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A B S T R A C T

Architected materials and mechanical metamaterials are known for their unique macroscopic properties and
complex behaviour that often defy conventional continuum mechanics. Therefore, in this contribution, a recent
multi-scale second-order computational homogenisation method (Dos Santos et al., 2023) is employed to
explore these materials under finite strains. The approach combines a second gradient continuum theory at
the macro-scale and a representative volume element (RVE) with classical first-order continuum mechanics at
the micro-scale. The Method of Multi-scale Virtual Power ensures a consistent scale transition. The predictive
capability and applicability of the second-order computational strategy are evaluated through coupled multi-
scale numerical simulations. These simulations involve two- and three-dimensional problems, with a strong
focus on the development of novel metamaterials, while also accounting for diverse loading conditions, such
as tension/compression-induced undulation, bending, and compression-induced torsion. Comparisons with
first-order homogenisation and Direct Numerical Simulations validate the approach. Analysis of homogenised
consistent tangents reveals valuable insights into macroscopic properties. Overall, the results highlight the
capability of the second-order strategy to capture significant phenomena, including second-order deformation
modes, coupling deformation mechanisms, and size effects.
1. Introduction

Architected materials and mechanical metamaterials play a pivotal
role in various engineering domains, spanning construction, aerospace,
automotive, and biomedical industries. These innovative materials are
carefully engineered by exerting precise control over the geometric con-
figuration and the mechanical properties of their constituent elements,
often at the micro-scale or meso-scale. Consequently, these cutting-
edge structures exhibit remarkable mechanical strength and/or unique
attributes rarely encountered in natural materials. Moreover, these ad-
vanced materials pave the way for ground-breaking high-performance
applications in the realm of materials science, pushing the boundaries
of what can be achieved.

Within the domain of advanced engineered materials, we will focus
on two distinct classes: artificially architected materials and mechan-
ical metamaterials. The first class, encompassing cellular and lattice
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structures, offers a remarkable array of characteristics, including low
density, large surface area, and high stiffness and strength. These
architected materials find versatile utility in multifunctional applica-
tions (Pan et al., 2020; Qi et al., 2021; Benedetti et al., 2021; du
Plessis et al., 2022; Yin et al., 2023), such as lightweight materials
and/or high specific strength and stiffness (Schaedler et al., 2011; Meza
et al., 2014; Zheng et al., 2014; Zhang et al., 2019; Kang et al., 2019),
energy absorption capabilities (Chen et al., 2020; Alberdi et al., 2020;
Guo et al., 2021; Song et al., 2019; Cheng et al., 2023), vibration
damping (Syam et al., 2018; Rifaie et al., 2022), enhanced thermo-
mechanical properties for heat dissipation (Catchpole-Smith et al.,
2019; Sajjad et al., 2022), and effective acoustic energy damping or
sound absorption (An et al., 2021; Li et al., 2023). In essence, cellular
and lattice structures emerge as adaptable solutions to a wide array of
real-world challenges (Jia et al., 2020).
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On the other hand, the second class, mechanical metamaterials,
presents a novel dimension of materials engineering. Mechanical meta-
materials can be classified as the type or subclass of architected ma-
terials, where artificial materials are rationally designed to exhibit su-
perior mechanical performance, unprecedented mechanical behaviours
and/or outstanding properties (Jiao et al., 2023). Hence, these mate-
rials exhibiting unconventional responses introduce a new paradigm
in materials science, with unique properties and behaviours, including
negative Poisson’s ratio (auxetic materials) (Lakes, 1987; Babaee et al.,
2013; Mukhopadhyay and Adhikari, 2016; Mizzi et al., 2018; Su et al.,
2022; Zhang et al., 2022), negative compressibility (Baughman et al.,
1998; Gatt and Grima, 2008; Lakes et al., 2012; Nicolaou and Motter,
2012), pattern transformations (multi-stable mechanical metamateri-
als) (Mullin, 2007; Bertoldi et al., 2008, 2010; Gao et al., 2018; van
Bree et al., 2020), ultralight and ultra-stiff characteristics (Zheng et al.,
2014; Bauer et al., 2016; Li and Gao, 2016), and twisting induced
by uniaxial forces under tension or compression (Frenzel et al., 2017;
Fernandez-Corbaton et al., 2019; Zhong et al., 2019; Qi et al., 2020;
Wang and Liu, 2020; Xu et al., 2023; Lemkalli et al., 2023). Further-
more, mechanical metamaterials are particularly intriguing for their
capacity to combine lightweight construction with exceptional energy
absorption, mechanical strength, and stiffness, all while maintaining
low density (Rico-Baeza et al., 2023). For those seeking a deeper
understanding of metamaterials, comprehensive reviews by Yu et al.
(2018), Surjadi et al. (2019), and Wu et al. (2019) offer valuable
insights into this exciting field.

