

ON REFLEXIVITY AND BASIS FOR $P(\overset{\circ}{E})$

by

Raymundo Alencar (*)

ABSTRACT. We show that if E is a reflexive B-space with a.p., then the reflexivity of $P(\overset{\circ}{E})$ is equivalent to the coincidence of $P(\overset{\circ}{E})$ with its subspace of compact polynomials. If E has a Schauder basis, then the result can be reformulated as follows: $P(\overset{\circ}{E})$ is reflexive if and only if $P(\overset{\circ}{E})$ admits a special Schauder basis.

Current Address:

Department of Mathematical Sciences
Kent State University
Kent, Ohio 44242, U.S.A.

Permanent Address:

Universidade de São Paulo
Instituto de Matemática e Estatística
Caixa Postal 20570
05508 - São Paulo - S.P., BRASIL

(*) Research supported in part by "Conselho Nacional de Desenvolvimento Científico e Tecnológico" (CNPq) - Brasil.

1. Introduction

In an earlier paper [1] we studied the spaces $L_N(E_1, \dots, E_m; F)$ and $L_I(E_1, \dots, E_m; F)$ of all continuous m -linear mappings $A : E_1 \times \dots \times E_m \rightarrow F$, respectively of Nuclear and Integral type, where E_1, \dots, E_m and F denote B-spaces.

We proved the following theorem:

Theorem A: Let E_1, \dots, E_m be B-spaces whose duals E_1^*, \dots, E_m^* have the Radon-Nikodym property. Then for every B-space F , the spaces $L_N(E_1, \dots, E_m; F)$ and $L_I(E_1, \dots, E_m; F)$ are isometric.

In this paper we apply mainly the above theorem in order to obtain a necessary and sufficient condition for the reflexivity of $P(\overset{m}{E})$, the space of m -homogeneous continuous polynomials on E .

The linear version of theorem A is in fact equivalent to the Radon-Nikodym property as established in [1]. For other variants of theorem A in the linear case we refer to Diestel and Uhl [6]. For terminology and results on the multi-linear and polynomial case of nuclear type we refer to Dineen [7]. For details and results on tensor products (m -symmetric) we refer to Ryan [14].

We introduce now the terminology and some technical lemmas. If $E_1 = E_2 = \dots = E_m = E$ and F are B-spaces, $L(\underbrace{E, \dots, E}_m; F) = L(\overset{m}{E}, F)$ denotes the

B-spaces of continuous m -linear mappings $A : E \times \dots \times E \rightarrow F$, with the norm

$$A = \sup \{ \|A(x_1, \dots, x_m)\| : x_j \in E, \|x_j\| \leq 1, 1 \leq j \leq m \}. \quad L(\overset{m}{E}, F) \text{ denotes } L(\overset{m}{E}, K)$$

where $K = \mathbb{R}$ or \mathbb{C} . $L^s(\overset{m}{E}, F)$ denotes the space of all mappings $A \in L(\overset{m}{E}, F)$ that are symmetric. $P(\overset{m}{E}, F)$ denotes the space of all continuous, m -homogeneous polynomials from E to F . We recall that an element $P \in P(\overset{m}{E}, F)$ is defined as

$P(x) = A(x, \dots, x)$ for a unique element $A \in L^s(\overset{m}{E}, F)$ and in this case we denote $P = A$. On $P(\overset{m}{E}, F)$ we consider the norm induced by $L(\overset{m}{E}, F)$.

Definition (a): A mapping $A \in L(\mathbb{M}E, F)$ is said to be nuclear if there are sequences $(\varphi_{jn})_n$ in E^* , $1 \leq j \leq m$ and (C_n) in F with

$$\sum_{n=1}^{\infty} \|\varphi_{1n}\| \dots \|\varphi_{mn}\| \|C_n\| < \infty \text{ such that}$$

$$A(x_1, \dots, x_m) = \sum_{n=1}^{\infty} \varphi_{1n}(x_1) \dots \varphi_{mn}(x_m) C_n \quad \text{for all } (x_1, \dots, x_m) \in \underbrace{Ex \dots xE}_m$$

Let $L_N(\mathbb{M}E, F)$ denote the space of all nuclear m -linear mappings $A \in L(\mathbb{M}E, F)$ endowed with the nuclear norm:

$$\|A\|_N = \inf \sum_{n=1}^{\infty} \|\varphi_{1n}\| \dots \|\varphi_{mn}\| \|C_n\|, \text{ where the infimum is taken over all sequences } (\varphi_{jn})_n \text{ and } (C_n) \text{ which satisfy the definition.}$$

