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Abstract
Quantum gravity is effective in domains where both quantum effects and grav-
ity are essential, such as in the vicinity of space-time singularities. This paper
will investigate the quantization of a black-hole gravity, particularly the region
surrounding the singularity at the origin of the coordinate system. Describ-
ing the system with a Hamiltonian formalism, we apply the covariant integral
quantization method to find the Wheeler–DeWitt equation of the model. We
find that the quantized system has a discrete energy spectrum in the region
inside the event horizon. Through the Kantowski–Sachs metric, it is possible
to correlate the entropic time, which gives the dynamics for this model, to the
cosmic time in a non-trivial way. Different configurations for the phase space
of a Schwarzschild black hole are obtained in a semi-classical analysis. For
lower-energy states, the quantum corrections result in singularity removal and
wormhole formation.

Keywords: black-hole gravity, affine quantization, phase-space configuration,
singularity removal, wormholes

1. Introduction

With the detection of gravitational waves produced by the merge of two black holes and the
release of a shadow-image by the Event Horizon Telescope team, it seems safe to say that the
near future of black-hole physics is exciting. New observational techniques and technologies
provide promising tools to learn more about those objects, and the theory tells us there is still
plenty to unveil about them. Perhaps the most curious feature of those objects is the singularity
hidden by the event horizon—a hole of infinity density in the fabric of space-time. Strange as it
is, this is a proper prediction of general relativity (GR) [1]. The singularity is, however, located
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in a region forever outside our reach. The interior of a black hole is inaccessible to external
observers. Nevertheless, there is still a chance to test theories about that region via measurable
phenomena, like gravitational waves and Hawking radiation.

The investigation of black holes using quantum theory is not new. In fact, the thermody-
namical theory proposed in the early 1970s [2] requires the consideration of quantum effects
near the event horizon. The imbalance of particle/anti-particle production in this region leads
to a low but constant rate of produced particles emitted to infinity. This phenomenon became
known as Hawking radiation, named after the physicist who first proposed it. In the extreme
environment of the neighborhood around the singularity, however, gravity virtually annuls
any quantum effects if we consider this same ad hoc merge of quantum theory and GR. An
alternative would be to quantize gravity itself to investigate if the quantization leads to relevant
corrections to the classical theory. Quantizing a black hole’s gravity means, in this case, quant-
izing its geometry, that is, the space-time. Naturally, quantum gravity has a specific scope of
action: Planck-scale regions with strong gravitational influence.

This paper investigates precisely this region of a Schwarzschild black hole, using quantum-
gravity theory to explore the implications of the Wheller–DeWitt equation. The canonical
quantization of spherical-symmetric metrics has been extensively researched for a while now
[3–7], and the topic has also been explored through the lenses of loop quantum theories [8–11].
Our approach, however, differs from those of previous works. Instead of the canonical, we
will consider another quantization method based on the symmetry group of the system’s phase
space: the covariant integral method.

The canonical method, based on the operators

Q̂ : f(x) 7→ xf(x); P̂ : f(x) 7→ −i d
dx

f(x), (1)

is more suitable for variables x ∈ R. However, it becomes inadequate for different coordin-
ate domains [12] since the quantization depends on the symmetry between position and
momentum, and different domains have different symmetry groups for their phase space. The
covariant integral method is, thus, a more interesting alternative than the canonical one. In
addition, the integral method takes into consideration those symmetries to obtain quantum
observable for any classical function or distribution of the position and momentum. It is worth
mentioning that the canonical operators (1) can be obtained as a particular case of the covariant
integral quantization for variables in the whole real line, in which the symmetry is given by
the Weyl-Heisenberg group [13].

Gravitational models, including cosmological ones, are often described by strictly positive
parameters, such as the radius in the polar coordinate or the scale factor of the Universe in an
FLRW metric. The canonical quantization of this type of variable is often clunky, leading to
the necessity of extra conditions and terms placed by hand to maintain the desirable features of
a quantum theory, for example, the self-adjointness of the kinetic potential operator. To avoid
these issues in the quantization of strictly positive variables, R∗

+ = {x ∈ R|x> 0}, we shall
use the covariant integral method based on the affine group,

Π+ := {(q,p)|q> 0;p ∈ R}; (q,p)(q0,p0) :=

(
qq0,

p0
q
+ p

)
. (2)

The covariant integral method is part of a quantum phase-space (QPS) formalism that has
a long tradition in quantum field theory research, including applications to quantum optics,
quantum information, and quantum technologies in general [14, 15]. The affine quantization
method, in particular, has been recently applied to early-Universe models [16–18], resulting in
the replacement of the initial singularity for a smooth bounce in the semi-classical limit. For
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the case of black holes, affine quantization was used in simplified models and had interesting
results, such as singularity removal and displacement of the horizon [19].