While architected materials and mechanical metamaterials present
clear advantages over conventional materials with predetermined prop-
erties, their remarkable capabilities stem from their intricate
microstructures. Therefore, the modelling and design of these materials
pose significant challenges due to the difficult interplay of effects ob-
served at smaller scales. These typically include high-order effects, such
as size and localisation effects, which manifest in both architected ma-
terials and mechanical metamaterials. The size dependence associated
with the material microstructure or structural microarchitecture has
been well-documented in numerous experiments (Hosseini and Niira-
nen, 2022). Significant research efforts have been devoted to exploring
size effects in architected structures and metamaterials under various
loading conditions, including bending (Yoder et al., 2018; Khakalo
et al., 2018; Yang and Müller, 2021; Hosseini and Niiranen, 2022;
Sarhil et al., 2023; Yang et al., 2021) and axial tension/compression-
induced torsion (Duan et al., 2018; Khakalo et al., 2018; Zheng et al.,
2019; Ziemke et al., 2019; Frenzel et al., 2021; Xu et al., 2023). As
a result, more advanced theories may be necessary to address the
complexities of deformation modes, including those involving negative
Poisson’s ratio, tension/compression-induced torsion, pattern transfor-
mations, higher strain gradients, and high curvatures, among other
intricate phenomena.

Regarding the mechanical modelling for metamaterials and archi-
tected materials, it becomes evident that the classical small-strain
theory, or the conventional strain-based Cauchy theory, falls short in
capturing size effects. In this context, the so-called generalised continua
or higher-order continuum mechanics emerges as an interesting avenue
for effectively modelling high-order effects. Generalised continua theo-
ries have been employed in the study of metamaterials and architected
structures (Ganghoffer et al., 2023), such as: (i) Micromorphic contin-
uum theory (Rokoš et al., 2019; Biswas et al., 2020; Rokoš et al., 2020;
van Bree et al., 2020; Sarhil et al., 2023), (ii) Cosserat or micropolar
theories (Kumar and McDowell, 2004; Alavi et al., 2022; Dos Reis and
Ganghoffer, 2012; Yoder et al., 2018; Duan et al., 2018; Lemkalli et al.,
2023), (iii) strain gradient continua approaches (Yang et al., 2020;
Yang and Müller, 2021; Yang et al., 2022; Vazic and Newell, 2023;
Yang et al., 2021). Furthermore, an alternative method for modelling
metamaterials and architected materials involves Direct Numerical Sim-
2

ulations at the macro-scale. This approach explicitly represents the
internal structure’s geometry on the macro-scale by employing an ar-
rangement of unit cells. However, it is essential to note that this method
can entail a high computational cost, including substantial memory
requirements, especially when conducting simulations with numerous
unit cells.

Multi-scale strategies that employ second-order computational ho-
mogenisation offer intriguing and versatile approaches for modelling
metamaterials and architected materials, especially when consider-
ing second-order effects. This involves incorporating strain gradient
elasticity, often referred to as second gradient elasticity, into the contin-
uum description to improve the accuracy of the model. Consequently,
these second-order homogenisation theories serve as compelling alter-
natives to the limitations associated with first-order homogenisation,
which predominantly address tension/compression and shear defor-
mation modes at the micro-scale while neglecting size effects. On
the other hand, second-order homogenisation methods enable a more
comprehensive treatment of second-order deformation modes, such as
bending and torsion, and also account for size effects more effectively.