Similarly, we define a polynomial $P \in P(\mathbb{M}E, F)$ to be nuclear if there are sequences (φ_n) in E^* and (C_n) in F with

$$\sum_{n=1}^{\infty} \|\varphi_n\|^m \|C_n\| < \infty \text{ such that } P(x) = \sum_{n=1}^{\infty} \varphi_n(x)^m C_n \text{ for all } x \in E.$$

$P_N(\mathbb{M}E, F)$ denotes the space of all nuclear polynomials endowed with the nuclear norm:

$$\|P\|_N = \inf \sum_{n=1}^{\infty} \|\varphi_n\|^m \|C_n\| : \text{ where the infimum is taken over all sequences } (\varphi_n) \text{ and } (C_n) \text{ which satisfy the definition.}$$

Definition (b): A mapping $A \in L(\mathbb{M}E, F)$ is said to be integral if there exists a regular countably additive F -valued Borel measure G , of bounded variation, on the product $U_{E^*}^m = U_{E^*} x \dots x U_{E^*}$, where the unit ball U_{E^*} of the dual space E^* is endowed with the weak* topology, such that

$$A(x_1, \dots, x_m) = \int_{U_{E^*}^m} \varphi_1(x_1) \dots \varphi_m(x_m) dG(\varphi_1, \dots, \varphi_m), \text{ for all } (x_1, \dots, x_m) \in \underbrace{Ex \dots xE}_m$$

Let $L_I^m(E, F)$ denote the space of all integral m -linear mappings $A \in L^m(E, F)$, endowed with the integral norm:

$\|A\|_I = \inf |G|(U_{E^*}^m)$, where the infimum is taken over all vector measures G satisfying the definition.

A polynomial $P \in P^m(E, F)$ is said to be integral if P can be written as

$P(x) = \int_{U_{E^*}^m} \varphi(x)^m dg(\varphi)$ for all $x \in E$, where g is an F -valued vector measure defined on $U_{E^*}^m$ with the same properties as before.

$P_I^m(E, F)$ denotes the space of all integral polynomials endowed with the integral norm.

$\|P\|_I = \inf |g|(U_{E^*}^m)$ where the infimum is taken over all vector measures g satisfying the definition.

Remark: The definition above was introduced by S. Dineen in [8], and only recently we introduced m -linear mappings of integral type which makes proposition 2 below necessary.

To establish the result stated in the beginning, we need the following polynomial version of theorem A

Proposition 1: Let E be a B-space such that E^* has the Radon-Nikodym property.

Then $P_N^m(E, F) = P_I^m(E, F)$, with equivalent norms, for every positive integer m and every B-space F .

We need some technical results

Proposition 2: (a) Let $P \in P_I^m(E, F)$ and $A \in L^s(E, F)$ such that $A = P$. Then

$A \in L_I^s(E, F)$ and $\|A\|_I \leq \|P\|_I$.

(b) Let $A \in L_I^m(E, F)$ and $P = A$. Then $P \in P_I^m(E, F)$ and

$$\|P\|_I \leq \frac{m}{s} \|A\|_I.$$

Proof: (a) Let $P \in P_I^{(m)}(E, F)$, P has the representation

$$P(x) = \int_{U_{E^*}^m} \langle x, \varphi \rangle^m d\varphi(\varphi).$$

If $A \in L^s(E, F)$ such that $\hat{A} = P$, by applying the polarization formula, we obtain:

$$A(x_1, \dots, x_m) = \int_{U_{E^*}^m} \langle x_1, \varphi \rangle \dots \langle x_m, \varphi \rangle d\varphi(\varphi).$$

Now consider the mapping:

$J : U_{E^*}^m \rightarrow U_{E^*}^m$ given by $J(\varphi) = (\varphi, \dots, \varphi)$ and define a measure \tilde{g} on the Borel algebra $B(U_{E^*}^m)$ or $U_{E^*}^m$, by $\tilde{g}(H) = g(J^{-1}(H))$, for every $H \in B(U_{E^*}^m)$.

