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Scaling properties of Tan’s contact: Embedding pairs and correlation effect in the
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We study Tan’s contact of a one-dimensional quantum gas of N repulsive identical bosons confined in
a harmonic trap at finite temperature. This canonical ensemble framework corresponds to the experimental
conditions, with the number of particles being fixed for each experimental sequence. We show that in the strongly
interacting regime, the contact rescaled by the contact at the Tonks-Girardeau limit is a universal function of two
parameters: the rescaled interaction strength and temperature. This means that all pair and correlation effects in
Tan’s contact are embedded in Tan’s contact in the Tonks-Girardeau limit.
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I. INTRODUCTION

Many-body quantum physics is a cornerstone of modern
physics and a key to understanding future technologies such
as high-7; superconductivity or quantum computing. How-
ever, an accurate description of strongly correlated quantum
systems, for an arbitrary number of particles, is often a chal-
lenge without a simple solution. Apart from the very specific
family of integrable systems [1-11] where all observables
can, in principle, be predicted theoretically, our knowledge
is, in general, limited to simple situations such as two parti-
cles [12—14], solutions that hold in the thermodynamic limit
[15,16], low-energy physics [17], or mean-field descriptions
for many-body systems [18,19]. It is therefore quite difficult
to extract general information such as the scaling of physical
observables with respect to the number of particles for generic
situations.

For the case of quantum particles with pointlike interac-
tions, short-range correlations are embedded in Tan’s con-
tact Cy [20-22]. This quantity, which is proportional to the
probability that two particles approach each other infinitely
close, determines the asymptotic behavior of the momen-
tum distribution n(k), Cy = limy_, o k*n(k), with k being the
momentum divided by /. This observable can be measured
via time-of-flight techniques [23-25], with radio-frequency
spectroscopy [26,27], Bragg spectroscopy [28], by measuring
the energy variation as a function of the interaction strength
[24], or by looking at three-body losses in quantum mixtures
[29]. This central quantity is a function of the interaction
energy, density-density correlations function, trapping config-
uration, temperature, as well as magnetization [30,31], and
thus depends in a nontrivial way on the nature and the number
N of particles. Therefore, even in one dimension, the behav-
ior of Cy is not completely clarified, especially in trapped
systems, despite many theoretical investigations [30,32-35].
For one-dimensional (1D) bosons (and/or fermions) trapped
in a harmonic potential of frequency w, it has been shown
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that in the thermodynamic limit, at zero temperature, the
contact rescaled by N°/? is a universal function of one scal-
ing parameter: z = aho/(|a1D|«/1V) [15,34]. This holds also
at finite temperature, in the grand-canonical ensemble: the
contact rescaled by N°/? is a universal function of two scaling
parameters, z and & = |aip|/App, or, equivalently, z and
t =T/TF [16,36], with a;p being the 1D scattering length,
an, = /h/(mw) the harmonic oscillator length, m the mass,
ADB = V2 i /mkpT the de Broglie thermal wavelength,
Tr = Nhw/kp the Fermi temperature, and kg the Boltzmann
constant. However, for systems with a small number of par-
ticles, the N2 scaling fails. In the zero-temperature limit
[37], it is possible to change the paradigm and to introduce
a different scaling form that holds from N = 2 to infinity.
At finite temperature, in the grand-canonical ensemble, the
N3/2 scaling holds for N > 10 [16]. However, corrections
at a small number of particles have, to our knowledge, not
yet been studied in 1D and the important question of the
relevance of the statistical ensemble has not been addressed.
The latter is indeed a crucial point since ultracold-atom exper-
iments are canonical or, more often, an average over canonical
ensembles, but not grand canonical, and scaling properties
are obviously strongly affected by the statistical distribution
of particles numbers. In fact, in ultracold experiments, in
each experimental sequence, N atoms are charged in a three-
dimensional trap. Then the atoms are separated in several light
wires created by the interference of two propagating laser
beams [38]. The atomic gas in the wires can be considered
as one dimensional if the interaction and thermal energies
are lower than the energy scale of the radial confinement
hw, , with w; being the radial harmonic oscillator frequency
[39]. Otherwise, atoms can be directly trapped in a single
1D tube with a strong radial confinement [40]. In both cases,
the relation between the 1D scattering length a;p and the 3D
one asp is given by a|p = —ai/aw, where a, = /h/(mw,)
[41].
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In this paper, we study the canonical Tan’s contact for a
small number of harmonically trapped Lieb-Liniger bosons.

