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l. Introduction 

In an earlier paper [1) ve studied the •paces ~(E1
, ••• ,Em;F) and 

or Nuclear and Integral type, vhere E1 , ••• ,Em and F denote B-•pacea. 

We proved the following theorem: 

Jfi.koctym property. Then for every B-srace F, the spaces ½i(El' ••• ,Em;F) and 

½:(~1 , ••• ,E
11

;F) are i150111etr1c. 

In thh paper ve apply mainly the above theorem in order to obtain a neceaaary 

aad •utt'1c1ent condition for the reflexivity of P(~), the space or m-b<>aDgeneoua 

continuous polynomials on E. 

The linear version or theorem A 1s in fact equivalent to the Radon-Mikodym 

property a• established in (1). For other variants or theorem A in the linear 

case 1te refer to D1e•tel and Uhl. (6). For tendnology and result• on the 111111.ti­

linear and polynomiaJ. case of nuclear type ve refer to Dineen [1). For 

details and results on tensor products (a-symmetric) ve refer to Ryan (14). 

We introduce nov the tendnology and some technical leanaa. Ir 

Ei. • E2 • ••• • E
11 

• E and Fare B-spacea, L(~;F). L(~,F) denotes the 

m 

B-spacea or continuous m-linear ~appinga A Ex ••• xE - F, vi th the nonn 

where K • R or C. L
5
(~,F) denotes the space of all mappings A E L(~,F) that 

are S)'laetric. P(~,F) denotes the apace or all continuous, ■-homogeneous 

polyno-.iaJ.a rroa E tor. We recall that an el~nt P E P("E,r) 1s defined u 

P(x) • A(x, ••• x) for a wiique element A E L•(-r,r) and ln thi• ca•e we denote 

P. l. On P(~1F) ve consider the non. induced by L(-r,r). 



Definition (a): A mapping A E L(~,F) 1a nit\ to be nuclear if there are 

• sequences (q,j ) in E , l < j < m and (C ) in F with n n - - n 

- ' 

~
1

Uq,1nll • • • llc;,mnll lie JI < • such that 

-A(,_, ••• ,xm) •'!31c;,l:D.(xl) ••• q,mn(xm)Cn tor all (x_ , ••• ,x ) E Ex ••• xE. 
J. .. '---J 

• 
Let ½f(~,F) denote the apace ot all nuclear •linear uppioga A E L(~,F) 

endowed vi th the nuclear norm: 

-UA!IM • int E ll11>1oll ••• ll,i,mnll Uc II, llbere the intilmDa 1a taken over all 
n-l n 

sequences (q,j ) and. (C ) llbich satisfy the definition. 
n n n 

Similarly, ve define a polynomial. P E P(~,F) to be nuclear if' there are 

* sequences (cp ) in E and ( C ) in F vi th 
n n 

-Elie;, Um Uc II < • 
n..l n n . 

aucb that P(x) • E cp (x)~ for all x E E. 
n.l n n 

PN('l=,F) denotes the space of all nuclear polynomials endoved with the nuclear 

oorm: -IIPIIN • inf E 11111 llm lie II : ; vhere the in!imum 1a taken over all sequences 
n.l n n 

((I) ) and (C ) which satisfy the definition. 
n n 

Definition (b): A mappill€; A E L(~,f) is said to be integral if there exists 

a regular coW1tably additive F-valued Borel measure G, of bowlded variation, on 

• 
the product~ •• UE•x ••• xUE•' vhere the unit ball UE* of the dual space E is 

endowed vi th the weu. • topology, such that 

A(x
1

, ••• ,x
11

) • .f~ •
1

(x
1

) •• 4 m(x
111

) dG (.,1 , ••• ,c,.), tor all (x1 , ••• ,x11) E £11 ••• •E. 

E• 
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Let Ly('\:,F) denote the spa~e ot all integral. 11-llnear 111applngs A E L(-i:,r), 

endowed w1 th the integral. nom:' 

H-'11
1 

• inf' IGI <U:.>, were the 1n!1mum 1s taken over &ll vector meuurea G 

sati■tyi!:!f; the de!in1t1on. 

A polynoa1.al. P E P(~,F) ls uid to be integral. it P can be written u 

P(x) • Ju ci(x)m dg (411 ) tor all x E E, where g 1s on F-val.ued vector 
E* 

aeasure defined on UE* vith tbe same properties H _before. _ · 

P1('\:,r) _denote■ tbe space ot &ll integral. pol.yuolllial.s ~doved vith tbe 

integnl. aom. 

IIPll1 .;, 1Dt lgl(UE*) 1'here tbe 1nt1awl h taken over all vector ■ea■urea 

g ■atlatying _ the detlnition. 

~: The detinition above vaa introduced by- S. Dineen in [8], and only · 

recent}¥ ve introduced ■-linear -ppinga ot integral. type vhich ■akea proposition 

2 belov necessary-. 

To establish the result stated in the beginning, ve need the followin,t 

Tereion or theorem A polynomial 

Proposition l: * Let Ebe a B-apace such that E has the Radon-Nikodya property-. 