We now calculate the variation $|\tilde{g}|$ of \tilde{g} .

$$\begin{aligned} |\tilde{g}|(U_{E^*}^m) &= \sup \left(\sum_i \|\tilde{g}(A_i)\| : (A_i) \text{ a finite partition of } U_{E^*}^m \right) = \\ &= \sup \left(\sum_i \|\tilde{g}(J^{-1}(A_i))\| : (A_i) \dots \right) \leq |\tilde{g}|(U_{E^*}). \end{aligned}$$

On the other hand:

$$\begin{aligned} |\tilde{g}|(U_{E^*}) &= \sup \left(\sum \|\tilde{g}(B_i)\| : (B_i) \text{ finite partition of } U_{E^*} \right) = \\ &= \sup \left(\sum_i \|\tilde{g}(J^{-1}(J(B_i)))\| : (B_i) \dots \right) \leq |\tilde{g}|(U_{E^*}). \end{aligned}$$

Thus, we have \tilde{g} of bounded variation and $|\tilde{g}| = |\tilde{g}|$. Now, since

$\tilde{g}(H) = 0$ if $H \cap \Delta(U_{E^*}^m) = \emptyset$, Δ denotes the diagonal, it follows that

$$\int_{U_{E^*}^m} \langle x_1, \varphi_1 \rangle \dots \langle x_m, \varphi_m \rangle d\tilde{g}(\varphi_1, \dots, \varphi_m) =$$

$$= \int_{\Delta(U_{E^*}^m)} \langle x_1, \varphi_1 \rangle \dots \langle x_m, \varphi_m \rangle d\tilde{g}(\varphi_1, \dots, \varphi_m) =$$

$$- \int_{U_{E^*}} \langle x_1, \varphi \rangle \dots \langle x_m, \varphi \rangle \, d\tilde{g}(\varphi, \dots, \varphi) =$$

$$- \int_{U_{E^*}} \langle x_1, \varphi \rangle \dots \langle x_m, \varphi \rangle \, dg(\varphi) = A(x_1, \dots, x_m).$$

Furthermore, we have $\|A\|_I \leq \|\Gamma\|_I$.

(b) Let $A \in L_I^{(m)}(E, F)$. There exists a vector measure $G : B(U_{E^*}^m) \rightarrow F$

such that

$$A(x_1, \dots, x_m) = \int_{U_{E^*}^m} \langle x_1, \varphi_1 \rangle \dots \langle x_m, \varphi_m \rangle \, dG(\varphi_1, \dots, \varphi_m).$$

Therefore

$$P(x) = A(x, \dots, x) = \int_{U_{E^*}^m} \langle x, \varphi_1 \rangle \dots \langle x, \varphi_m \rangle \, dG(\varphi_1, \dots, \varphi_m).$$

By the polarization formula we can write:

$$\langle x, \varphi_1 \rangle \dots \langle x, \varphi_m \rangle = \frac{1}{m! 2^m} \sum_{\substack{\epsilon_1 = \pm 1 \\ \dots \\ \epsilon_m = \pm 1}} \epsilon_1 \dots \epsilon_m \langle x, \sum_{i=1}^m \epsilon_i \varphi_i \rangle^m =$$

$$= \frac{m^m}{m! 2^m} \sum_{\substack{\epsilon_1 = \pm 1 \\ \dots \\ \epsilon_m = \pm 1}} \epsilon_1 \dots \epsilon_m \langle x, \frac{1}{m} \sum_{i=1}^m \epsilon_i \varphi_i \rangle^m$$

Therefore

$$P(x) = \frac{m^m}{m! 2^m} \sum_{\substack{\epsilon_1 = \pm 1 \\ \dots \\ \epsilon_m = \pm 1}} \epsilon_1 \dots \epsilon_m \int_{U_{E^*}^m} \langle x, \frac{1}{m} \sum_{i=1}^m \epsilon_i \varphi_i \rangle^m \, dG(\varphi_1, \dots, \varphi_m).$$

Now for each $(\varepsilon_1, \dots, \varepsilon_m)$, we define a mapping $J_{\varepsilon_1 \dots \varepsilon_m} : U_{E^*}^m \rightarrow U_{E^*}$ by

$J_{\varepsilon_1 \dots \varepsilon_m}(\varphi_1, \dots, \varphi_m) = \frac{1}{m} \sum_{i=1}^m \varepsilon_i \varphi_i$, and also we define a measure

$g_{\varepsilon_1 \dots \varepsilon_m} : B(U_{E^*}) \rightarrow F$ by

$g_{\varepsilon_1 \dots \varepsilon_m}(B) = G(J_{\varepsilon_1 \dots \varepsilon_m}^{-1}(B))$ for every $B \in B(U_{E^*})$.