We show that in the strongly interacting regime, the contact
for N bosons at temperature 7' and with repulsive interaction,
divided by the contact for the same number of bosons and
temperature but in the regime of infinite repulsions, is an
N-independent function of z and t. Namely, all the nontrivial
particle-number dependence is embedded in the contact in the
infinite interaction limit, even at finite temperature, which is
the main result of this work. The regime of infinite repul-
sions in one dimension corresponds to the so-called Tonks-
Girardeau limit. In this regime, the infinite repulsions, due to
the low dimensionality, play the role of a sort of Pauli princi-
ple so that bosons “behave” as noninteracting fermions. An-
other result is that we provide an analytical expression for the
N dependence of the canonical contact in the Tonks-Girardeau
limit. Our formula is a conjecture that works extremely well
over the whole temperature range. The consequence of these
two results is that we can explicitly express the canonical
contact for N harmonically trapped Lieb-Liniger bosons in the
intermediate- and strong-interaction regime (z > 1), for any
value of N and any temperature 7.

The paper is organized as follows. In Sec. II, we introduce
the physical system and define the canonical Tan’s contact.
This observable is then evaluated exactly in two special sit-
uations: for two identical bosons at any interaction strength
and any temperature and for N identical bosons in the Tonks-
Girardeau limit (infinite coupling). In the general situation,
namely, for intermediate interaction strength and for N > 2,
we calculate Tan’s contact by means of quantum Monte Carlo
(QMC) simulations. The scaling properties of the canonical
contact are then analyzed in Sec. III. After reviewing the
results previously obtained in the strongly interacting limit
at zero temperature [37], we analyze the large-temperature
scaling of the contact in the same limit. By comparing these
two limits, we propose an explicit form of the contact scaling
function holding in the strongly interacting limit and at any
temperature, which makes our numerical data overlap for
different number of atoms N with only a few-percent dis-
crepancy. In Sec. IV, we compare the canonical contact with
the grand-canonical one. At large temperature, the canonical
and grand-canonical contacts are both proportional to the two-
boson contact. This does not hold at smaller temperatures.
Finally, our concluding remarks are given in Sec. V.

II. CANONICAL TAN’S CONTACT

We consider a gas of N identical interacting bosons of
mass m trapped in a 1D harmonic confinement. This system is
described by the Hamiltonian

where the repulsive interaction strength g depends on the 1D
scattering length as g = —2/%/mayp, if a; > a3p [41]. At
finite temperature 7', in the canonical ensemble, the contact
for N bosons, Cy (g, T'), can be deduced from the free energy

F by exploiting Tan’s sweep relation [20],
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where E; is the ith eigenenergy of the N-boson system and
B = (kgT)™'. C§(g, T) can be exactly evaluated for N = 2 at
any value of the interaction strength g and any temperature 7,
and in the Tonks-Girardeau limit g — oo forany N and T'.

Let us underline that analogously to the zero-temperature
case, the contact can also be calculated from the average
interaction energy that can be obtained by the free energy
from the Hellmann-Feynman theorem (Hi, ) = goF/dg [42].
It follows [21] that

2)

gm*

Cy(eT)= ﬁ(Him)- (3)

A. The two-boson system

For the two-boson system, the energy spectrum can be
calculated analytically. In this case, E; = E¢p ¢ + E,.j, with
E.. ¢ being the center-of-mass energy with quantum number
¢and E, ; = hw(1/2 4+ v;) the relative energy, with quantum
number j [i = (¢, j)I, that depends on the interaction strength
via the implicit relation [12]

M=_\/§|am|, (4)
F( — % + %) Aho

where I'(x) is the gamma function [43]. E,, ., differently
from the relative energy E, ;, is completely independent of
interatomic interactions as stated by the Kohn’s theorem [44]
and therefore does not contribute to the contact calculation.
By applying Eq. (2), the two-boson contact then takes the form

-1 Z 7/3fm)v,

fw)=

C5(g,T)=

where Z, = ) j e PV is the canonical relative motion parti-
tion function and ¥ (x) = I''(x)/T'(x) is the digamma function
[43]. In the Tonks-Girardeau limit, v; =2j —1 (j > 1) and
both I'(—% + 1)_ F(—j+Dand (-2 +H=v(-j+
1) diverge for j = 1. With some algebra, it can been shown
that

Z -proej-n 2= DIt ©)

Gl D= DG - 1!