Over time, numerous studies focusing on second-order computa-
tional homogenisation have emerged and evolved. Pioneering work was
performed by Geers et al. (2003) and Kouznetsova et al. (2004a),
where the macroscopic deformation gradient tensor was incorporated
into the kinematical macro–micro scale transition. More specifically, a
second-gradient continuum was employed at the macro-scale, while a
classical Cauchy continuum was adopted at the RVE level. Afterwards,
other second-order strategies were proposed in the literature following
this approach. Kaczmarczyk et al. (2008) and Luscher et al. (2012)
studied the enforcement boundary conditions on the RVE. Kouznetsova
et al. (2004b) and Kaczmarczyk et al. (2010) addressed aspects of size
effects in second-order computational homogenisation. Luscher et al.
(2010) proposed a framework for hierarchical multi-scale modelling of
materials, where a volumetric constraint was incorporated, implying
the presence of body forces at the RVE level. Nguyen et al. (2013)
explored the discontinuous Galerkin method to derive a strain-gradient
formulation to model the macroscopic second-order continua. Lesičar
et al. (2014, 2016) presented a two-scale homogenisation procedure
using C1 continuity macrolevel discretisation at small and large strains,
respectively. Yvonnet et al. (2020) proposed a computational frame-
work to model anisotropic strain-gradient effects in elastic structures. In
the context of a variational approach, it is worth mentioning the work
developed by Rodrigues Lopes and Andrade Pires (2022b,d,a) based on
the Method of Multi-scale Virtual Power (Blanco et al., 2016a,b), where
the volumetric constraint was also considered in the formulation. Hii
and El Said (2022) extended the second-order homogenisation for
application to thick shell models, in which a novel constraint was
proposed to downscale transverse shear strain properly. Moreover,
fully second-order homogenisation approaches have been developed
to improve the standard second-order computational homogenisation
schemes. For instance, Lesičar et al. (2017) presented a second-order
computational homogenisation scheme employing the nonlocal theory
at both micro- and macro-scales. Rodrigues Lopes and Andrade Pires
(2022c) proposed a homogenisation-based multi-scale model at finite
strains, linking the micro-scale to the macro-scale level through a
second-gradient constitutive theory. In addition, Schmidt et al. (2022)
developed a computational homogenisation framework for investigat-
ing higher-order continua, incorporating first-, second-, and third-order
effects at both micro- and macro-scales.

Recent research in the field of second-order computational ho-
mogenisation has explored various aspects of metamaterials and archi-
tected materials, including cellular and lattice structures. Nguyen and
Noels (2014) explored a second-order multi-scale computational ho-
mogenisation approach to study cellular materials, including aspects of
instability phenomena and strain localisation. Weeger (2021) presented
a numerical homogenisation method for computing the effective second
gradient constitutive models of cubic beam-lattice metamaterials. Wu

et al. (2023) proposed a second-order computational homogenisation
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enhanced with non-uniform body forces for modelling non-linear cel-
lular materials and metamaterials. Furthermore, Molavitabrizi et al.
(2023) developed a computational homogenisation scheme based on
a second-order strain gradient theory (or Mindlin elasticity theory)
to investigate three-dimensional lattice materials, in which numerical
modelling is confronted with experimental tests.

More recently, Dos Santos et al. (2023) proposed a new formulation
based on second-order computational homogenisation at finite strains
for multi-scale modelling of natural and architected materials in the
presence of voids. A second gradient theory describes the macro-scale
continuum, and the micro-scale is modelled by the concept of Represen-
tative Volume Element (RVE) with the classical first-order continuum
mechanics. The kinematics was defined only in the solid domain of the
RVE, and a new expression for the homogenisation of the second-order
gradient was postulated, allowing the consideration of voids inside the
RVE and its outer boundary. In the light of variational formulations,
the framework based on the Method of Multi-scale Virtual Power pro-
vided the construction of three different sets of micro-scale kinematic
constraints over the RVE: minimal (lower bound), periodic, and direct
(upper bound). The finite element solution of the discrete equilibrium
problem was also carefully described in detail, encompassing some
implementation considerations.

Therefore, from the previous discussion and arguments, it is impera-
tive to develop enhanced continuum models that can effectively capture
the unique characteristics of artificial materials, especially those dis-
playing specific and exotic features, as well as high-order effects. In
this study, we investigate the robustness and applicability of a multi-
scale second-order computational homogenisation approach, recently
introduced by Dos Santos et al. (2023), to analyse the macroscopic
behaviour of mechanical meta-materials and architected materials. It
is worth mentioning that second-order approaches at finite strains are
particularly interesting for capturing higher strain gradients and high
curvatures, as well as second-order deformation modes (e.g., bend-
ing and torsion) and coupling deformation mechanisms. Moreover,
a characteristic length scale parameter is naturally embedded in the
formulation, allowing the investigation of size effects with respect to
the RVE length.