We will approach the problem from a different angle than [19]. Our goal is to study the
quantum system described by the Wheeler–DeWitt (WdW) equation derived from a classical
black-hole model. The Hamiltonian description of GR is a constrained system [20]. In partic-
ular, the quantization of the Hamiltonian constraint, H= 0, leads to the WdW equation [21]

ĤΨ= 0. (3)

When compared to the Schrödinger equation, which governs the dynamics of the quantum
system, we notice that the wave function Ψ in (34) is time-independent. It is known as the
problem of time [22]: time disappears in quantized gravitational models. It happens mainly
because the Hamiltonian constraint is valid in the spatial hypersurface of a 3+1 decomposition,

gµνdx
µdxν =−N2dt2 + γij(dx

i+βidt)(dx j+β jdt), (4)

and thus it is effectively calculated ‘for a given time.’ In the ADM formalism, the functions N
and βi are not dynamical entities. Therefore, we shall consider that another intrinsic parameter
is responsible for the dynamics of the quantized system, establishing an entropic dynamic to
the model [23]. We will investigate how this realizes in the case of black holes.

For this initial investigation, we will consider c= ℏ= G= 1.
This paper is organized as follows: section 2 presents the tools to apply the affine quantiza-

tion method in the model. In section 3, we review the Hamiltonian formalism for a black hole,
as laid out in Cavaglià et al [24]. The quantization of the black-hole system via the WdW
equation is presented in section 4. In section 5, we restrict our calculations to the interior
of the event horizon, where we introduced a brief review of the Kantowski-Sachs metric for
this region [25]. Finally, the semi-classical limit offered by the affine quantization method is
presented in section 6. We conclude our paper with a discussion of our results.

2. An exposition of the affine quantization method

The affine quantization method has a rich mathematical foundation. A more profound revision
of this method can be found in [26]. For our purpose, however, we will present only a brief
exposition of the quantization procedure and dequantization map. The goal is to pose enough
formalism to understand the tools we will use, that is, the final form of the affine operator and
the introduction of a semi-classical picture derived from the method.

2.1. Quantization map

Let us consider the Hilbert space Hγ , defined by

Hγ := L2

(
R+ ,

dx
xγ+1

)
. (5)

This is the space of square-integrable functions on the half-plane equipped with the measure
dµ(x) = dx/xγ+1. It has a continuous basis |x〉, which is orthogonal and closed, that is,

〈x|x ′〉= xγ+1δ(x− x ′);
ˆ ∞

0

dx
xγ+1

|x〉〈x ′|= IHγ
, (6)
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where IHγ
is the identity of Hγ . To build the quantum operator, we will use of the so-called

coherent states |q,p〉, quantum states representing the physical system [27], defined as

〈x|q,p〉= q
γ
2 eipxψ

(
x
q

)
, (7)

where

ψ(x) ∈ L2

(
R+ ,

dx
xγ+1

)
∩L2

(
R+ ,

dx
xγ+2

)
=Hγ ∩Hγ+1. (8)

The function ψ is called a fiducial vector or wavelets, and the condition (8) is necessary to
ensure the smoothness of the quantum operator. In this paper, we will consider ψ : R+ → R.
Thus, ψ = ψ.

The affine quantization is a map that takes a classical function f(q,p) and turns it into a
unique operator Af such that

Af =
ˆ ∞

0

ˆ ∞

−∞

dqdp
2πcγ

f(q,p)|q,p〉〈q,p|. (9)

The constant cγ = c(0)γ is defined as

c(n)γ = c(n)γ (ψ) =

ˆ ∞

0

dx
xγ+2

|ψ(n)(x)|2, (10)

where ψ(n) is the nth derivative of ψ. Therefore, for a generic function φ(x) : R+ → R, the
operator Af applied to φ in the basis |x〉 is given by,

〈x|Af|φ〉=
ˆ ∞

0

ˆ ∞

−∞

dqdp
2πcγ

f(q,p)
ˆ ∞

0

dx ′

(x ′)γ+1
qγeip(x−x ′)ψ

(
x
q

)
ψ

(
x ′

q

)
φ(x ′). (11)

Af is the equivalent quantum observer of the classical function f.
Clearly, the covariant integral method, which we are presenting here for the affine group (2),

is quite different from the canonical one. However, we can better understand its realizationwith
the quantization of classical parameters, such as position, momentum, and kinetic energy.