732a 3

Note that Eq. (6) gives the known limit C5(oo,0) =
/)Y 25%3 [37]. The canonical two-boson contact obtained
by Eq. (5) is shown in Fig. 1. We have verified that the curve
for z = 1000 is essentially indiscernible from the contact
evaluated in the Tonks limit by means of Eq. (6).
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1.2

FIG. 1. Canonical Tan’s contact C5(g, T') as a function of 7 =
T /Tr [Eq. (5)] for different values of the interaction strength z =
aho/(lam|«/1V). From bottom to top: z = 0.5, 1, 2.5, 5, and 1000.
The curve for z = 1000 is indiscernible from the contact evaluated in
the Tonks limit by means of Eq. (6).

B. The Tonks-Girardeau limit

In the Tonks-Girardeau limit, where fermionization occurs,
the interaction strength g is infinite, namely, the 1D scattering
length a;p is zero and therefore this length scale disappears by
making the problem more universal. Thus the contact, in this
regime, does not depend on the interactions and can be written
as a function of the corresponding fermionic two-body density
matrix por (x1, X2; X7, X5) [45]. More precisely, it can be shown
that

2 +o00
Cy(00,T)=— / dxF (x), @)
T J -0

where we have defined

. or (X xx' x
17(x) = lim fz__g__i__l__i__z_
X' x"—x |x — x/llx — le

®)

By explicitly expressing p,r in the canonical ensemble, as a
function of the single-particle orbitals u;(x), we get

F(x)=2"" >

i1 =0,00,ip =i; + 1,00
"“T :ZWF7|+1,OO

x Z {[4i, (0)0us, (X)]2
(j.k)

— 2y, (X)d 4, (Ot (1), ()],

efﬁhw Zf=]-Nlr‘ (i/’+%)

)
with
T, (l0)

- %

i1 =0,00,ip =i;+ 1,00

ey = inp_1 + 1,00
The canonical contact Cy (oo, T), as obtained by Eqs. (7)
and (9), is shown in Fig. 2 (empty symbols) for N =2 to
5. The data are compared with grand-canonical ones [46]
(full symbols) that will be discussed below (Sec. IV). Note
that the computation of the contact is more demanding in the

sooe
00.00...00...000
oo

mmwsmEEEEEEEEEEEEEE - ua.
ODOOO0OO0DO000CD0000NDDO000000000000
1 . }

2 3 4 5
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FIG. 2. Canonical contact (empty symbols) [Eq. (7)] and grand-
canonical contact (full symbols) [46] as a function of T for N = 2 (vi-
olet squares), N = 3 (green circles), N = 4 (light-blue up-triangles),
and N =5 (orange down-triangles) Tonks-Girardeau bosons. The
grand-canonical case will be discussed in Sec. IV.

canonical case than in the grand-canonical one because of
several sums in (9) that simplify in the grand-canonical case.

C. The finite interaction strength regime

In the finite interaction strength scenario for N > 2, we
rely on quantum Monte Carlo simulations to obtain exact
results. Starting from Eq. (1), we discretize the Hamiltonian
using a finite-difference method and rewrite it using second
quantization, ending with the following bosonic Hubbard
Hamiltonian:

H=—t) (bibjs1 —2n;+bib;_1)
J

+w Y P+ U ning — 1)/2, (11)
J J

The discrete positions of the bosons are given by x = jAay,,
where A is a small dimensionless parameter. We typically
used A =0.1 and checked on some simulations that the
systematic errors induced by this discretization were smaller
than the stochastic errors due to the Monte Carlo calculations.
The operators bj. and b; create or destroy bosons on site

Jjonj= bjb_,- is the bosonic number operator on site j. The
parameters are given by
hw hawA? g
=—, w= , U= . (12)
2A2 2 Aaho
The Hubbard model is simulated using the stochastic
Green function algorithm [47,48] that allows the calculation
of many physical quantities for finite systems at finite tem-
perature. The algorithm works in both canonical and grand-
canonical ensembles, although it is generally more efficient
in the former case. Grand-canonical simulations require the
sampling of a larger space containing different numbers of
particles, which greatly increases the correlation time of the
data, as the sampling of different N is not very efficient. Note
that in the grand-canonical ensemble, it is then sometimes
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difficult to pinpoint a precise value of (N) as it requires a fine
tuning of the chemical potential p.

