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Unsupervised Learning and Recall of Temporal Sequences:
An Application to Robotics
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This paper describes an unsupervised neural network model for learning and recall of temporal patterns. The
model comprises two groups of synaptic weights, named competitive feedforward and Hebbian feedback, which
are responsible for encoding the static and temporal features of the sequence respectively. Three additional
mechanisms allow the network to deal with complex sequences: context units, a neuron commitment equation,
and redundancy in the representation of sequence states. The proposed network encodes a set of robot tra Jjectories
which may contain states in common, and retrieves them accurately in the correct order. Further tests evaluate
the fault-tolerance and noise sensitivity of the proposed model.

1 Imtroduction

It is well-known that artificial neural network (ANN)
models have been successfully applied to a wide
range of static pattern processing tasks, such as pat-
tern recognition, categorization and feature detection.
However, many real world tasks demand the ability
of natural, or artificial neural systems to process pat-
terns in which the information content depends not
only on static or spatial features, but also on the
temporal order of the input patterns. Such a set of
temporally-ordered patterns are commonly referred
to as spatio-temporal sequences [1].

Spatio-temporal patterns are often represented as
a discrete finite sequence of feature vectors, also
called items, components or states, consecutively
connected. In such sequences, the variable time plays
a fundamental role and is usually encoded by the pre-
sentation order of the sensory inputs, and by the rel-
ative time duration between each two consecutive se-
quence items.

Handling of context, short-term memory models,
and the processing of multiple sequences are impor-
tant issues regarding temporal patterns. Contex-
tual information usually refers to the prior knowl-
edge necessary to identify unambiguously a compo-
nent of a temporal sequence [2]. A short-term mem-
ory (STM) model is basically a retention mechanism
which aims at storing, for some period of time, infor-
mation about past components of a given input se-

' Hopfield model [8], [9].
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quence [1]. Such a mechanism of temporary storage
allows the network to establish temporal associations
between consecutive states of a sequence. Multiple se-
quence processing is concerned with the encoding of
several sequences that may share components. Deal-
ing with multiple sequences has two challenging as-
pects: the first is the so-called catastrophic interfer-
ence [3] whereby later network training destroys ves-
tiges of former training. The second is the ambiguity
that results during recall of shared states.

Most of the ANN models for processing of spatio-
temporal sequences are based on either a multi-
layer Perceptron trained with temporal versions of
gradient-based learning algorithms [4]-[7] or the
Both cases consider a tem-
poral sequence as associations of consecutive items,
and the network should learn these associations as
input-output pairs.

More recently, unsupervised neural network mod-
els have been proposed and successfully applied to a
wide range of sequence processing tasks [2], [10]-[15].
Such models extract temporal information from the
input stimuli without the need of an external teacher
or signal to indicate the correct answer or relation to
be pursued. In this sense, one can say that the learn-
ing process is stimuli-driven and governed by princi-
ples of self-organization.

This paper is primarily concerned with the pro-
posal of an unsupervised neural network model and
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its application to a difficult problem in robotics:
learning of multiple robot trajectories.

The paper is organized as follows. In Section 2, we
present some concepts regarding unsupervised neural
learning in robotics and the advantages in adopting
such an approach. In Section 3, we develop our model
discussing in detail all its components. In Section 4,
we evaluate the performance of the model through
computer simulations and discuss the main results.
We conclude the paper in Section 5 with a summary
of the network features, and also present possible di-
rections for further developments.

2 Robotics and Unsupervised Learning

Robot learning problems are usually characterized by:
(i) a real-world system that tightly integrates percep-
tion, decision making and execution; (ii) complex do-
mains, yet the expense of using actual robotic hard-
ware often prohibits the collection of large amounts
of training data; and (iii) real-time requirements in
which decisions must be made within critical time
constraints. These characteristics present challenges
to learning systems, and motivate considerably the
search for good neural models.

The research in ANN and its application to dis-
tinct domains make it possible to investigate solu-
tions for complex problems in robotics following dif-
ferent learning paradigms. In particular, unsuper-
vised learning has appealing characteristics for use in
robotics and temporal sequence processing. Behavior
in unsupervised neural networks emerges by means
of a self-organization process, which substantially re-
duces the robot programming burden [16].

Another suitable property is the ability to gener-
alize the learned material that enables the robot con-
troller to respond to unexpected situations. More-
over, the structure of neural networks allows massive
parallel processing [17] which enables the network to
respond quickly in generating real-time control ac-
tions. In particular, unsupervised models are often
fast, encouraging their use in incremental and on-line
learning.