Using (11), the quantization of qβ and p yields,

〈x|Aqβ |φ〉=
cγ+β

cγ
xβφ(x) ⇒ Aqβ =

cγ+β

cγ
Q̂β ; (12)

〈x|Ap|φ〉=−i d
dx
φ(x)+ i

(
γ+ 1
2

)
1
x
φ(x) ⇒ Ap = P̂+ i

(
γ+ 1
2

)
Q̂−1 ; (13)

where Q̂ and P̂ are, respectively, the canonical position andmomentum operators defined in (1).
Writing Aqβ and Ap in terms of the canonical operator allows us to visualize how the affine
method acts. Constant aside, the affine quantization of the position results in the same canon-
ical operator for this parameter. However, there is a more dramatic change for the momentum
quantization with the appearance of a term Q̂−1. This happens because we are considering a
general Hilbert space Hγ for the system. If, for example, γ =−1, that is, H−1 = L2(R+,dx),
then Ap coincides with the canonical momentum operator. With a similar calculation, we can
find Ap 2 ,

Ap 2 = P̂2 + i(γ+ 1) Q̂−1P̂+

(
c(1)γ−2

cγ
− (γ+ 1)(γ+ 2)

2

)
Q̂−2. (14)
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We see that, at least for γ =−1, the affine quantization naturally recovers the self-adjoint
character of the kinetic potential.

2.2. Dequatization map

Definition (9) provides an interesting way to obtain a dequantization map. Given an observer
Ô(q,p), we can recover a classical observer f̌O(q,p) as the expected value of the observer with
respect to the coherent states |p,q〉,

f̌O(q,p) := 〈q,p|Ô|q,p〉. (15)

For a classical function f(q,p), the affine quantization map (11) give us a corresponding
observer Af . The dequantization map, then, returns another classical function f̌(q,p),

f̌(q,p) := 〈q,p|Af|q,p〉. (16)

It corresponds to the average value of the function f(q,p) with respect to the probability dis-
tribution of the phase space,

ρϕ(q,p) =
1

2πcγ
|〈q,p|ϕ〉|2 (17)

in the case where ϕ= |q ′,p ′〉. That is,

f̌(q,p) =
ˆ ∞

0

ˆ ∞

−∞
dq ′dp ′f(q ′,p ′)ρ|q ′,p ′⟩(q,p). (18)

We can obtain f̌ directly from the function f using (9) and (16):

f̌(q,p) =
1

2πcγ

ˆ ∞

0

ˆ ∞

−∞
dq ′dp ′qγq ′γ

ˆ ∞

0

ˆ ∞

0

dxdx ′

xγ+1(x ′)γ+1
f(q ′,p ′)

× eip(x−x ′)e−ip ′(x−x ′)ψ

(
x
q

)
ψ

(
x ′

q

)
ψ

(
x
q ′

)
ψ

(
x ′

q ′

)
. (19)

This dequantization map, represented by a check mark above the function f̌ , gives us a QPS
portrait, and it can be interpreted as a quantum correction of the classical function f.

QPS [ f(q,p)] : f(q,p) 7→ Af 7→ f̌(q,p). (20)

It is worth mentioning that, when the constant ℏ is reinstated, f̌→ f for ℏ→ 0.
Comparing the QPS portrait to the Heisenberg approach, we notice that the QPS portrait of

a classical function f is not simply a measurement of the quantum observable Af , which is the
case for the expected value of the operator. While f̌ is calculated as a probability distribution
of the wavelets, the expected value of Af depends on the probability distribution of the energy
eigenstates on the phase space,

〈ϕn|Af|ϕn〉=
ˆ ∞

0

ˆ ∞

−∞
dqdpf(q,p)ρϕn(q,p). (21)

With these tools in hand, let us apply this method for the case of black-hole gravity.

3. Hamiltonian description of a black hole

The classical theory of black holes is often studied with the Lagrangian formalism, considering
the Einstein–Hilbert action from which Einstein’s equations are derived. For our purposes,

5
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we will describe a spherical-symmetric black-hole solution with a Hamiltonian formalism, as
proposed in [24].