We will concentrate on a small number of particles N,
which gives a more thorough test of the scaling hypotheses
that we will introduce as they should be valid for large N.

Using this algorithm, we calculate the average interaction
energy (Hiy) that gives access to the contact [Eq. (3)]. We
choose a system size large enough so density becomes zero
at the edges of the system. As the temperature 7 increases,
the simulations become increasingly difficult: the density
distribution of the particles becomes wider, which means
that the events where two particles are superposed and then
contribute to the interaction energy become rare, giving a poor
signal-to-noise ratio for the contact calculation. Increasing in-
teractions also reduces the probability of double occupancies
and, consequently, the precision of the calculation.

These difficulties are further enhanced by the fact that
as N increases, we will maintain fixed rescaled temperature
7 and interaction z to observe possible scaling behaviors.
The temperature 7 and interaction g will then scale with
the number of particles as N and /N, respectively. These
combined effects strongly limit the temperatures, interactions,
and number of particles for which we obtain reliable results.
For canonical simulations, we were able to obtain results with
arelative error better than two percent for rescaled interactions
up to z = 2.5, rescaled temperatures up to T = 5, and numbers
of particles up to N = 5. Grand-canonical results are more
limited. For N up to 4, we are limited to z =1 and 7 = 0.2
if we want a precision of few percents. For N =4, z =1,
and T = 2, we have relative errors of the order of 20%, which
hardly give meaningful information.

III. SCALING PROPERTIES

A. Zero-temperature scaling

In [37], we have shown that it is possible to express the
contact for N bosons or N SU (k) fermions as a function of
the contact for two bosons. Indeed, the reduced contact,

_ Culg(2). 0]

vz, 0) = Cr(00.0) 13)

with g(z) = 2h%/Nz/(may,), verifies the relation [37]

vz, 0) = fo(z, 0), (14)

meaning that upon rescaling of the interaction strength, all the
N dependence of the contact is in Cy (oo, 0). Moreover, it has
been shown from a fit on the numerical data [37] that

Cnlg(z), 0] ~ N°/* — yN", (15)

where y >~ 1 and n = 3/4 in the Tonks-Girardeau limit, and
where they are slowly varying in the strongly interacting
regime z > 1.

B. Large-temperature scaling

In the large-temperature limit, 7 > T, quantum correla-
tions are negligible and the contact for N bosons in the canoni-
cal ensemble is simply given by the two-particle contact times

the number of pairs,
NN —-1)
2

In the strongly interacting limit, Eq. (16) takes the explicit
form (see the Appendix)

Ci(g, T > Tp) = C5(g, T > Tr). (16)

NN-1) 2 1
2 mhod, Ja

X [1 - \/gel/“Erfc(l/ﬁ)}

=N = N"hy(z > 1,7 1),
(17)

Cyz>1lt>»1)=

with @ = 4a2 iw/(Bg*) = t/7* and
hwiz>1,t>1)

_ LL[l _\/Eel/“Erfc(l/\/&)}. (18)
o

TG Ja
In the Tonks-Girardeau limit,

NN—=1) 2 [kgT
2 713/251;’“} how

= (N2 = N3*)hy(co, > 1), (19)

Cy(oo, 7> 1) =

with
1
hy(oo, T > 1) = Wﬁ (20)
w31a),

Analogously to the zero-temperature case, we can define the
function

Cnlg2), T(7)]

nez>1Lt>1)= Coloo. T

2L

and we get that
ez>1Lt>» D> hiE>1L,t>1) (22)

holds in the limit 7 > Tr, with fo(z > 1,7 > 1) = hp(z >
1,7 > 1)/hy(o0, T > 1).

C. Any temperature scaling conjecture

We now propose the general scaling hypothesis that
Eq. (22) holds for any temperature in the strong-interaction
limit. This is equivalent to claim that upon rescaling of the
interaction strength and of the temperature, all the N depen-
dence of the contact is embedded in Cy (oo, T'), for any tem-
perature. This dependence is quite trivial at large temperature,
as it is determined by the number of pairs, proportional to
N(N —1),and a /N term that comes from the rescaling of the
temperature with respect to the Fermi temperature. By lower-
ing the temperature, the contact almost freezes at T >~ Ty and,
because of quantum correlations, there is an enhancement of
the dependence on N, from N3/> — N3/2 to N°/> — N3/*_ This
leads us to propose the following conjecture:

