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This paper describes an unsupervised neural network model for learning and recai! of temporal patterns. The

model comprises two groups of synaptic weights, named competitive feedforward and Hebbian feedback, which

are responsible for encoding the static and temporal features of the sequence respectively. Three additional

mechanisms allow the network to deal with complex sequences: context units, a neuron commitment equation,

and redundancy in the representation ofsequence states. The proposed network encodes a set ofrobot trajectories

which may contain states in common, and retrieves them accurately in the con-ect order. Further tests evaluate

the fault-tolerance and noise sensitivity of the proposed model.

l Introductíon

It is well-known that artificial neural network (ANN)

models have been successfully applied to a wide
range of static pattern processing tasks, such as pat-

tem recognition, categorization and feature detection.

However, many real world tasks demand the ability
of natural, or artificial neural systems to process pat-

terns in which the information content depends not
only on static or spatial features, but also on the
temporal order of the input patterns. Such a set of

temporally-ordered patterns are commonly referred

to as spatio-temporal sequences [lj.

Spatio-temporal patterns are often represented as

a discrete finite sequence of feature vectors, also

called items, components or states, consecutively

connected. Li such sequences, the variable time plays

a fundamental role and is usually encoded by the pre-
sentation arder of the sensory inputs, and by the rel-

ative time duration between each two consecutive se-

quence items.

Handling of context, short-term memory models,

and the processing of multiple sequences are impor-

tant issues regarding temporal patterns. Contex-

tual information usually refers to the prior knowl-
edge necessary to identify unambiguously a compo-

nent of a temporal sequence [2]. A short-term mem-

ory (STM) model is basically a retention mechanism
which aims at storing, for some period of time, infor-

mation about past components of a given input se-

quence [l]. Such a mechanism of temporary storage
allows the network to establish temporal associations
between consecutive states of a sequence. Multiple se-

quence processing is concerned with the encoding of

several sequences that may share components. Deal-

ing with multiple sequences hás two challenging as-
pects: the first is the so-called catastrophic interfer-
ence [3] whereby later network training destroys ves-
tiges of former traming. The second is the ambiguity
that results during recall of shared states.

Most of the ANN models for processing of spatio-
temporal sequences are based on either a multi-

layer Perceptron trained with temporal versions of

gradient-based learning algorithms [4]-[7] or the
Hopfield model [8], [9]. Both cases consider a tem-
poral sequence as associations of consecutive items,

and the network should learn these associations as

ínput-output paírs.

More recently, unsupervised neural network mod-

els have been proposed and successfully applied to a

wide range of sequence processing tasks [2], [10]-[15].
Such models extract temporal information from the
input stimuli without the need of an externai teacher
or signal to indicate the correct answer or relation to
be pursued. In this sense, one can say that the learn-

ing process is stimuli-driven and governed by princi-

pies of self-organization.

This paper is primarily concerned with the pro-
posai of an unsupervised neural network model and
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its application to a diíficult problem in robotics:

learning of multiple robot trajectories.
The paper is organized as follows. In Section 2, we

present some concepts regarding unsupervised neural

learning in robotics and the advantages in adopting
such an approach. In Section 3, we develop our model

discussing in detail ali its components. In Section 4,
we evaluate the performance of the model through

computer simulations and discuss the main results.

We conclude the paper in Section 5 with a summary
of the network features, and also present possible di-

rections for further developments.

2 Robotics and Unsupervised Learning

Robot learning problems are usuaUy characterized by:
(i) a real-world system that tightly integrates percep-
tion, decision making and execution; (ü) complex do-

mains, yet the expense of using actual robotic hard-

ware often prohibits the collection of large amounts

of traüúng data; and (iü) real-time requirements in
which decisions must be made within criticai time
constraints. These characteristics present challenges

to learning systems, and motivate considerably the
search for good neural models.

The research in ANN and its application to dis-
tinct domains make it possible to investigate solu-

tions for complex problems in robotics following dif-
ferent learning paradigms. Ia particular, unsuper-

vised learning hás appealing characteristics for use in

robotics and temporal sequence processing. Behavior

in unsupervised neural networks emerges by means

of a self-organization process, which substantially re-

duces the robot programming burden [16].

Another suitable property is the ability to gener-
alize the learned material that enables the robot con-
troller to respond to unexpected situations. More-

over, the structure of neural networks allows massive

parallel processing [17] which enables the network to
respond quickly in generating real-time control ac-

tions. In particular, unsupervised models are often

fast, encouraging their use in incrementai and on-line

learning.