Let us write the spherical symmetric solution of Einstein’s equation as,

ds2 =−4a(r)dt2 + 4n(r)dr2 + b2(r)dΩ2. (22)

Considering a 3+ 1 decomposition of the space-time [20], the action is written as

S=
1

16π

ˆ
V4

d4x
√
−g(R+ 2Λ)− 1

8π

ˆ
∂V4

d3x
√
hK, (23)

where K is the extrinsic curvature of the spacial hypersurface, and Λ is the cosmological con-
stants. For simplicity, we are going to consider Λ = 0. With gµν given by (22) and integrating
in Ω [28], the Lagrangian L of the action

S=
ˆ
dt
ˆ
drL(a,b, l), (24)

becomes

L= 2l

(
ȧbḃ
l2

+
aḃ2

l2
+

1
4

)
, (25)

with dots representing the derivative with respect to r. The non-dynamical quantity l is given by
l= 4

√
an. As usual, a simple calculation using the canonical momenta results in the Hamilto-

nian H= lH, where

H=
1
b2

[pa(bpb− apa)]−
1
2
. (26)

Let us consider the canonical coordinate change,

α= ln(|a|); β = 2
√
|a|b. (27)

In these coordinates, the Hamiltonian is (equation 2.25 of [24]):

H=
1
2

[
σ

(
p2
β − 4

p2
α

β 2

)
− 1

]
, (28)

where σ = sign(a). For a Schwarzschild black hole, σ= 1 means the region on the exterior of
the black hole, since the metric has signature (−,+,+,+), while σ =−1 represents the region
on the interior of a black hole, where the coefficients for the time and radial coordinates change
signs, that is, the signature becomes (+,−,+,+). The coordinate β spans from 0 to∞ in both
regions, and the only way to differentiate the interior from the exterior is through σ.

We have α ∈ R and β ∈ R+. For the coordinate β, thus, the affine quantization is applic-
able. Meanwhile, the coordinate α seems an appealing candidate to play the role of time,
imparting dynamics to the model. With this in mind, it is worth considering another canonical
transformation for the coordinate α:

T=
α

pα
; PT =

p2
α

2
. (29)

In these new coordinates, the Hamiltonian becomes,

H=
1
2

[
σ

(
p2
β − 8

pT
β 2

)
− 1

]
. (30)
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The Hamiltonian constraint H= 0 is, then,

H= β 2p2
β − 8pT−σβ 2 = 0. (31)

This is the equation we will quantize in the next section.
If we had used the coordinates (α,β) instead of (T,β), the quantization of the Hamilto-

nian constraint would lead to a WdW equation that, in principle, can be analytically solved.
However, the lack of a dominant linear term in the differential equation could lead to a double
arrow of time [6]. To avoid this, we described our model in a Schrödinger picture [21], using
a usual linearization strategy to obtain a linear term from a canonical transformation [29].

To further contextualize this set of coordinates, we can correlate β to the volume of an
Einstein-Rosen Bridge (ERB) connecting two black holes in a Thermo Field Dynamics [30–
32]. For late times, the volume V grows proportionally to the solid angle Ω2 [33]. For the
metric (22), the volume functional is given by (equation (2.5) of [33]):

V(b) = 2
√
|a(b)|b3. (32)

For small b, let us consider |a| → b−1. Then,

V ∼ b2 ∼ β4. (33)

The coordinate β is, therefore, related to the ERB volume, while T, as we hinted, will be
identified as the entropic time parameter. Notice that if V = 0 no bridge is formed, and we
have a classical black hole with a singularity at its origin.

4. Quantization of a black hole gravity

Consider Ψ(β,T) to be the black hole’s wave-function. The quantization of the Hamiltonian
constraint (31) leads to the WdW equation:[

Aβ 2p 2
β
− 8ApT −σAβ 2

]
Ψ= 0, (34)

where Af are as defined in section 2. Before calculating those operators with the integral cov-
ariant method, we should analyze the Hilbert space of the wave function. Since equation (34)
is separable, we must have Ψ(β,T) = Ψ1(β)Ψ2(T), where

Ψ1 ∈H(β)
−2 = L2 (R+,βdβ) ; Ψ2 ∈H(T)

−1 = L2 (R,dT) . (35)

Thus, for the coordinate T, we can consider the canonical quantization given in (1). Then,

ApT =−i∂T. (36)

For the coordinate β, the volume coordinate, we will use the affine quantization. Let us apply
the formalism laid out in section 2 with γ =−2.