We have:

$|g_{\varepsilon_1 \dots \varepsilon_m}|(U_{E^*}) \leq |G|(U_{E^*}^m)$, but

$$\int_{U_{E^*}^m} \left\langle x, \frac{1}{m} \sum_{i=1}^m \varepsilon_i \varphi_i \right\rangle^m dG(\varphi_1, \dots, \varphi_m) = \int_{U_{E^*}} \langle x, \phi \rangle^m d g_{\varepsilon_1 \dots \varepsilon_m}(\phi)$$

Therefore

$$P(x) = \frac{m^m}{m! 2^m} \sum_{\substack{\varepsilon_1 \dots \varepsilon_m \\ \varepsilon_i \neq \pm 1}} g_{\varepsilon_1 \dots \varepsilon_m} \int_{U_{E^*}} \langle x, \phi \rangle^m d g_{\varepsilon_1 \dots \varepsilon_m}(\phi).$$

Now we define a measure

$g : B(U_{E^*}) \rightarrow F$ by

$$g = \frac{m^m}{m! 2^m} \sum_{\substack{\varepsilon_1 \dots \varepsilon_m \\ \varepsilon_i \neq \pm 1}} g_{\varepsilon_1 \dots \varepsilon_m}.$$

Hence, it follows that $P(x)$ has the form

$$P(x) = \int_{U_{E^*}} \langle x, \phi \rangle^m d g(\phi) \text{ and } P \in P_I(U_{E^*}, F).$$

Furthermore, we have

$$|g| \leq \frac{m}{m! 2^m} 2^m |G| = \frac{m}{m!} |G|, \text{ therefore}$$

$$\|P\|_I \leq \frac{m}{m!} \|A\|_I$$

Remark: Similar results hold for nuclear mappings and nuclear polynomials.

The following are clear:

Corollary 3: If $A \in L_I^{(m)}(E, F)$, then $A^s \in L_I^s(m)(E, F)$ and $\|A^s\|_I \leq \frac{m}{m!} \|A\|_I$ (A^s denotes the symmetrization of A).

Corollary 4: Let $A \in L_I^{(m)}(E, F)$ and A^s its symmetrization. Given $\varepsilon > 0$ there is a measure g , F -valued and of bounded variation and σ -additive defined on $B(U_E^*)$ such that

$$A^s(x_1, \dots, x_m) = \int_{U_{E^*}} \langle x_1, \phi \rangle \dots \langle x_m, \phi \rangle dg(\phi) \text{ and } |g| \leq \frac{m}{m!} \|A\|_I + \varepsilon.$$

Proof of proposition 1: We always have the inclusion $P_N^{(m)}(E, F) \subset P_I^{(m)}(E, F)$.

For the opposite inclusion, let $P \in P_I^{(m)}(E, F)$. Then there is $A \in L_I^s(m)(E, F)$ such that $\hat{A} = P$. By proposition 2 (a) we have that $A \in L_I^s(m)(E, F)$. By theorem A it follows that $A \in L_N^s(m)(E, F)$, but it is easy to check that $\hat{A} \in P_N^{(m)}(E, F)$, hence

$P_N^{(m)}(E, F) = P_I^{(m)}(E, F)$. Recalling the remark after proposition 2, we see that their norms are equivalent.

2. Main Result

Before establishing our main result, theorems 7 and 8, we need some more terminology and some definitions.

A scalar valued polynomial $p \in P(E)$ is said to be of finite type if p has the form

$p(x) = \sum_{j=1}^r \varphi_j^m(x)$ for every $x \in E$, where $\varphi_j \in E^*$, $1 \leq j \leq r$. $P_f^{(m)}(E)$ denotes the space of all polynomials of finite type. $P_c^{(m)}(E)$ denotes the closure of $P_f^{(m)}(E)$.

in $P(^m E)$ with respect to the norm induced by $L(^m E)$ (for definitions and results on $P_c(^m E, F)$, vector valued polynomials, we refer to Aron and Prolla [4]) and is called the space of compact polynomials.

Now we follow the terminology of Ryan [14].