Several coupled multi-scale numerical examples are addressed in
the present contribution through the so-called FE2 framework, i.e., fi-
nite element simulations at both macro- and micro-scales. Initially,
a designed geometric arrangement is studied for the internal archi-
tecture of a novel metamaterial with induced undulation effects by
tension or compression. This unprecedented behaviour provides new
insights to design structures for shape-shifting applications in archi-
tected robotic metamaterials. Afterwards, two- and three-dimensional
architected materials under bending are simulated. Still, in the context
of metamaterials, an example related to compression-induced torsion is
discussed. Furthermore, comparisons with first-order multi-scale theory
and DNS models are performed for all numerical examples.

The outline of the paper is organised as follows. Section 2 sum-
marises the multi-scale second-order homogenisation formulation based
on the Method of the Multi-scale Virtual Power for modelling nat-
ural and architected materials in the presence of voids. Section 3
presents several challenging numerical examples to assess the predic-
tive capability of the multi-scale second-order homogenisation strategy
to capture second-order effects in mechanical metamaterials and ar-
chitected structures. Finally, the main conclusions and remarks are
reported in Section 4.

2. A second-order computational homogenisation-based formula-
tion for RVEs containing voids

The multi-scale framework based on second-order computational
homogenisation recently proposed by Dos Santos et al. (2023) for
investigating natural and architected materials in the presence of voids
3

is summarised in the present section. As shown in Fig. 1, the macro-
scale continuum (characteristic length 𝐿) is described by a second
gradient theory, while the micro-scale or RVE (characteristic length 𝑙𝜇)
s governed by a first gradient continuum mechanics. In the proposed
ramework, the macroscopic deformation gradient 𝑭 and the second
radient of the displacements 𝗚 are inserted in the micro-scale model.
fter solving the micro-scale equilibrium problem, the homogenisation
rocedure allows us to recover the respective conjugate stresses ac-
ounted for the deformation descriptors in the strain energy density
unction at the macro-scale, i.e., the first Piola–Kirchhoff stress tensor 𝑷
associated with 𝑭 ) and the higher-order stress tensor 𝗤 (related to 𝗚).
urthermore, respective consistent tangents also need to be obtained
or the coupled multi-scale analysis.

The approach is established based on the Method of the Multi-
cale Virtual Power (Blanco et al., 2016a,b), in which a variationally
onsistent formulation is developed to derive RVE-based multi-scale
odels for second-order continua.

.1. Multi-scale kinematics

Consider the RVE of a porous solid presented in Fig. 2. The total
omain 𝛺𝜇 is composed of the solid portion 𝛺𝑠

𝜇 and the voids portion
𝛺𝑣

𝜇 , i.e.,

𝛺𝜇 = 𝛺𝑠
𝜇

⋃

𝛺𝑣
𝜇 . (1)

The outer boundary of the RVE, denoted by 𝜕𝛺𝜇 , is given by

𝜕𝛺𝜇 = 𝜕𝛺𝑠,𝑏
𝜇

⋃

𝜕𝛺𝑣,𝑏
𝜇 , (2)

where 𝜕𝛺𝑠,𝑏
𝜇 represents the outer boundary of the solid part and 𝜕𝛺𝑣,𝑏

𝜇
is the outer boundary of the porous portion.

Still, regarding the nomenclature for the boundaries, 𝜕𝛺𝑠,𝑣
𝜇 indicates

the boundary of the voids. Thus, the boundary of the solid portion 𝜕𝛺𝑠
𝜇

is given by

𝜕𝛺𝑠
𝜇 = 𝜕𝛺𝑠,𝑏

𝜇

⋃

𝜕𝛺𝑠,𝑣
𝜇 . (3)

Finally, the outer boundary of the solid part 𝜕𝛺𝑠,𝑏
𝜇 is calculated as

𝜕𝛺𝑠,𝑏
𝜇 = 𝜕𝛺𝑠

𝜇

⋂

𝜕𝛺𝜇 . (4)

2.1.1. Kinematic insertion
For second-order computational homogenisation approaches, an ex-

pression based on Taylor’s expansion of the macro-scale displacement
field, truncated in the second derivatives, is often adopted to approx-
imate the micro-scale displacement. In this context, the micro-scale
displacement 𝒖𝜇 is composed of:

𝒖𝜇 (𝒀 ) = 𝒖𝑀 + (𝑭 − 𝑰) ⋅ 𝒀 + 1
2
𝗚 ∶ (𝒀 ⊗ 𝒀 − 𝑱 ) + 𝒖̃ (𝒀 ) , ∀𝒀 ∈ 𝛺𝑠

𝜇 , (5)

here 𝒀 is the vector of RVE reference coordinates, 𝒖𝑀 indicates the
acroscopic displacement and 𝒖̃ denotes the micro-scale displacement

luctuation field. Since the present work deals with materials with
oids, the kinematic insertion is only defined for the solid domain.