The robot task we are interested in is the so-called
trajectory tracking, in which the robot has to follow
a prescribed path [18]. Such a task can be handled
within the framework of ANN models, since trajec-
tories can be seen as spatio-temporal sequences. In
this case, the neural network must learn to associate
consecutive states of a trajectory and store these tran-
sitions for total or partial reproduction of the mem-
orized trajectory. For the purpose of recall, the net-
work receives as input the current state of the robot

a(t-1), yi(t-1)  axt-1), yat-1)  @n(t-1), Ym(t-1)

feedback
weights W

feedforward
weights W/
[ Trajectory state s(z), 8(), ©(#) ] [ Context Units ¢(z) |
N— 7
~
Input vector v(z)

Figure 1. Topology of the proposed unsupervised network

and responds with the next state until the goal state
has been reached.

Despite the appealing properties, few unsupervised
ANN models have been proposed. Among them we
can refer the readers to [19], [20], and [21]. However,
such references have not directly addressed tracking
and learning of multiple trajectories, and some prop-
erties of great interest such as tolerance to fault and
noise. In this paper, we aim at proposing an unsu-
pervised ANN model to deal with complex robotics
problems.

3 Presenting the Model

The basic topology of the proposed network is shown
in Figure 1. The input units broadcast the state vec-
tor, v(t) € R™, which comes from sensor readings and
is defined as:

v(t) = {s(2),6(), (%), c(t)}

s(t) = (z(2),y(t),2(t))

() = {0:1(t),...,0405®)}, 8:(t) eR (1)
() = {n(t),.-.,7a0r®)}, i(t) ER

c(t) = (4,94 %)

where s(t) is the spatial location of the robot end-
effector, (t) is the joint-angle vector, 7(t) is the
applied-torque vector at time step ¢, and dof is the
number of degrees of freedom of the robot arm. The
context vector c(t) is set to the target spatial po-
sition of the robot end-effector, which is given as a
task specification.

The network has two groups of synaptic connec-
tions, namely: (i) competitive feedforward weights,
W (t) = [wl ()lmon, and (i) Hebbian feedback
weights, W/b(t) = [wfrb (t))mazm- Feedforward weights



encode the spatial features of the sequence (static
information), while feedback weights store the state
transitions (temporal information). At the beginning
of training, they are initialized as wfif (0) = rand[0, 1]
and wfrb(O) =0.

There is an activation value, a;(t) € [0,1], j =
1,...,m, and an output value y;(¢t) € R, j =
1,...,m, associated with each neuron in the output
layer. The activation indicates the winners of the cur-
rent competition, and the output indicates the neuron
that encodes the next state of the trajectory. These
variables are initialized as a;(0) = y;(0) = 0, for all
J, every time an input is observed.

It is worth emphasizing that by a discrete time step
t, we mean a period that begins with the presentation
of an input pattern v(t), and ends with the calcula-
tion of the output signal y;(t). Similarly, the instant
(t — 1) corresponds to the learning or recalling period
of the last observed input, and (¢ + 1) refers to the
next one.

3.1 Training Feedforward Weights

In our model, the number of winners is set to K,
hence each state of the input trajectory is encoded
by K different neurons. Thus, neurons are ranked
according to the proximity of their weight vectors and
the current input as follows:

pit) = argmin{llv() - wi O+ ;(2)}

palt) = arg _min {|lv(t) - Wil (@®)] + e;(t)}

1

: : : (2)
pr(t) = arg min {Iv(t) - w7 (]| +;(0))
ielU._, p:(®)
where p;(t) is the index of the ¢ — th winner. Then,
activations of the winners are calculated by the fol-
lowing equation:

api(t) :{ 80@51.“‘1

where agp > 1 and 0 < ¢ < 1. Equation 3 means
that the activation levels of py(¢),...,pk(t) decrease
as their distances to v(t) increase.

The feedforward weights are trained with a simple
competitive learning rule, defined as in [22]:

fori=1,...,K
fori> K (3)

Aw!(t) = aa; (v () — Wi (1)) @
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where 0 < a < 1 is the feedforward learning rate.
Equation 4 indicates that only neurons with a;(t) # 0
have their weights modified. If we set @ ~ 1 the input
vector can be learned in a single pass.

Context is stored together with the state of the
robot arm. As we handle multiple trajectories, con-
text helps the network to make the right decision
in case of ambiguity by identifying the trajectory to
which a shared state belongs. Several trajectories are
learned sequentially, as a single long trajectory, and
context units change accordingly every time a new
trajectory starts. For recall purposes, Equation 4 is
omitted, and we set K=1 (WTA behavior).