Then PN(■»:,r) • P1 (■»:,r), vitb equivalent nonis, tor every positive intecer ■ and 

every B-apace r. 

We need ,_ technical resul te 

Proposition 2: (a) Let PE P1(8£,r) and A E Ls( ■.:,F) such that l. P. Then 



rroor: (a) Let p E P/11E,F). p hu the representation 

It A E L•(llj;,F) •uch that A • p, by a pplyi~ 

formula, ve obtain: 

Nov consider the upping: 

· -265-

the polarisation 

., • U ... ·• .,.. -•- by J( ) ( ) --A de'ine a -alUl'e -& on the Borel • E• UE• - •..... • • • ' • • • ,qi ....., ~ 

~ebra B(U:.) or~•' by g(ll) • g(J-l(H)}, tor f!Yer/' H E B(u;.). 

we now calculate the •ariatton Iii or i. 

lil<U:.> • sup ( Ella(A1)II : (Ai) • ,finite partition or u;.r • . i 

• sup CE lls(.r·1cAi)II : (Ai) ••• ·) ~ Isl (UE•). 
i 

On the other hand: 

Thua, ve have i or bounded YU'i~tion and Isl • I g( • Nov~ since 

i(H) • 0 1r H n 6 <U:.J ■ f, 6 denotes the diagonal, it follows that 

.r ~ <•1 .. 1> • '' <• .... > c1&<•1 • • ...... > • 
E• 
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(b) Let A E ½;(~,F). There exiats • vector mc .. ure G : B(0:.) ~ F 

auch that 

A(~•·•••x•) • J~ (x1,cp1) ••• (xrr.,q,
14

) «i(q,1 , ••• ,q,14). 

E• 

Therefore 

By the polarization formula ve can write: 

IA 

E tr· .e.
11 

(x, E t 1q,1)• • 
e.1-±1 1.1 

l<i<m 

E t 1 ... e (x, .! 
t .tl 18 18 

1-
19-5-

Therefore 
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N<,v for eecb (t
1

, ••• ~"'- ) , ve define a mapnlna J ~ ... U 
•-m " • ..., t t E• E• by 

1 •••• 

l II 

Jt ,. (q,1 c, ) • - E t,q,1 , and al.so ve define a ■eaeure 
1•••vm ••••• m m 1-1 ~ 

• we have: 

Therefore 

Nov ve define• measure 

.. 
g • _m_ E ti- . . c. ,, ,. • 

■!211 ti-±1 • ~ l .. •v11 

Hence, it foll.ova that P(x) ha• the tona 

P(x) • r U (x,f)■ dg(f) and P E P1(~,F) • 
E• 
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Furthermore, ve have 

m 

IIPIII 5 :: IIAIII 

Remark.: Similar results hold for nuclear mapping• and nuclear po~mial.a. 

The foll.owing are clear: . 
m 

Corollary,: IC A E ½(°1:,F), then A
1 

E i.;c~,F) and IIASIII 5 :! IIAll1 (A
1 

denote■ 
the symmetrization of A). 

Corollary•: Let A E ½:(~,F) and A1 its symmetrization. Given t > 0 there 1s 

a mea■ure g, F-valued and or bounded. variation and a -additive defined on B(U 4 ) 

E 
IUCh that 

m 
A s~xl, ... ,xm) .. f (xl'GI) •• • (xm,~) dg(~) and I gl 5 :: IIAIII + t, • 

. . UE* 

ProQf or proposition l: We always have the inclus:..on PN(ll\:,r) c P
1(°1:,F). 

For the opposite inclusion, let PE P
1

(°1:,F). Then there is A E L
8
(°1:,F) such 

A 

that A• P. By proposition 2 (a) ve have that A E ½'<11\:,F). By theorem A it 

follov1 that A E r.:(11\:,F), but it is easy to check that A E PN(ll\:,F), hence 

PN(°l:,F) • P1(~,F). Recalling the remark after proposition 2, ve eee that 

their norms are equivalent. 

Before e~tabliehtn~ our main re~ult, thP.ore~~ 7 ~n~ A, we 

neP.rl ~ome more t~rminolOPV Rn~ ~ome rlefinition~. 

A ecahr v11luerl polynomial p E P("l:) i~ !"Rirl to be of f1nite 

typ~ if P hqA the form 

r 
P(x) • E 111•j(x) for every x E E, where III E E•, l 5 J _< r. 

J-1 j Pr< "l:) denotes the 

■pace or all polynomials or Cini te type. pc(~) denote■ the closure of Pf('\:) 
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in P(~) with res~P.ct to the norni induced by L(~) (for defini­

tione an.d reeults on Pc(~,F), vector Taluet1 polynomials, we 

refer to Aron and Prolla C•J) 11nd 1 .. c11lled the ey,ace of 

compact polynomials. 

