rS |
, (1)

which maps a position rS at the source space to a position rR at the
receiving space for a given operating wavelength λ. Such a scalar
Green’s function is usually sufficient for describing an electromag-
netic wave of a single polarization. For cases of tight focusing or
near-field behavior, or to use this approach for full vector fields, a
similar approach can be taken using full dyadic Green’s function
[63]. In Eq. (1), k = 2π/λ is the wave number, and a time har-
monic dependence exp(−iω0t) is assumed, with ω0 = kc being
the operating angular frequency and c the light speed in free space.
Following Ref. [63], we presume that the source space consists of
NS source points located at positions rS, j ( j = 1, . . . , NS ) while
the receiving space contains NR receiving points at positions rR,i

(i = 1, . . . , NR ), allowing us to describe GSR as a NR × NS matrix:

g ij =−
1

4π

exp(ik|rR,i − rS, j |)

|rR,i − rS, j |
. (2)

The eigenfunctions |9S〉 and |8R 〉 are found by solving the
SVD of the coupling operator matrix GSR of Eq. (2), which
is equivalent to solving two eigenproblems, one associated
with the operator G†

SRGSR and another one associated with
GSRG†

SR, leading to a one-to-one (injective) relation between
these eigenfunctions and allowing us to establish the concept
of a communication mode: a pair of eigenfunctions, one in the
source space |9S, j 〉 that couples to another one in the receiving
space |8R, j 〉, with the coupling strength of this connection given
by the squared absolute value of the singular values s j of GSR,
i.e., |s j |

2 (see Supplementary Note 1 of Supplement 1). Each of
these eigenfunctions is mathematically a column vector whose ele-
ments are the amplitudes at each different point in the appropriate
space. Notice that G†

SRGSR, described by a NS × NS matrix, is an
operator within the source space, mapping a vector in HS back to
another vector in HS . Similarly, GSRG†

SR is an operator within the
receiving space, mapping from HR back into HR , being described
by a NR × NR matrix. Since each of these two operators is a pos-
itive Hermitian operator, its eigenfunctions (or eigenvectors) are
orthogonal and form a complete set for its Hilbert space, while its
eigenvalues, given by the coupling strengths |s j |

2, are positive real
numbers. Moreover, the sets {|9S, j 〉} and {|8R, j 〉} constitute the
optimum possible orthogonal channels connecting the two spaces
in terms of the magnitude of the inner product. In other words,
each receiving eigenfunction |8R, j 〉 corresponds to the largest
possible magnitude of the wave function its associated source
eigenfunction |9S, j 〉 can create at the receiving space. For further
details about this maximization property, see Supplementary
Note 1 of Supplement 1. Additionally, if the points are sufficiently
dense in both spaces, this approach correctly converges toward the
corresponding continuous functions and spaces, with convergence
guaranteed by the Hilbert–Schmidt nature of Green’s function
operators for waves [63].

B. Synthesis of Light Fields

Given a target profile |8T〉, i.e., a vector of amplitudes at the receiv-
ing points, the required source function |9T〉 (vector of amplitudes
at the source points) is determined by [32,63]

|9T〉 =
∑

j

1

s j
〈8R, j |8T〉|9S, j 〉, (3)

where 〈8R, j |8T〉 is the projection of the target profile onto the
set of receiving eigenfunctions (see Supplementary Note 1 of
Supplement 1). The resulting wave created by the source function
|9T〉 at a position r away from the source space is given by the sum
of all the spherical waves emitted by the NS source points weighted
by |9T〉 [63]:

φ(r)=−
1

4π

NS∑
q=1

exp(ik|r− rS,q |)

|r− rS,q |
hq , (4)

where hq is the q th component of |9T〉, such that |9T〉 =

[h1 h2 . . . h Ns ]
T .
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C. Details on the Experimental Setup

We employed a 532 nm laser source, the Novanta Photonics
Ventus Solid State CW laser. The reflective SLM is a SANTEC
200, with 1920× 1200 pixel resolution and 8 µm pixel pitch.
Before the SLM, the laser passes through a linear polarizer, then
is focused by a 40X objective lens, spatially filtered by a 50 µm
pinhole, and finally expanded and collimated using a 750 mm
lens, resulting in a beam width (1/e 2) diameter of approximately
11 mm. This beam expander system provides a near-flat beam
profile impinging on the utilized SLM display area, as our CGHs
are designed under the assumption of a uniform illumination. The
employed CCD camera is aµEye UI224SE-M, with 1280× 1024
pixel resolution and 4.65 µm pixel size, mounted on a Thorlabs
LTS150 translational z stage. The transverse profiles were recorded
at each z plane with increments of 0.25 mm along the propagation
direction.
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