The robot task we are interested in is the so-called

trajectory tracking, m which the robot hás to follow
a prescribed path [18]. Such a task can be handled
within the framework of ANN models, since trajec-

tones can be seen as spatio-temporal sequences. In

this case, the neural network must learn to associate

consecutive states of a trajectory and store these tran-

sitions for total or partial reproduction of the mem-

orized trajectory. For the purpose of recall, the net-

work receives as input the current state of the robot

oi(í-l), yi(t-l) a2(M). y2(M) ""('-D, y^t-ï)

feedback
weights W

feedfonvard
weights W^

Input vector v(í)

Figure l. Topology of the proposed unsupervised network

and responds with the next state until the goal state
hás been reached.

Despite the appealing properties, few unsupervised

ANN models have been proposed. Among them we

can refer the readers to [19], [20], aud [21]. However,
such references have not directly addressed tracking
and learning of multiple trajectories, and some prop-

erties of great interest such as tolerance to fault and
noise. In this paper, we aim at proposing an unsu-

pervised ANN model to deal with complex robotics
problems.

3 Presenting the Mo dei

The basic topology of the proposed network is shown
in Figure l. The input units broadcast the state vec-

tor, v(í) € R", which comes from sensor readings and

is defined as:

V(t) = {S(t), (?(*), T(t),c(í)}

s(í) = (x(t),y{t),z{t))
QW = {6, (*),..., e^f(t)}, ^(í)€R (l)

T(t) = {Ti(t),...,T<io/(í)}, Ti(í)€R

C(t) = {Xg,yg,Zg)

where s (t) is the spatial location of the robot end-

eífector, 0(t) is the joint-angle vector, r(í) is the
applied-torque vector at time step t, and dof is the
number of degrees of freedom of the robot arm. The
context vector c(í) is set to the target spatial po-
sitiou of the robot end-effector, which is given as a

task specification.

The network hás two groups of synaptic connec-

tions, namely: (i) competitíve feedforward weights,

W//(í) = [w(/{t)]mxn, and (ii) Hebbian feedback

weights, Wfb{t) = [w^(f]}^m. Feedforward weights
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encode the spatial features of the sequence (static
information), while feedback weights store the state
transitions (temporal information). At the beginning

oftraining, they are initialized as iüj^(0) = rand[0, l]

and w^(0) = 0.
There is an activation value, dj{t) 6 [0,1], j =

l,..., m, and an output value y j {t) £ R, j =

l,... ,m, associated with each neuron in the output

layer. The activation indicates the winners of the cur-

rent competition, and the output indicates the neuron

that encodes the next state of the trajectory. These

variables are initialized as aj(0) = 2/j(0) = 0, for ali

j, every time an input is observed.

It is worth emphasizing that by a discrete time step
t, we mean a period that begins with the presentation

of an input pattern v (í), and ends with the calcula-

tion of the output signal y j (t). Similarly, the instant
(í - l) corresponds to the learning or recalling period
of the last observed input, and (t + l) refers to the
next one.

3.1 Training Feedforward Weights

In our model, the number of winners is set to K,

hence each state of the input trajectory is encoded
by K diíferent neurons. Thus, neurons are ranked

according to the proximity of their weight vectors and
the current input as follows:

pi (í) = argmin{||v(í)-wf(í)H+e,(í)}

^(í) = arg^mm^{||v(í)-wf(í)||+e,(í)}
'jÍ{piW}~

(2)
pK(t) - arg^min ^||v(í) - wf(t)|| + e,(í)}

-<jZ7p-w" "/ J

where pi (í) is the index of the i - th winner. Then,
activations of the winners are calculated by the fol-
lowing equation:

a..(f)=í ao^-l ÍWÍ.=1V'K
ap.W = I n" f^ ,o for i > K

where ao >: l and O < ip < l. Equation 3 means

that the activation leveis of pi (í), ... ,pK.{t) decrease
as their distances to v(í) increase.

The feedforward weights are trained with a simple
competitive learning rule, defined as in [22]:

where O < a <, l is the feedforward learning rate.
Equation 4 indicates that only neurons with aj (í) ^ O
have their weights modified. If we set a. ^ l the input

vector can be learned in a single pass.

Context is stored together with the state of the
robot arm. As we handle multiple trajectories, con-

text helps the network to make the right decision
in case of ambiguity by identifying the trajectory to
which a shared state belongs. Several trajectories are

learned sequentially, as a single long trajectory, and
context units change accordingly every time a new

trajectory starts. For recall purposes, Equation 4 is
omitted, and we set K=l (WTA behavior).