If E is a B-space from, $h_n^m E$ denotes the subspace of $E \otimes \underbrace{\dots \otimes}_m E$,

the projective tensor product, span by the elements $x^{(m)} = \underbrace{x \otimes \dots \otimes}_m x, x \in E$.

If $x_1, \dots, x_m \in E$, $x_1 \otimes \dots \otimes x_m$ denotes the element of $E \otimes \dots \otimes E$, given by

$$x_1 \otimes \dots \otimes x_m = \frac{1}{m!} \sum_{\sigma \in S_m} x_{\sigma(1)} \otimes \dots \otimes x_{\sigma(m)}, S_m \text{ denotes the permutations of } \{1, 2, \dots, m\}, \text{ (symmetric tensor product).}$$

Suppose now (e_j) is a Schauder basis for E , if $((j_1, \dots, j_m))_{j=1}^{\infty}$ denotes the square order of N^m (the m -fold cartesian product of the natural numbers), then $(e_{j_1} \otimes \dots \otimes e_{j_m})_{j \in N^m}$ is a Schauder basis for $E \hat{\otimes} \underbrace{\dots \hat{\otimes}}_m E$, (the completed tensor product).

For details see Ryan [14] and also Gelbaum-Lamadrid [10].

Let Q_m be the set of (j_1, \dots, j_m) in N^m such that $j_1 \geq j_2 \geq \dots \geq j_m$.

If we consider the square order induced on Q_m , then Ryan has proved the following:

"For every positive integer m , $(e_{j_1} \otimes \dots \otimes e_{j_m})_{j \in Q_m}$ is a Schauder basis for

$\hat{h}_n^m E$ (the complete B-space)". Also from Ryan, we point out the following result:

The spaces $P(^m E)$ and $(\hat{h}_n^m E)^*$ are isometric, for every B-space E , (E not necessarily with Schauder basis).

The elements of the sequence $(z_j)_{j \in Q_m}$, given by the biorthogonal system

$[(e_{j_1} \otimes \dots \otimes e_{j_m})_j, z_j]$ are called the m -homogeneous monomials.

Now we recall the following results:

Proposition 5: (Dineen [8]). Let E be a reflexive B-space. Then the spaces $(P_I(\overset{m}{E}^*), \|\cdot\|_I)$ and $P_c(\overset{m}{E})^*$ are isometric, for every positive integer m .

Proposition 6: (Gupta [11]). Let E be a B-space such that E^* has the approximation property. Then the spaces $(P_N(\overset{m}{E}), \|\cdot\|_N)$ and $P(\overset{m}{E}^*)$ are isometric for every positive integer m .

Now we state and prove our main results:

Theorem 7: Let E be a reflexive B-space with the approximation property. Then the space $P(\overset{m}{E})$ is reflexive if and only if $P(\overset{m}{E}) = P_c(\overset{m}{E})$.

In case E has Schauder basis, theorem 7 can be reformulated as follows:

Theorem 8: Suppose E is a reflexive B-space with Schauder basis. Then $P(\overset{m}{E})$ is reflexive if and only if the monomials define a Schauder basis for $P(\overset{m}{E})$.

Proof of Theorem 7: First of all, we note that E has the Radon-Nikodym property, since E is reflexive. From proposition 1, we have that

$(P_N(\overset{m}{E}^*), \|\cdot\|_N) = (P_I(\overset{m}{E}^*), \|\cdot\|_I)$ topologically. Now combining this result with proposition 5 and 6 we obtain:

$P(\overset{m}{E}) = (P_N(\overset{m}{E}^*), \|\cdot\|_N)^* = (P_I(\overset{m}{E}^*), \|\cdot\|_I)^* = P_c(\overset{m}{E})^{**}$. To conclude it is enough to observe that $P_c(\overset{m}{E})$ is a closed subspace of $P(\overset{m}{E})$.

Proof of Theorem 8: Let E be a reflexive B-space with Schauder basis (e_j) .

Suppose $P(\overset{m}{E})$ reflexive, from Ryan's results we have that

$(e_{j_1} \otimes \dots \otimes e_{j_m})_{j \in Q_m}$ is a Schauder basis for $\overset{m}{E}$ and $(\overset{m}{E})^* = P(\overset{m}{E})$, therefore

the basis $(e_{j_1} \otimes \dots \otimes e_{j_m})_{j \in Q_m}$ is shrinking, which means that the monomials

$(z_j)_{j \in Q_m}$ is a Schauder basis for $P(\overset{m}{E})$. Conversely suppose the monomials

(Z_j) form a Schauder basis for $P(\mathbb{M}E)$. Hence if $P \in P(\mathbb{M}E)$ then $P = \sum_{j \in \mathbb{M}} \lambda_j Z_j$.