The operator Aβ 2 is given in (12),

Aβ 2 =
c0
c−2

β 2. (37)

For Aβ 2p 2
β
, using equation (11), a lengthy calculation results in,

Aβ 2p 2
β
=− c0

c−2

[
β 2∂ 2

β + 3β∂β +

(
1−

c(1)−2

c0

)]
. (38)

7
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Substituting these operators in theWdW equation (34), we obtain a Schrödinger-like equation:

c0
8c−2

[
β 2∂ 2

β + 3β∂β +

(
−σβ 2 + 1−

c(1)−2

c0

)]
Ψ= i∂TΨ. (39)

Comparing (39) to the usual Schrödinger equation, ĤΨ= i(d/dt)Ψ, we find the quantized
Hamiltonian of the system,

Ĥ=
c0

8c−2

[
β 2∂ 2

β + 3β∂β +

(
−σβ 2 + 1−

c(1)−2

c0

)]
. (40)

At his point, the canonical variable T has no connection to the classical parameter t of space-
time. It is merely the phase of the wave function. However, following [34], we argue that
the phase of the wave function equates to a Newtonian dynamics given by a universal time
parameter. It is called entropic dynamics. With it, we recover the notion of an internal clock in
both mechanical and informational senses. The entropic dynamics receives this name because
its construction is often connected to the Hamiltonian of the system’s matter content, in a
mathematical equivalence to the semi-classical interpretation of the Einstein Equations [35],

Gµν = 8πκ〈Tµν〉. (41)

In our case, the dynamics are instead connected to the coefficient g00 of the metric (22). So, the
evolution of the model is dictated by a non-trivial function of the temporal coefficient of the
metric. That is, it comes from the geometry itself. We will further investigate this connection
in section 5.2.

Another critical remark, the Hamiltonian operator depends on σ. It changes for the black
hole’s interior and exterior regions, as expected.

The general solution of the WdW equation (39) is,

Ψ(β,T) = β−1
[
N1Jν

(√
−σβ

)
+N2Yν

(√
−σβ

)]
eiET, (42)

where Jν and Yν are Bessel functions of the first and second kinds, respectively; N1,N2 are
constants; E is the energy of the system; and

ν =

(
c(1)−2

c0
+

8c−2

c0
E

) 1
2

. (43)

Before analyzing the boundary conditions, let us first specify σ.

5. For σ = −1: the interior of the black hole

5.1. Quantum solution for the interior of the BH

The quantization of a gravitational model is useful to investigate domains in Planck-scale
where gravity plays an essential role. In this paper, we will focus on the region around the
singularity inside the event horizon. For this reason, we will choose σ =−1, which corres-
ponds to the interior of the black hole.

Considering the solution (42) and the boundary conditions of the Hilbert space, we must
have N2 = 0 and ν ∈ N, otherwise the solution is not well-defined at the origin (β= 0) [36].
Therefore, renaming ν = n, from (43), we obtain a discrete energy spectrum for the system:

8



Class. Quantum Grav. 40 (2023) 035004 C R Almeida and D C Rodrigues

En =
c0

8c−2

(
n2 −

c(1)−2

c0

)
. (44)

And thus, the wave-function that describes the black-hole system is,

Ψ(β,T) =
∞∑
n=0

Ψn =
∞∑
n=0

N(n)β−1Jn (β)e
iEnT. (45)

To find the coefficients N(n) of equation (45), let us calculate the norm of Ψn for a
given n [37].

|Ψn|2 = |N(n)|2
ˆ ∞

0
ΨnΨ

∗
n βdβ = |N(n)|2

ˆ ∞

0
[Jν(β)]

2 dβ
β

=
|N(n)|2

2(n+ 1)
. (46)

As usual, we must have,
∞∑
n=0

|Ψn|2 =
∞∑
n=0

|Nn|2

2(n+ 1)
= 1. (47)

We can choose, for example, |Nn|2 = S−1
p [2(n+ 1)−p+1], where p> 1, and Sp is the convergent

series defined as

Sp :=
∞∑
k=1

1
kp
. (48)

And then,

Ψn(β,T) =

√
2
Sp

1

(n+ 1)
p+1
2

β−1Jn(β)e
iEnT. (49)

A discrete energy level and independent states for the wave function of a star under gravita-
tional collapse have been obtained before [7] for the canonical quantization of the model. Our
investigation does not need to assume formation by gravitational collapse; thus, it includes
primordial black holes too. In [19], the affine quantization was used to analyze an effective
description of a black hole in the semi-classical limit without a thorough insight into its quant-
izedmodel [19].Wewill present the semi-classical scenario for comparison in the next section.

Another stark difference between ours and these previous results is the adoption of an
entropic time in this present work. In our model, the wave function (49) represents a black
hole evolving according to an intrinsic parameter we adopted as entropic time. We will dis-
cuss the behavior of the entropic time in the following subsection.