A neuron is not chosen as a winner for more than
one state of the input trajectory. This is accomplished
through the definition of a commitment equation as
follows:

e;(t+1) = e;(t) + Ba;(t) (5)

where § > 1. At the beginning of training and test-
ing, we set e;(0) = 0, for all j. The effect of Equa-
tion 5 is the following: once a neuron is committed
to an input vector, its function e;(t) assumes a high
value to remove this neuron from subsequent compe-
titions. Similar mechanisms were proposed by [23]
and [24].

3.2 Training Feedback Weights

In this work, we propose a very simple learning rule to
deal with temporal dependencies. The premise con-
sidered here is that, for learning temporal order, feed-
back connections between neurons should depend not
only on current activation a;(t), but also upon the
previous activation a,(t — 1) as well. A mathematical
formulation takes the form of a time-delayed Hebb-
like learning rule [25], defined as:

Awl(t) = haj(t)ar(t 1) ©)

or, in matrix form as:
AW (1) = da(t)aT (t — 1) (7)

where 0 < A <1 is the feedback learning rate. Equa-
tion 6 learns the order of a state transition between
two consecutive competitions. Thus, non-zero con-
nections are established from winners at ¢t — 1 to win-
ners at time t. The states themselves are stored in
the feedforward weights through Equation 4.

In Equation 7, AWY?(¢t) is a feedback memory ma-
triz corresponding to the learning of one state transi-
tion, and determined solely by the pair (a(t),a(t—1)).
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Figure 5. The desired (solid lines) and obtained (dashed lines)
joint angles for trajectory s-21 in the presence of neuron faults.
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Figure 6. The desired and obtained applied torques at the
three end-effector joints for trajectory s-21 in the presence of
neuron faults.

the tests include zero-mean Gaussian stochastic noise
(¢ = 0.85) which simulates measurement errors. A
typical result obtained for the spatial positions is
shown in Figure 7 for trajectory t — 11 which share an
intermediate position (0.3, 0.2, 0.0) with ¢t — 15 and
t—21.

It can be noted from Figure 7 that trajectory s-11
was correctly recalled, with a resulting tracking error
MSE,_;; = 0.0000377. Note that the presence of
noise during the tests forces some states of the tra-
jectory to be encoded by second-place winners.

The retrieved joint angles for the test with noise
are shown in Figure 8. The retrieved applied torques
are shown in Figure 9. Note that the retrieved and
the desired curves in both figures are very similar.

From the tests carried out in this section, we can
conclude that the proposed model is able to learn and
recall robot trajectories unambiguously with very low
tracking errors. In addition, it is robust, in the sense
that it can handle neuronal failures and noise to some

y 0.15 0.1

Figure 7. Evaluation of the redundancy mechanism for trajec-
tory t-11 in the presence of noisy inputs.
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Figure 8. Retrieved joint angles of trajectory t-11 for the case
of noisy inputs

extent. If both these abilities are desirable, a balance
between fault- and noise-tolerance must be found.

5 Conclusions and Further Work

In this work, we were particularly concerned with the
problem of fast and accurate learning of single and
multiple temporal sequences in the form of robot tra-
jectories. An unsupervised context-based neural net-
work algorithm is the learning strategy mainly be-
cause it is based on self-organization, a rather generic
principle, that is employed in a wide range of appli-
cation domains. For the proposed model, the correct
temporal order of the states of a particular trajec-
tory is the property that emerges as a result of the
network’s self-organizing nature.

The contribution of this work to the field of un-
supervised neural networks are twofold: (i) use of
a Hebb-like learning rule to process spatio-temporal
patterns and (ii) application of such a model to con-
trol robots involved in tracking tasks. The viabil-
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Figure 9. Retrieved applied torques of trajectory t-11 for the
case of noisy inputs

ity of the proposed learning algorithm was evaluated
through simulations of robot trajectories with reason-
able complexity.

In summary, the proposed model is characterized
as being simple, fast and accurate, handling ambi-
guity when dealing with multiple sequences, able to
learn trajectories of different lengths, model-free for
the development of a control law, fault and noise tol-
erant, and able to recall a trajectory from any inter-
mediate point.

Some robot tasks may demand the storage of long
sequences, the redundancy and commitment mecha-
nisms could cause the use of a high number of output
neurons, leading to a situation in which all of them
were used and could not be allocated to encode new
sequences. To deal with this drawback, further stud-
ies should develop mechanisms for alleviating memory
requirements. We suggest: 1) the use of constructive
algorithms [30] to include neurons when necessary,
and/or 2) the development of context-sensitive neu-
rons, to be responsible for storing shared or repeated
states of the various sequences. During recall, such
neurons would identify the sequence to which a shared
state belongs.
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