Now, if $\epsilon > 0$, there is an integer J_0 such that

$$\|P - \sum_{j \leq J_0} \lambda_j Z_j\| \leq \epsilon.$$

Since each Z_j is a polynomial of finite type it follows from the definition of $P_c(\mathbb{M}E)$, that $P \in P_c(\mathbb{M}E)$, thus $P(\mathbb{M}E) = P_c(\mathbb{M}E)$ and now we apply theorem 7.

Final Remarks: One may ask if there is an example of infinite dimensional B-space for which the conditions of theorem 7 and 8 hold. In a previous paper [2], we show that $P(\mathbb{M}E)$ is reflexive B-space when E is the original Tsirelson space T^* (an infinitive dimensional reflexive B-space with unconditional Schauder basis and containing no l_p , $1 < p < \infty$). Also in [3], we show that $P(\mathbb{M}T^*)$ is a Tsirelson-like space in the sense that it is reflexive, contains no l_p , but lacks the unconditionality of its basis, that is, the monomials $(Z_j)_j$ cannot form an unconditional basis for $P(\mathbb{M}T^*)$.

Finally, we would like to thank Professor Richard Aron for a proof of the vector-valued version of theorem 7, where using some results of ϵ -product, the reflexivity of $P(\mathbb{M}E, F)$ can be reduced to the reflexivity of $L(\mathbb{M}E, F)$, for E and F reflexive B-spaces and F with the approximation property (see also Aron-Schottenloher [5]). However, we notice that the approach in the scalar case is distinct from the vector-valued case, where the compact mappings (in the usual sense) play an important role.

The author thanks Professor Séan Dineen for introducing him to this subject.

REFERENCES

1. Alencar, Raymundo - Multilinear Mappings of Nuclear and Integral Type (to appear in Proc. Amer. Math. Soc.).

2. Alencar, Raymundo; Aron, Richard & Dineen, Séan - A Reflexive Space of Holomorphic Functions in Infinitely Many Variables, Proc. Amer. Math. Soc., Vol. 90, 3, March 1984, PP 407-411.
3. Alencar, Raymundo; Aron, Richard & Fricke, Gerd - Tensor Products of Tsirelson's Space (pre-print).
4. Aron, R. & Prolla, J. B. - Polynomial Approximation of Differentiable Functions on Banach Spaces, J. reine angew. Math. (Crelle), 313, (1980), 195-216.
5. Aron, R. & Schottenloher, M. - Compact Holomorphic Mappings on Banach Spaces and the Approximation Property, Journal of Functional Analysis, Vol. 21, No. 1, January 1976.
6. Diestel, J. & Uhl, J. J. - Vector Measures, Math. Surveys, A.M.S. 15, 1977.
7. Dineen, S. - Complex Analysis in Locally Convex Spaces, Math. Studies, 57, North Holland, 1981.
8. Dineen, S. - Holomorphy Types on a Banach Space, Studia Math 39, 1971, pp. 241-288.
9. Dwyer, T. - Convolutions Equations for Vector-Valued Entire Functions of Bounded Nuclear Type, Trans. Amer. Math. Soc., 217, (1976), 105-119.
10. Gelbaum, B. R. & Gil De Lamadrid, J. - Bases of Tensor Products of Banach Spaces, Pacific J. Math., 11, 1961, pp. 1281-1286.
11. Gupta, C. P. - Malgrange Theorem for Nuclearly Entire Functions of Bounded Type on a Banach Space, Thesis - The University of Rochester, 1966.
12. Holub, J. R. - Reflexivity of $L(E,F)$, Proc. Am. Math. Soc. 39, 175-177, MR47 #3956.
13. Mujica, J. - Gérmenes Holomorfos y Functiones Holomorfas en Espacios de Fréchet, Departamento de Teoria de Funciones, Universidad de Santiago de Compostela, 1978.
14. Ryan, R. A. - Applications of Topological Tensor Products to Infinite Dimensional Holomorphy, Thesis, Trinity College of Dublin, 1980.