The additional term related to 𝑱 was proposed by Blanco et al.
2016b) and denotes the second-order moment of volume tensor:

= 1
𝑉 𝑠
𝜇 ∫𝛺𝑠

𝜇

𝒀 ⊗ 𝒀 𝑑𝑉 , (6)

where 𝑉 𝑠
𝜇 = |

|

|

𝛺𝑠
𝜇
|

|

|

is the volume of the solid domain 𝛺𝑠
𝜇 .

Furthermore, the origin of the micro coordinate system can be
conveniently located at the centroid of the solid part of the RVE, such
that:

∫ 𝒀 𝑑𝑉 = 𝟎. (7)

𝛺𝑠
𝜇
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Fig. 1. Schematic representation of a multi-scale analysis based on second-order homogenisation, where 𝒕𝟎 and 𝒖𝟎 are the boundary conditions related to imposed traction and
displacement, respectively.
Fig. 2. RVE of an architected material with the representation of different types of
domains, in which 𝑵 is the normal at the outer RVE boundary and 𝑵𝑣 is the normal
at the void boundaries.

2.1.2. Kinematic homogenisation
The kinematic homogenisation procedure establishes how macro-

scale kinematical descriptors (𝒖𝑀 , 𝑭 and 𝗚) are recovered based on
the volume averaging of the micro-scale kinematic quantities.

The homogenisation related to the macro-scale displacement vector
is given by (Rocha et al., 2018; Blanco et al., 2023):

𝒖𝑀 = 1
𝑉 𝑠
𝜇 ∫𝛺𝑠

𝜇

𝒖𝜇𝑑𝑉 . (8)

The homogenisation formula related to the first macro-deformation
gradient is defined as (Rocha et al., 2018; Blanco et al., 2023):

𝑭 = 1
𝑉 𝑠
𝜇

[

∫𝛺𝑠
𝜇

𝑭 𝜇𝑑𝑉 − ∫𝜕𝛺𝑠,𝑣
𝜇

𝒖̃⊗𝑵𝑣𝑑𝐴 − ∫𝜕𝛺𝑠,𝑏
𝜇

𝒖̃⊗ 𝑵̄𝑑𝐴

]

, (9)

with 𝑵𝑣 denoting the normal unit vector on the void inner boundary
(see the illustrative scheme in Fig. 2), and 𝑵̄ denoting a constant mean
normal in the solid part of the RVE boundary 𝜕𝛺𝑠,𝑏

𝜇 :

𝑵̄ = 1
𝑠,𝑏 ∫ 𝑠,𝑏

𝑵𝑑𝐴. (10)
4

𝐴𝜇 𝜕𝛺𝜇
The homogenisation formula for the second gradient is written
as (Dos Santos et al., 2023):

𝗚 = 1
𝑉 𝑠
𝜇

[

∫𝛺𝑠
𝜇

∇𝑌 𝒖𝜇 ⊗ 𝒀 ⋅ 𝑱−1𝑑𝑉 − ∫𝜕𝛺𝑠,𝑣
𝜇

𝒖̃⊗𝑵𝑣 ⊗ 𝒀 ⋅ 𝑱−1𝑑𝐴

− ∫𝜕𝛺𝑠,𝑏
𝜇

𝒖̃⊗ ̄̄𝑿 ⋅ 𝑱−1𝑑𝐴

]

,

(11)

with ̄̄𝑿 given by

̄̄𝑿 = 1
𝐴𝑠,𝑏
𝜇

∫𝜕𝛺𝑠,𝑏
𝜇

𝑵 ⊗ 𝒀 𝑑𝐴 − 1
𝐴𝑠,𝑏
𝜇

𝑉 𝑠𝑰 . (12)

In Eqs. (9) and (11), the constant vector 𝑵̄ and second-order tensor ̄̄𝑿,
respectively, avoid spurious macro-scale gradients when considering a
constant displacement fluctuation field (i.e., 𝒖̃ = 𝒄) in the modelling of
materials with random voids reaching the RVE boundary.