Kov ve tollov the tendnology ot Ryan ( 14 J. 
If "f! 1" a B-ep~ce from , h • E denote■ the b " ■u space ot Ee ••• • I, 

~ 
the projective tensor product, span by the element, x<•) • xe .•• ex,•x E 1. 

l ,J 

• 

x1• ••• •x • 4 ~ x ( l) • ••• • x ( ) , S denote■ the per,mtat1on1 ot • •·es" a•• rJ • 

(1,2, ••• ,■), (symDetric ten$0r product). 

Suppose nov (ej) is a Sch■uder buia tor£, it ((j
1

, ••• ,j■)j)j.1 denote• the 

aquare order ot N11 
( the a-told carteaian product ot the_ natural oumber•), · 

... .. 
thea ( ejl e ••• 8 e_,

11
) .1 1a a Schauder ba11I tor E~, ( the completed teruor .. 

product). For detail• see Ryan (14) and al.so Gelbaum-LamRdrid (10). 

Let Q be the aet or (.1
1

, ... ,J ) in rfA sucb that J
1 > J

2 > ••• > J • "111 ID - - - ■ 

It ve consider the square order induced on Q..., then Ry1111 has proved the 

folloving: 

"For every positive integer ■, (e :
1

a ••• oej ) Q is a Schauder bests for 
J . m J'= Ill 

-. . ', 

h E ( the complete B-space).,. Also troa Ryan, we point out. the following result: " ' 

The space■ P(II\:) and (h•E)• are i-tric, for every 8-spacc t:, (E not. 

" neceHuUy vi th Schauder ba1h). 

The eleaent.1 of the sequence (ZJ)JE~' given by the biort.hogonal systea 
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[ ( e • -,e ) Z ] a.re called the m-ho1DOgeneous monomials . j .. • j J' J 
l m 

Now we recall the follo'Wing results: 

Proposition 5: (Dineen (8)). Let Ebe a reflexive B-space. Then the spaces 

(P
1

(°1:"), II 11
1

) and Pc(~}* arc isometric, for every positive integer m. 

* Proposition 6: (Gupta [11]). Let Ebe a D-space Guch that E has the approximation 
m.. • m..* property. Then the spaces ( P N( t;), II IIN) and P( r; ) arc isometric for every 

positive integer m. 

Nov we 1tatc and prove our main results: 

Theorem 7: Let E be a rcflexi ve B-space vi th the approxiJllation property. Then 

the space P(~) is reflexive if onl,y if P(~) • Pc(~). 

In case E has Schauder basis, theorem 7 can be reformulated as follows: 

Theorem 8: Suppose Eis a reflexive B-space with Schauder basis. Then P(~) is 

reflexive 1f onl,y if the monomials define a Schauder basis ror P(II\:). 

Proo! or Theorem 7: First of all, we note that E has the Radon- Nikodym property, 

since E 11 reflexive. From proposition l, we have that 

(Plf(~*), 11 IIN) • (P
1

(°1:*), 1111
1

) topologically. Now combining this 

result with proposition 5 and 6 we obtain: 

to observe that Pc("\:) is a closed subspace of P(°'E). 

Proof of Theorem 8: Let Ebe a reflexive B-spoce with Schauder basis (ej). 

::;uppose P("l:) reflexive, from Ryan's r c:;ults we huve that 

the basis (ej •••·•ej )JEO is •hrinll.ing, which means that the mol'IOl!lial• l Ill ""DI 

(ZJ)JE\_ 1• • Schauder basis for P(~). Conversely 1uppose the inonolllials 
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(ZJ) fom • Schmder basil for P(a;;}. Hence 1t P E P(~) then P • E LZ • 
JE\a r.1 

r.ov, it f; > O, there 1a an integer .1
0 

1uch th1t 

Since eacb ZJ ii a pol.ynoaiu ot finite type it follow■ tro■ the definition ot 

Final Rmarlta: One ma:, ult it there 1a an example ot 1Af'in1 te diaenaional 

8-■pace tor vb1cb the condi tiona or theore■ 7 and 6 bold. In a prmou• paper 

[2), ve abov that P(~) 1a renexi·.-e B-■pace when E 11 the original Tdrelaon 
• apace T (an 1ntinit1Ye di■ensionu reflexiTe B-space with W1COOdit1onal Scbauder 

basis and containing oo l , l < p < •). Also in {}), ve •how p 

that P('i-•) 1• a Tairelaon-11.ke space in the •en•~ that it ia reflexiTe, contain■ 
DO lp, but lacks the uoconditionality of its bash, that is, the aooo■iala 

(ZJ)J cannot fom a.a unconditionu basis !or P("T*). 

Finally, ve vould like to thank Professor Richard Aron for a proof 

or the vector-valued version or theorem 7, where using some results or 

t-product, the reflexivity or P(a;;,F) can be reduced to the reflexivity of 

L(8l:,r), ror E and F 

property ( ""~ ,ueo 

reflexive B-spacea and F with the approximation 

Aron-Schottenloher [ 5)). However, ve 

notice thftt the approach 1n the scalar case is diatinct fl'OIII the vector-valued 

case, where the c0111pac" ,aappings(:ln the usual sense)play an important role. 

The author thanks Professor Scan l>ineen for introducing hi■ t.o this sub,ject. 
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