A neuron is not chosen as a winner for more than

one state ofthe input trajectory. This is accomplished

through the definition of a commitment equation as
follows:

ej{t+l) = e j (t) + /3dj(t) (5)
where 0 3> l. At the beginning of training and test-
ing, we set gj(0) = 0, for ali j. The effect of Equa-
tion 5 is the following: once a neuron is committed

to an input vector, its function ej(í) assumes a high
value to remove this neuron from subsequent compe-

titions. Similar mechanisms were proposed by [23]
and [24].

3.2 Training Feedback Weights

In this work, we propose a very simple learning rule to

deal with temporal dependencies. The premise con-

sidered here is that, for learning temporal arder, feed-

back connections between neurons should depend not

only on current activation a^(í), but also upon the
previous activation ar(t- l) as well. A mathematical

formulation takes the form of a time-delayed Hebb-
like learning rule [25], defined as:

Aw^(í)=Àaj(í)a^(í-l)

or, in matrbc form as:

AW/6(í)=Àa(í)ar(í-l)

(6)

(7)

Aw^(í)=aa,(í)[v(t)-w^(í)] (4)

where O < X <. l is the feedback learning rate. Equa-

tion 6 learns the order of a state transition between

two consecutive competitions. Thus, non-zero con-

nections are established from winners at í— l to win-

ners at time t. The states themselves are stored in

the feedforward weights through Equation 4.
In Equation 7, AW/6 (í) is a feedback memory ma-

trix corresponding to the learning of one state transi-

tion, and determined solely by the pair (a(í),a(í-l)).
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Figure 5. The desired (solid lines) and obtained (dashed Unes)
joint angles for trajectory s-21 in the presence of neuron faults.

Figure 7. Evaluation of the redundancy mechamsm for trajec-

tory t-11 in the presence of noisy inputs.
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Figure 6. The desired and obtained applied forques at the

three end-effector joints for trajectory s-21 in the presence of

neuron faults.

4 6
time step

Figure 8. Retrieved joint angles of trajectory t-11 for the case

of noisy inputs

the tests include zero-mean Gaussian stochastic noise

(o- = 0.85) which simulates measurement errors. A

typical result obtained for the spatial positions is
shown in Figure 7 for trajectory i — 11 which share an

intermediate position (0.3, 0.2, 0.0) with t - 15 and
í-21.

It can be noted from Figure 7 that trajectory s-11
was correctly recalled, with a resulting tracking error

MSEf-n = 0.0000377. Note that the presence of

noise during the tests forces some states of the tra-

jectory to be encoded by second-place winners.

The retrieved joint angles for the test with noise

are shown in Figure 8. The retrieved applied forques
are shown in Figure 9. Note that the retrieved and

the desired curves in both figures are very similar.

From the tests carried out in this section, we can

conclude that the proposed model is able to learn and

recall robot trajectories unambiguously with very low
tracking errors. In addition, it is robust, in the sense

that it can handle neuronal failures and noise to some

extent. If both these abilities are desirable, a balance
between fault- and noise-tolerance must be found.

5 Conclusions and Further Work

In this work, we were particularly concerned with the

problem of fast and accurate learning of single and
multiple temporal sequences in the form of robot tra-

jectories. An unsupervised context-based neural net-

work algorithm is the learning strategy mainly be-
cause it is based on self-organization, a rather generic

principie, that is employed in a wide range of appli-
cation domains. For the proposed model, the correct

temporal arder of the states of a particular trajec-

tory is the property that emerges as a result of the

network's self-organizing nature.

The contribution of this work to the field of un-
supervised neural networks are twofold: (i) use of
a Hebb-like learning rule to process spatio-temporal

patterns and (ii) application of such a model to con-
trol robots involved in tracking tasks. The viabil-
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Figure 9. Retrieved applied forques of trajectory t-11 for the

case of noisy inputs

ity of the proposed learning algorithm was evaluated
through simulations of robot trajectories with reason-

able complexity.

In summary, the proposed model is characterized

as being simple, fast and accurate, handling ambi-

guity when dealing with multiple sequences, able to
learn trajectories of diíFerent lengths, model-free for
the development of a contrai law, fault and noise tol-

erant, and able to recall a trajectory from any inter-

mediate point.

Some robot tasks may demand the storage of long
sequences, the redundancy and commitment mecha-

nisms could cause the use of a high number of output

neurons, leading to a situation in which ali of them
were used and could not be allocated to encode new

sequences. To deal with this drawback, further stud-

ies should develop mechanisms for alleviating memory
requirements. We suggest: l) the use of constructive

algorithms [30] to include neurons when necessary,
and/or 2) the development of context-sensitive neu-
rons, to be responsible for storing shared or repeated
states of the various sequences. During recall, such

neurons would identify the sequence to which a shared
state belongs.
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