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ABSTRACT, We show that if E is a reflexive B-space with a.p., then the
reflexivity of P(mE) is equivalent to the coincidence of P(mE)
wvith its subspace of compact polynomials, If E has a Schauder
basis, then the result can be reformilated as follows: P(DE)
ias reflexive if only if P(mE) adnits a special Schauder basis,
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1. Introduction

1n an earlier paper [1] we studied the spaces [“(El,,,,,Em;F) and
LI(EL""'En;F) of all continuous m-lincar mappings A ; Elx,..xEm-o F, respectively
of Nuclear and Integral type, where El""’Em and F denote B-spaces,

We proved the following theorem:

Theorem A: Let E,,...,E, be B-spaces vhose duals l-:;,_,.,r:"Ill have the Radon-
Nikodym property., Then for every B-space F, the spaces I.N(El,...,Em;I-‘) and

LI(B_I.""’EII;F) are isometric,

In this paper we apply mainly the sbove theorem in order to obtain a necessary
and sufficient condition for the reflexivity of P(mE), the space of m-homogeneous
continuous polynomials on E,

The linear version of theorem A is in fact equivalent to the Radon-Nikodym
property as esteblished in [1). For other variants of theorem A in the linear
case we refer to Diestel and Uhl (6], For terminology and results on the multi-
linear and polynomial case of nuclear type we refer to Dincen {7), For
details and results on tensor products (m-symmetric) we refer to Ryan (14].

We introduce now the terminclogy and some technical lemmas, If

E, «E,=...=E =EandF are B-spaces, L(E,...,E;F) « L("E,F) denotes the

B-spaces of continuous m-linear mappings A : Ex,, .xE = F, with the nom
A e sup (JJA(xy,. . x ) X, € E ilill <1,1< 3 <m. L("E) denotes L(™E,K)
where K »« R or C, Ls(mE,F) denotes the space of all mappings A € L(m'E,F) that

are symmetric, P(nE,F) denotes the space of all continuous, m-homogeneous

polynomials from E to F, We recall that an element P ¢ P("’E,F) is defined as
P(x) = A(x,...x) for a unique elcment A € L’(nﬁ,l") and in this case we denote

PaA oOn P(nE,F) we consider the norm induced by L(mt-:,:-‘)_
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Definition (a): A mapping A € L(mE,F) is said to be nuclear if there are

-
sequences (wjn)n inE ,1<)J<mand (Cn) in F with

Elllclnll eos llogll llell <= such that
N

A(xlptot,xn) -Elwln(xl)-nuwm(xm)cn fOI‘ all (x]..-oq ’xﬂ) e k...xE.
m
Let LN(BE,F) denote the space of all nuclear m-linear mappings A € L(EE,F)

endoved with the nuclear norm:

-
Al = iaf El oyl e lloggll lic I, vhere the infimm ts teken over ald
sequences (q’dn)n and (Cn) which satisfy the definition,

Similarly, we define a polynomial P € P(mE,F) to be muiclear if there are

*
sequences (“’n) in E and (Cn) in F with

- -

Zlle "m lc]l <« such that P(x) « o (x)™_ for all x € E,
n nl . n n

n=1 Nml

PN(nE,F) denotes the space of all nuclear polynomials endowed with the nuclear

oorm:

-
fielly = inr 21 II¢n“m lic |l : ; where the infisum is taken over all sequences
Thae
(“‘n) and (cn) which satisf{y the definition,

Definition (b): A mapping A € L(mE,F) is said to be integral if there exists
4 regular countably additive F-valued Borel measure G, of bounded variation, on

.
the product UL, « U_ x...xU where the unit ball UE’ of the dual space E 1is

E« E» E#?
endowed with the weak * topology, such that

A(xl....,xn) - r 01(!1)...Qm(xm) 4G (,1,...,0-), for all (xl,...,x.) € Ex,..xE,

Iy

Ew
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Let LI("E,F) denote the space of all integral m-linear meppings A€ L(HE.?),
endoved with the integral norm:

“A"I « inf |G] (li;*)', vhere the infimum is taken over all vector measures G-
satiafying the definition,

A polynoadel P € P(mE,F) is said to be integral if P can be vritten as

P(x) = .[U o(x)" dg (p) for all x € E, where g isan F-valued vector

measure defined on UE with the same properties as berore.

Pl(nE,l?) denotes the space of all integral polynomials endowed with the

integral nor-'.
lIefl; - m.lgl(UE‘) vhere the infisum is taken over all vector measures

& satisfying the definition,
Remark: The definition above was introduced by S. Dineen in (8], and only -
recently ve introduced m-linear mappings of integral type which makes proposition

2 belovw necessary,
To establish the result stated in the beginning, we need the following

polynomial version of theorem K

Proposition 1: Let E be a B-spece such that E. has the Radon-Nikodym property,

Then PH(.E.F) - PI(.E'”' with equivalent norms, for every positive integer m and
every B-space F,
We need some technical results

Proposition 2: (a) Let P € P("E,F) and A € L*("E,F) such that A = P. Then
A€ Li("E,r) ana A, < IF).