So far, we have yet to specify a fiducial vector. However, notice that the wave function
does not depend on it directly. The quantities c(i)γ appear in the energy levels, thus they can be
constrained to match theoretical predictions—for example, the Hawking radiation—or exper-
imental data, such as those obtained by analogue-gravity experiments [38–40]. Since our
paper’s initial analysis is more qualitative in nature, we will not constrain the fiducial vec-
tor for the moment being, keeping it arbitrary. Instead, let us explore the possibilities.

The energy levels (44) are not, at first, positive definite. In fact, the ground state, n= 0 is
always negative. From definition (10), both c(1)−2 and c−2 are positive. Therefore,

E0 =−
c(1)−2

8c−2
< 0. (50)

This could indicate that at least the ground state |Ψ0〉 might be a wormhole solution by direct
relation to the violation of Null Energy Condition [41]. Although the violation of the energy

9
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conditions is the main property of wormhole theories, other properties should be satisfied to
have a wormhole geometry [42], so this proposition requires further investigation. We will
address it further in the semi-classical analysis.

For the sake of providing an example, let us choose ψ(β) as:

ψ(β) =
9√
6
β

3
2 e−

3β
2 . (51)

Thus, c−2 = c−1 = 1 ,c0 = 9/6, and c(1)−2 = 9/8. Substituting those values in equation (44), we
obtain:

En =
3
16

(
n2 − 3

4

)
. (52)

With this choice of fiducial vectors, the energy is negative for n= 0, as expected, and positive
for n⩾ 1.

5.2. The Kantowski-Sachs metric

According to Birkhoff’s Theorem [43], every solution to the Einstein’s equations of a
spherical-symmetric gravitational field is the Schwarzschild solution (or Reissner–Nordström,
if charged). Thus, the line element (22) represents a Schwarzschild black hole, where

a(r) =
1
4

(
1− rS

r

)
= n(r)−1; b(r) = r, (53)

withm being the black hole’s mass and rS = 2m its Schwarzschild radius. For the region inside
the event horizon, that is, r< 2m, the coefficients gtt and grr change their signs and the coordin-
ate transformation t↔ r results in the homogenous and anisotropic Kantowski-Sachs cosmo-
logical solution [4]:

ds2 =−
(
2m
t

− 1

)−1

dt2 +

(
2m
t

− 1

)
dr2 + t2dΩ2. (54)

This same structure can be found in metrics such as De Sitter and [44] and Taub–NUT [45,
46] spaces.

With the Kantowski–Sachs metric, we can draw a connection between the entropic time T
and the cosmic time parameter t. The entropic time T is given by equation (29), with α defined
in equation (27), and pα =−ȧb2/4. [24] Therefore,

T=
α

pα
=− 8

m

(
2m
t

− 1

)2

ln

∣∣∣∣m2t − 1
4

∣∣∣∣. (55)

Figure 1 shows the graphic of the entropic time as a function of the cosmic time.
Notice that T→−∞ as t→ 0, but T approaches a constant in late cosmic time. Indeed, the

derivative of T with respect to t is,

dT
dt

=
32
t2

(
2m
t

− 1

)
ln

∣∣∣∣m2t − 1
4

∣∣∣∣− 16
(2m2t− t2)

(
2m
t

− 1

)2

. (56)

In the limit t→∞, the derivative is null. This was to be expected. In the classical limit, the
Hamiltonian constraint should hold, and the system should not have dynamics. Far from the
origin, t= 0 in the Kantwoski–Sachs metric, T does not play a role in the system’s evolution.
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Figure 1. Entropic time T versus cosmic time t for different values of m.

6. QPS portrait of a BH

With the quantum system described in the last section, we can employ the dequantization map
defined in section 2.2 to conduct a semi-classical analysis of this quantized model, described
by the Hamiltonian operator (40). Classically, the identification of Hamiltonian as the total
energy of the system gives us,

Ȟ= 〈β,pβ |Ĥ|β,pβ〉= E . (57)

Or, equivalently,

ˇβ 2p2
β −σβ̌ 2 = 8E. (58)

Notice this equation is similar to the Hamiltonian constraint (31) if we call pT = E. This iden-
tification comes from the entropic-dynamic understanding that T is the clock parameter of
the system. Equation (58) becomes, then, a quantum correction for the Hamiltonian con-
straint (31).