Cy(00, T) = hp(00, T)s(N)
— /’lz(oo, T)(N5/2 _N3/4[1+exp(72/r)])’ (23)
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FIG. 3. Canonical contact in the Tonks-Girardeau limit
Cy (00, T'), given by Eq. (7), as a function of t, scaled by the factor
S(N) = N3? — N3/4ll+exp(=2/D]: see Eq. (23). Violet squares: N = 2;
green circles: N = 3; light-blue up-triangles: N = 4; and orange
down-triangles: N = 5. The blue dashed line corresponds to the
high-temperature limit A, (co, T 3> 1) [Eq. (20)]. The black cross and
the black line correspond to /1,(00, 0) = (2/7)¥2a,? (25> — 23/4)~!
and h, (00, 7) [Eq. (24)], respectively.

where

ha (00, 7) = Gof00, T(7)]/5(2) (24)

can de derived by Eq. (6). In Fig. 3, we plot Cy (o0, T)
[Eq. (7)], divided by s(N), as a function of t, for cases from
N =2to N =35, as well as h,(o0o, 1), its high-temperature
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0.06
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limit Ay(oco, T >> 1), and its value at zero temperature,
h(00, 0). All the data collapse on the same curve h;(oco, T)
(continuous black curve), showing that the conjecture (23)
works extremely well. We test now the reliability of the
generalized scaling hypothesis

ve@>1,1)> folz>1,7) (25)

approaching the strongly interacting regime. In Figs. 4 and 5,
we plot the canonical contact, obtained from quantum Monte
Carlo simulations, for the cases z = 1 and 2.5, respectively.

For both Figs. 4 and 5, in panels (a) the data have been
rescaled by N°/2 — N34, in panels (b) by N3/? — N3/2, and
in panels (c) by s(N). The “zero-temperature” scaling factor
N>/2 — N3/4 as obtained in [37] for the Tonks-Girardeau
limit, makes, at small temperatures, the curves approach at
z = 1 and collapse at z = 2.5. The “pair scaling” term N>/ —
N3/2 works well in the large-temperature regime 7 > 1, while
the interpolating function s(N) [Eq. (23)] allows the collapse
of the data in the whole temperature range, with an incertitude
of 5% for the case z = 1 [Fig. 4(c)] and of 1% for the case
z=2.5 [Fig. 5(c)]. The validity of the scaling hypothesis
(25) is verified in Figs. 4(d) and 5(d). Note that as mentioned
earlier, precise QMC results are limited to a small number of
particles and intermediate values of t and z. The limitation on
the number of particles is not crucial as, for large number of
particles, limy_, o S(N)/N>/2 = 1, and we recover the known
thermodynamics limit. Concentrating on a small number of
particles N < 5 then provides a more stringent verification of
the reliability of the scaling hypothesis (25).
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FIG. 4. C(z, 1)a3, as a function of 7, for the case z = 1, rescaled by (a) N*/> — N3/4, (b) N> — N3/, and (¢) s(N). (d) fv(z=1,7) as
a function of t. The points (violet squares: N = 2; green circles: N = 3; light-blue up-triangles: N = 4; and orange down-triangles: N = 5)
correspond to the QMC data. The continuous yellow line corresponds to the two-boson contact obtained by Eq. (5). Nonvisible QMC error

bars are smaller than the symbol size.
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FIG. 5. C(z, )a3, as a function of 7, for the case z = 2.5, rescaled by (a) N>/% — N34, (b) N°/> — N*?2, and (c) s(N). (d) fv(z =2.5,7)
as a function of . The points (violet squares: N = 2; green circles: N = 3; light-blue up-triangles: N = 4; and orange down-triangles: N = 5)
correspond to the QMC data. The continuous yellow line corresponds to the two-boson contact obtained by Eq. (5). Nonvisible QMC error

bars are smaller than the symbol size.

IV. COMPARISON WITH THE GRAND-CANONICAL
TAN’S CONTACT

In the zero-temperature limit, the grand-canonical and
canonical contacts coincide, and thus, in the strongly inter-
acting regime, both scale as ~(N/? — N3/4),

But, as soon as the temperature increases, the grand-
canonical contact for an average number (N) of particles
departs from the canonical one for N particles. Indeed, with
larger number contributions, the grand-canonical contact in-
creases more rapidly than the canonical one that is almost
constant for 0 < v < 0.5 (see Fig. 2 for the Tonks-Girardeau
limit case).