(v) Let A ¢ LI('t,r) axdPal, ThenP € PI('t,r) and

el < o® fan,.



-265~

Proof: (a) Let P ¢ PI(nE,P), P has the representation

F(x) e ,[UE’ (x,0)" dglp).

IfAE L'(mE,F) such that A « P, by applying the polarization

formyla, we obtain:

A(xppene,x ) = IUE' (x;) ... (%0} d8lq).

Nov  consider the mapping:

J i Up, = UL, given by J(g) = (p,...,0) end define  measure § on the Borel
algebra n(u:,) of U:', by &H) = g(37X(H)), for every H € B(U;,).

We now calculate the variation [g| of &.
_ |-8'|.(ff;.) = sup ( ?I]E(Ai)ll : (A) & .finite partition of UR,) a
- sup [?IIB(J'I(Ai)II 2 (A) 1< el (Ug).

On the other hand:

&l (Uz,) = sup ( Z|la(B))]| : (B,) finite partition of Ug,) =
« = (Tls BN = (8) .. ) 2[RI,
Thus, we have g of bounded variation and |§| = |g|. Now, since

glll) m 04T HN 8 (U:,) = ¢, 4 denotes the diagonal, it follows that

[ (rop) oo (x 0 diloyse.0,) =
E*»

- .fA(U; ) (2, ;) ... (‘.n;) G(ol....,.-) =
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- IUE' (Il,@) ) (xﬂm) dE(Q)-cllw) =

- I"E. () wee (X0) d8lp) = AR peeei®y)e

Furtherzore, we have |[All; < ||T]l,.

(b) Let A € LI(%,F). There exists a vector measure G :

such that

A(xlp---rx") = (xlﬂl) ese (xmﬂm) ‘n(¢l'---ﬂn)o

Uge
Therefore

P(x) = A(X,...,%) = ]'Um (X19y) oee (Xrpp) Glogsenmmy).
E*

By the polarization formila we can write:

m
(‘:Ol) vee (xﬂm) = L = cl"'cm (x, ?lfioir‘ -

mi2” e et1
1<i<n
n ) m
« — L e,..t_(x,5 T e.0,)
I S
Icicu
Therefore

]
P(x) =~ Z ,...L (x, 2T t,0)" Glo, - w).
-:21 £istl 1 n[ . [ ] 171 o, 0
1i<n

n(u;.) ~F
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-

Now for eech (cl,...,em). ve define a mapping Jcl G- : lf;:" - UB" vy

m
z Ciqzi, and also we define a measure
i1

1
Jcla . -Cn(vl,. se 'vm) - o

g : B(U )~ F by
cl...cn E+

-1
“cl...ca(n) = G(J €yaeeE n(B)) for every B € B( ¥

.We have:

‘“cl...em“usn) < 16 (U3,), vut

(I,n E civi) aG (01!"'“ ) - JIU (xié) d 851..45 (ﬁ)

o e 2

Therefore
P(x) « == L €,...8 j‘ (x,0)" dg &..... (8).
m:2” gietl 17°%m Jug, L.
Now we define a measure
g : B(UE_) - F by

g = PR il 8 .
mr 2" ci-+11 £y oLy

Hence, it follows that P(x) has the form

P(x) = [, (x,0)" dg(e) and P ¢ P ("E,F) .

E*
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Furthermore, we have

m m
tel <=5 2°(6| « 25 |6}, therefore

m
IRl < 25 Il

Remark: Similar results hold for nuclear mappings and nuclear polynomials,
The following are clear: .
m
s
Corollary 3: If A € L ("E,F), then A® € L;("E,F) and |1A‘]|I <= lIAll; (A" denotes

the symmetrization of A),

Corollary ¢: Let A € LI(mE,F) and A® its symmetrization, Given & > O there is
a measure g, F-valued &nd of bounded variation and o -additive defined on B(U )
E

such that

As(-xl,....,xm) - -I‘U '(xl,np) cer (X 0) dg(e) and |g| < Z_: "A“I +€ .

E

Proof of proposition 1: We always have the inclus.on P“(mE,F) c PI(DE,F).

For the opposite inclusion, let P € PI(mE,F). Then there is A € Ls(mE,F) such

that A « P. By proposition 2 (a) we have that A € L;(ml-:,l'-‘). By thecrem A it

follows that A € L:(EE,F), but it is easy to check that A € PN(“‘E,F), hence

PN(mE,F) " PI(mE,F). Recalling the remark after proposition 2, we see that

their norms are equivalent.

2. Main Remlt

Refore establishing our main result, theorems 7 and A, we
need some more terminolory and =ome definitions.

A scalar valued polynomial p ¢ P("E) 1is =aid to be of finite
type if P has the form

r
P(x) = II‘I "
) = Boylx) for every x € B, where o, ¢ €%, 1<y <, P("E) denotes the

space of all polynomials of finite type, Pc(nE) denotes the closure of Pr(“‘:‘.)
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in P(™E) with respect to the norm induced by L(™E) (for defini-
tione and results on P_("E,F), vector valued polynomiale, we
refer to Aron and Prolla {¢]) and 1s called the space of
compact polynomials.