Using (19), we find that,

β̌ 2 =
c−3c0
c−2

q2 ; ˇβ 2p2 =
c−5c0
c−2

[
β 2p2 +

(
c(1)−2c−3

c−5c0
+
c(1)−5

c−5
+
c−3

c−5

)]
. (59)

Therefore, equation (58) becomes,

β 2p2
β −σβ 2 = 8

c−2

c0c−5
E−

(
c(1)−2c−3

c−5c0
+
c(1)−5

c−5
+
c−3

c−5

)
. (60)

This is the QPS portrait of the black-hole model; a classical equation obtained through the
dequantization map provided by the affine quantization method. Semi-classically, the energy
spectrum is continuous and real, and thus there are values of E to which the right side of
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Figure 2. Phase-space portrait of the system for greater energy levels. The volume’s
contraction speeds near the origin, which remains an assymptote. For β →∞, the
momentum tends to zero.

equation (60) is negative, independently of the choice of a fiducial vector. Therefore, there are
different configurations for the system’s phase space.

We can get valuable insight from the phase-space portrait in a qualitative analysis of the
model. As shown in section 5, the coordinate β is related to the volume of the ERB in this
system. Then, if β becomes null at some point, the black hole has a singularity in its interior.
If, however, the volume is never zero, the geometry suggests the formation of an ERB.

Since we are concerned with the interior region, we have σ =−1. Then, equation (60)
becomes,

β 2p2
β +β 2 = K, (61)

where K is the constant on the right side of equation (60).
Let us start our analysis with the configurations for greater energy levels. For K> 0, the

solution behaves as the classical Schwarzschild model’s phase-space [47, 48], with eventual
adjustments to the graphic’s curvature. At least for high energy, the singularity at the r= 0
remains, and quantum effects do not seem relevant.

To illustrate this situation, let us consider the fiducial vector given in (51). With it, we have
c3 = 4/3, c−5 = 40/9, and c(1)−5 = 3. Therefore,

β 2p2
β +β 2 =

6
5
E− 47

40
. (62)

The graphics for the E= En, with n> 3, from equation (52) is given in figure 2.
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The situation changes for lower levels of energy, when K becomes negative. Since we have
a sum of square roots on the left side of equation (61), we must assume that β is imagin-
ary. Despite this, the volume V ∼ β4 remains real and positive. Thus, it configures a physical
situation.

Nevertheless, let us focus on the behavior of the phase-space portrait for the case K< 0 for
the moment. For β ∈ C, we have pβ ∈ C. In fact, from the classical definition of the momenta,

dpβ
dt

=−∂H
∂β

, (63)

where H is the Hamiltonian (28), we obtain

pβ =−4σ
ˆ

pα
β3
dt. (64)

If we rename β = iλ, with λ ∈ R∗, then,

pβ =−4σi
ˆ

pα
λ3
dt := ipλ. (65)

The volume V can also be written in terms of λ: V ∼ β4 = λ4. Therefore, without loss of
generality, we can rewrite equation (61) as

λ2p2
λ −λ2 =−|K|. (66)

In fact, considering the imaginary description of the space-time coordinates, that is, adopt-
ing an imaginary cosmic time, t= iτ , an imaginary β indicates a change of roles between the
radial and time coordinates in the metric (22). To show this, let us recall the definition (27),
β = 2

√
|a|b. For complex variables, |a|=

√
āa, where ā is the conjugate of a. Therefore,

β ∈ C⇒ b ∈ C. Thus, the coordinate change (iτ,b)↔ (τ, ib) holds. Classically, a change of
roles in the time and radial coordinates happens when crossing the event horizon. This sug-
gests that, for lower energy levels, (61) has no solution to the interior of the black hole. That
is, the system does not have an event horizon. It supports the result that a wormhole is formed
in these cases.

We can see it analytically by observing how is the Hamiltonian (28) for an imaginary β. If
we rewrite the Hamiltonian (28) in terms of λ, we obtain

H=
1
2

[
σ

(
p2
β − 4

p2
α

β 2

)
− 1

]
=

1
2

[
−σ
(
p2
λ − 4

p2
α

λ2

)
− 1

]
. (67)

The Hamiltonian remains the same but with an inverted sign for σ, indicating that this is an
outer region. Thus, the quantum-correctedHamiltonian constraint (61) does not have a solution
for the interior of the black hole for lower energy states. That is, it does not have a horizon.