In the large-temperature limit, in the grand-canonical en-
semble, the term N(N — 1), proportional to the number of
pairs in the canonical ensemble, has to be replaced by its
average value,

(N(N = 1)) = (N?) = (N) = (N)”. (26)
This follows from the fact that at large T, (AN2) ~ (N). By
defining 7r = (N)hiw/kg, we find

. N)?2
C¥(g, T > Tr) = Lc; = (N)Yh(z> 1,7 1),

2

(27)
in agreement with the virial calculation [16]. Thus, in
the large-temperature limit, CY (g, T > Tr)/(N)¥? and
Che T > Tp)/(NS/2 — N3/2) collapse on the same curve,
iz, t>1)= ﬁ/(n3/2a20). This is shown in Fig. 6 for the
Tonks-Girardeau limit, where we have compared the canoni-
cal contact [Eq. (7)] and the grand-canonical one as obtained
from Eqgs. (8) and (9) in [46]. Note that the convergence is

faster for the grand-canonical contact. The consequence of
the fact that the canonical and the grand-canonical contacts
are proportional to one another, at large temperature v > 1,
is that both have a maximum at t = 1.48z% in the strong-
interacting limit [16]. The situation is different in the weak-
interaction regime, where the grand-canonical contact exhibits

FIG. 6. Canonical (empty symbols) and grand-canonical con-
tact (full symbols) as a function of ¢ for N =2 (violet squares),
N =3 (green circles), N =4 (light-blue up-triangles), and N =
5 (orange down-triangles) Tonks-Girardeau bosons. The canonical
contact [Eq. (7)] is rescaled by a factor N¥> — N2, while the
grand-canonical one (Egs. (8) and (9) in [46]) is rescaled by N3/2.
The black continuous curve corresponds to /7 /%2 [Eq. (20)].
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FIG. 7. Canonical (empty symbols) and grand-canonical contact
(full symbols) as a function of v for N = 2 (violet squares), N =
3 (green circles), and N = 4 (light-blue up-triangles) bosons. All
points correspond to QMC data evaluated in the weakly interacting
regime z = 0.5. QMC error bars for the canonical data are smaller
than the symbol size.

a maximum at lower temperatures. This maximum, which
has been explained as the mark of the crossover between a
quasicondensate and an ideal Bose gas [16], is not present in
the canonical case. This has been studied by means of QMC
simulations and shown in Fig. 7.

In the canonical ensemble and at low interactions, the
contact decreases with increasing temperature because as
particles occupy individual excited states, the cloud of par-
ticles spreads and the interaction energy is lowered. This
happens when the temperature is large enough to over-
come the Ziw gap between the ground and excited states,
which explains why there is almost no variation at low
temperature.

In the grand-canonical ensemble, the same effect will of
course take place and yields to the same decrease of the
contact at high temperature. However, at low temperature,
another phenomena occurs: the probability to have a number
of particles that is larger than (N) increases with temper-
ature. This gives larger contributions to the interaction en-
ergy and explains the initial increase of the contact at low
temperatures.

As Eq. (22) holds even in the grand-canonical ensemble,
one may wonder if the generalized scaling hypothesis (25) is
still valid in this ensemble. In Fig. 8, we plot the quantity
CY(z,7)/Cy (00, T) for the case z=1 and N =2, 3, and
4 and v <2, C¥(z, ) having been calculated by means
of QMC simulations and C§ (00, 7) by means of Egs. (8)
and (9) in [46]. We observe that for small and intermedi-
ate temperatures, in the intermediate-interactions regime, the
curves remain different instead of the collapse observed in the
canonical case [see Fig. 4(d)]. Our scaling hypothesis then
fails in this case of intermediate interactions, as the grand-
canonical Tonks-Girardeau contact does not embed the full
(N) dependency for these intermediate interactions. We were
not able to test this scaling hypothesis in the grand-canonical
ensemble at larger interactions as QMC simulations become
increasingly difficult.
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FIG. 8. C5'(z =1,7)/C¥ (00, 7) as a function of t. The points
(violet squares: N = 2; green circles: N = 3; light-blue up-triangles:
N = 4) correspond to the QMC data.