Now we follow the terminology of Ryan [14].

If E §ia a B-apace from, h:!: denotes the subspace of E@ ...® E,
n m

e
n

the projective tensor product, span by the elements x(') =x®,,.9x, x € B,
—_—

Ifr Xy seeesXy E, Xx,e...0x denotes the element of E® ., .@E, given by

1l
Xjo...0x = % ze:s X (1)® ++«®X (s S, denotes the permitations of
m

(1,2,...,m}, (symmetric tensor product).

Suppose now (ej) is a Schauder basis for E, if ((‘11"""’n)3);.1 denotes the

square order of N® (the m-fold cartesien product of the natural numbers),
- -
then (°,11° "'eeju) is a Schauder basis for E@n...eﬂs, (the completed tensor
‘m

product). For details see Ryan [14] and alse Gelbaum-Lamadrid [10].

Let Q be the set of (3,,...,J ) in N® such that H2,2...024,

If we consider the square order induced on Qh, then Ryan has proved the

following:

"For every positive inieger m, (ejle"'oejm)J‘EQmu a Schauder basis for

E:B (the complete B-space)".. Also from Ryan, we point out the following result:

The spaces P(E) and (E:B). are isometric, for every B-space E, (E not

necessarily with Scheuder basis),

The elements of the sequence (ZJ )JGQ‘.' given by the biorthogonal system
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((e, o...0e, ) ,Z_] are called the m-homogeneous monomials,
4 3. I

Now we recall the followlng results:
Proposition 5: (Dineen [8]), Let E be a reflexive B-space, Then the spaces

(PI(%'), Il "I) and Pc(mE)* arc isometric, for every positive integer m,

Proposition 6: (Gupta [11]). Let E be a D-space such that E has the approximation
property. Then the spaces (PN(mE), I "W)‘l and P("E") are isometric for every
positive integer m,

Now we state and prove our main results:

Theorem 7: Let E be a reflexive B-space with the approxdmation property, Then

the space P(mE) is reflexive if only if P("E) . Pc(mE).

In case E has Schauder basis, theorem 7 can be reformulated as follows:
Theorem 8: Suppose E is a reflexive B-space with Schauder bassis. Then P(mE) is
reflexive if only if the monomials define a Schauder basis for P(mE).

Proof of Theorem 7: First of all, ve note that E has the Radon-Nikodym property,

since E is reflexive, From proposition 1, we have that
»* *
(PN(mE ) |l ”N) - (PI(mE )| ﬂl) topologically, Now combining this
result vith proposition S and 6 we obtain:
* »* * L ]
P("E) = (PN(mE )l "N) = (PI(mE )l "I) = Pc(mﬁ) . To conclude it is enough

to observe that Pc(mE) is a closéd subspace of P(mE)_

Proof of Theorem 8: Let E be a reflexive B-space with Schauder basis (eJ).

Suppose P(mE) reflexive, from Ryan's results we have that

5 i “m “m_,
(310'““-’.,.)‘16% is a Schuuder basis for h_E and (hn E)" « P(™E), therefore

the basis (eJ]_..“.eJm)JEQm is shrinking, which means that the monomials

(ZJ)JEQ'. is a Scheuder basis for P(“E). Conversely Suppose the monomials
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(2;) forn & Scheuder basis for P("E), Hence 1T P € P(®E) then P « T A5
8

Fiow, 1f € > 0, there is an integer JO such thet

lp-2Z vz <e.
JSI%)J%JI_

Since each zJ is a polyncmial of finite type it follows from the definition of
Pc(nﬂ), that P € Pc(‘E), thus P(nl-:) - Pc(ﬁ:) and now we gpply theorem 7.

Final Remsrks: One may ask if there is an example of infinite dimensional
B-spece for which the conditions of theorem 7 and 8 hold, In a previous paper
(2], ve show that P(ﬁ:) is reflexive B-space when E is the original Teirelson
space T. (an infinitive dimensional reflexive B-space with unconditionel Schauder
basis and conteining no lp, l1<p<=). Also in (3], we show

that P(“r‘) is a Tsirelson-like space in the sense that it is reflexive, contains

Bo 1p’ but lacks the unconditionality of its basis, that is, the monomials
(ZJ)J cannot form an unconditional basis for P("‘r').

Finally, we would like to thank Professor Richard Aron for a proof
off the vector-valued version of theorem T, vwhere using some results of
Z-product, the reflexivity of P(mE,F) can be reduced to the reflexivity of
L(mE,F), for E and F reflexive B-spaces and F with the epproximation
property ( gme Also Aron-Schottenloher [5]). However, we
notice that the spproach in the scalar case is distinct from the vector-valued
case, where the compack mnppings(in the usual sense) play an important role.

The suthor thanks Professor Séan Dineen for introducing him to this subject.
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