To visualize this, consider once again the example of the fiducial vector (51). Calculating
the energy (44) for n= 0,1,2,3, and substituting it in equation (66), we obtain a phase space
depicted in figure 3. These lower energy states of a black hole system might represent the late
stages of evaporation after the black hole has radiated most of its energy away. The first four
levels present a minimal, non-null value for λ, which means the formation of an ERB in the
lower levels of energy. This result was foreshadowed in the quantum configuration, where we
found that the ground level had negative energy; and also in the fact β is imaginary, which
indicates that there is not a semi-classical solution for the interior of the black hole, that is,
there is not an event horizon.

This semi-classical analysis is rich. For highly energetic black holes, for example, those
formed by the collapse of supermassive stars, the behavior near the origin is as predicted by
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Figure 3. For lower levels of energy, we notice a formation of ERBs. The volume
expands as the system loses energy.

GR. However, if the black hole radiates more than consuming matter, it may evaporate and
lose energy until it reaches lower energy states. At this point, a wormhole can form. This
result departs from the one obtained in [19], where the author obtained a curvature singularity
removal and horizon displacement for several classes of black holes. The cases in which we
obtained singularity removal and horizon vanishing appear to configure a wormhole solution
instead. In future works, we will explore the geometry to verify this last statement and see if
these cases indeed configure wormholes and analyze their stability [49].

For the particular choice of fiducial vectors we used as an example, the volume expands as
it losses mass. It is tempting to assume that the solution becomes unstable and the black hole
would eventually disappear, completing its cycle of evaporation. This investigation is the next
step for this analysis. It is important to remember that the energy levels are sensitive to the
choice of fiducial vectors, both in the quantum and semi-classical portraits, so it is imperative
to reinstate the constantsG,ℏ, and c to properly interpret the energy levels and find constraints
to the fiducial vectors. Yet, we were still able to provide intriguing general conclusions from
this qualitative analysis.

7. Conclusion

The quantization of a black hole’s gravitational field can give us valuable insights into the enig-
mas surrounding those objects. In this initial investigation, we quantized a black hole model
via the WdW equation in the mini super-space. We used the covariant integral quantization
method, which we argued is more suitable for variables in different domains. Furthermore, it
reproduces the canonical position and momentum operators for coordinates inR. In particular,
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the quantization of strictly positive variables is given through the affine method, a covariant
integral quantization that takes into consideration the affine symmetry of the system’s phase
space.

Our approach was to quantize the Hamiltonian constraint of the classical GR theory to
obtain a WdW equation. We established that the evolution of the quantized system is given by
an intrinsic variable that imparts dynamics to the model. This entropic time plays the role of
a Newtonian clock, a universal time parameter. With the Kantowski-Sachs metric, we found
the connection between the entropic time T and the cosmic time t inside the black hole. As
expected, the entropic time action is dominant for early cosmic time but tends to a constant
as the cosmic time grows. In other words, the Universe’s evolution according to the entropic
time is null in the classical limit, and the Hamiltonian constraint holds.

After identifying the time parameter, we recover a Schrödinger-like equation, obtaining an
effective Hamiltonian operator that governs the model. The solution of the Schrödinger-like
WdW equation is a combination of polynomials, Bessel functions, and the time exponential.
The system’s energy spectrum is discrete in the black hole’s interior and the ground-state |Ψ0〉
has negative energy, which suggests it could be a wormhole solution, a possibility that will be
addressed in future analysis.

The affinemethod offers an intuitive dequantizationmap inwhichwe can recover a classical
function of the position and momentum from a quantum operator. In the case of an operator
obtained from a classical function, the QPS portrait can be interpreted as a quantum correction
of said function. Through the dequantization map of the Hamiltonian operator, we presented a
semi-classical analysis of the model, where we obtained different configuration for the phase
space. For greater energy levels, the results are equivalent to what is expected from the classic
GR theory. The indefinite contraction occurs, and the singularity remains at the origin. The
situation changes for lower energy levels. These should correspond to the late stages of evap-
oration. In this situation, the solution has a minimum non-null volume and no event horizon,
indicating that a wormhole has been formed.

The speculation left in this qualitative analysis of the semi-classical portrait will be further
developed after we reinstate the fundamental constantsG,c, and ℏ to investigate the thermody-
namical implications of the quantization and to probe how sensitive the energy is to the choice
of fiducial vectors. This way, we can obtain constraints to the fiducial vector from theoretical
and experimental predictions from analogue models. Moreover, we will analyze the cases of
micro black holes, a scenario in which quantum gravity becomes relevant near the horizon. A
thermodynamical examination of those has recently been considered an alternative explana-
tion for thermal-dominant gamma-ray bursts [50]. Another goal would be to extend the results
to the case of a charged black hole. The quantization of a black hole gravity opens many paths
for future research.
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