V. CONCLUSION

In this paper, we have shown that the canonical contact
for N harmonically trapped, Lieb-Liniger bosons, at any
temperature, in the repulsive strongly interacting regime,
can be written as a function of the two-boson contact and
the contact for N Tonks-Girardeau bosons. The first can be
easily calculated and we provide an analytical formula for
the second for any number of bosons and temperature. This
enlightens the dependence of the contact on the number of
pairs at large temperature and the effects of correlations at
low temperature. Moreover, it supplies a scaling function, in
the canonical ensemble, for any number of particles N > 2
and any temperature in the strong-interacting regime. We have
proven our theory for a small number of bosons (2 < N < 95),
where corrections with respect to the known thermodynamic
limit are more important. We have been informed that these
results may also hold true for a 1D homogeneous Bose gas.
This can be deduced from the results recently presented in
[49]. In this paper, the authors show that in the strongly
interacting limit, Cy, = 4mN Py / 2. The force Py is expressed
as Py = n3fH(ZH, 7y), where zy = (na;p)~" is the rescaled
interaction strength for the homogeneous system of linear
density n, ty = T /Tp gy is the rescaled temperature (Trpy
being the Fermi temperature for the homogeneous system),
and fp is a universal function of zy and ty. From this, it
can be deduced that Cy(zy > 1, 1y)/C5 (o0, Tg) is also a
universal function, which is equivalent for a homogeneous
system of the scaling relations found in the trapped case.

Finally, we discuss the difference between the canonical
and grand-canonical contacts. At large temperature, these
quantities are both proportional to the two-boson contact, and
the proportionality factor depends on the number of pairs in
the canonical ensemble and the average number of pairs in the
grand-canonical one. The main difference between the grand-
canonical and canonical cases is that at small and intermediate
temperatures, the grand-canonical contact for (N) bosons
cannot be written as a function of the (2)-boson contact and
the contact for (N) Tonks-Girardeau bosons, as far as we
can test it with the QMC simulations in the intermediate-
interaction regime. Namely, at variance from the canonical
case, the grand-canonical contact for (N) Tonks-Girardeau
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bosons seems not to embed the dependence for the average
number of particles (N). Indeed, our scaling hypothesis fails
as far as we can test it with the QMC simulations in the
intermediate-interaction regime.

Our work can be relevant for experiments with a small
number of particles [50,51]. From a conceptual point of view,
it is an important step forward in understanding the effects of
correlations and interactions in finite-temperature, harmoni-
cally trapped, one-dimensional bosons, as well as in grasping
the role of the particle-number fluctuations. The extension to
the case of multicomponent systems is not straightforward and
will be the subject of a further study.

ACKNOWLEDGMENTS

We thank an anonymous referee for many useful sug-
gestions and, in particular, for making us aware that our
results hold even in the 1D untrapped Bose gas. P.V. thanks
A. Minguzzi for useful discussions. The work of ET.S. was
financed in part by the Coordenagdo de Aperfeicoamento de
Pessoal de Nivel Superior - Brasil (CAPES) - Finance Code
001.

APPENDIX : TWO-BODY CONTACT IN THE STRONG
INTERACTION AND LARGE-TEMPERATURE LIMIT

We start with Eq. (5),

Czc _ Z 1 Z —Bliwv, ]):11

nh3 A

It can be shown [16] that in the strongly interacting limit z >
1, the solutions of Eq. (4) are given by

2
vy ~ Zacot(2+/2n + lg ' hwap,) + 2n, (A2)
T

with n > 0. This approximation (A2) becomes more precise
at large Values of n. Thus, (A1) reads

4271 e Phove o+ 1
n’a;, — 1 +4Q2n+ D(liwayg')?"

Cs = (A3)

By replacing in the exponential v, with its value in the
Tonks-Girardeau limit, v, = 2n + 1, and exploiting that

* \/_ —ﬁhwxdx
0 1 + be
1 f T e
(ﬁha))3/2 " |:1 - \/ge Erfc(l/\/&)], (A4)
with o = b?/(hiwp) = 4aﬁohw/(,3g2), we have that

e 2 1 T \a
Cs = mﬁ[l - \/;e Erfc(l/\/a)] (A5)

Note that Eq. (AS5) is valid only in the large-temperature
limit where replacing the sum with an integral is a valid ap-
proximation. Hence, in the Tonks-Girardeau limit, the contact
reduces to

2 kgT

lim C5 = ——,/ —
2 3/2,,3 :
w3/ a;, how

8—> 00

(A6)
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