2.1.3. Kinematic admissibility
The kinematic admissibility provides the compatibility between

kinematic insertion and kinematic homogenisation, which results in
constraints that must be imposed at the RVE level. In this context, the
compatibility between Eqs. (5) and (8) ensures the conservation of the
displacement field, resulting in the volumetric constraint:

∫𝛺𝑠
𝜇

𝒖̃𝑑𝑉 = 𝟎. (13)

The kinematic admissibility for the deformation gradient (compati-
bility between Eqs. (5) and (9)) results in a constraint on the outer solid
boundary:

∫𝜕𝛺𝑠,𝑏
𝜇

𝒖̃⊗
(

𝑵 − 𝑵̄
)

𝑑𝐴 = 𝟎. (14)

Similarly, the kinematic homogenisation for the second deformation
gradient (Eq. (11)), taking into account the micro-scale displacement
field (Eq. (5)), leads to the additional boundary condition:

∫𝜕𝛺𝑠,𝑏
𝜇

𝒖̃⊗
(

𝑵 ⊗ 𝒀 − ̄̄𝑿
)

⋅ 𝑱−1𝑑𝐴 = 𝟎 ⇔ ∫𝜕𝛺𝑠,𝑏
𝜇

𝒖̃⊗
(

𝑵 ⊗ 𝒀 − ̄̄𝑿
)

𝑑𝐴 = 𝟎,

(15)
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Fig. 3. Illustrative representation of a periodic porous material.
2.2. Sets of admissible fluctuations

The space of kinematically admissible RVE displacement fluctua-
tion fields allows us to derive classes of multi-scale models. Thus,
three second-order multi-scale models are defined based on specific
sets of kinematically admissible fluctuations: (i) minimal constraint
(lower bound), (ii) periodic constraint, and (iii) direct constraint (upper
bound).

2.2.1. Sets of admissible fluctuations for minimal constraint
Let us define ̃ as the set of admissible fluctuation displacements

that satisfies the constraints of Eqs. (13) to (15), such that 𝒖̃ ∈ ̃ and
𝒖̃ ∈ ̃ :

̃ =

{

𝒖̃ sufficiently regular in 𝛺𝑠
𝜇 ,∫𝜕𝛺𝑠,𝑏

𝜇

𝒖̃⊗
(

𝑵 − 𝑵̄
)

𝑑𝐴 = 𝟎,

∫𝜕𝛺𝑠,𝑏
𝜇

𝒖̃⊗
(

𝑵 ⊗ 𝒀 − ̄̄𝑿
)

𝑑𝐴 = 𝟎,∫𝛺𝑠
𝜇

𝒖̃𝑑𝑉 = 𝟎
}

.

(16)

.e., the set of minimally constrained displacement fluctuation fields,
here the kinematical relations between both macro- and micro-scales
re satisfied.

.2.2. Sets of admissible fluctuations for periodic constraint
Further constraints can be incorporated into the RVE kinematics as

ubsets of solutions that still satisfy the kinematic admissibility. In this
ontext, the periodic boundary condition is defined as

̃+ = 𝒖̃− ⇔ 𝒖̃
(

𝒀 +) = 𝒖̃ (𝒀 −) , ∀𝒀 + ∈ 𝜕𝛺𝑠,𝑏+
𝜇 , ∀𝒀 − ∈ 𝜕𝛺𝑠,𝑏−

𝜇 , (17)

with + and − denoting opposite RVE boundaries, i.e., 𝜕𝛺𝑠,𝑏+
𝜇 = 𝜕𝛺𝑠,𝑏

𝜇
⋂

𝜕𝛺+
𝜇 and 𝜕𝛺𝑠,𝑏−

𝜇 = 𝜕𝛺𝑠,𝑏
𝜇

⋂

𝜕𝛺−
𝜇 . Moreover, the unit normal vectors of

pposite faces must obey the following expression:
(

𝒀 +) = −𝑵 (𝒀 −) , ∀𝒀 + ∈ 𝜕𝛺𝑠,𝑏+
𝜇 , ∀𝒀 − ∈ 𝜕𝛺𝑠,𝑏−

𝜇 . (18)

This boundary condition is appropriate to describe the behaviour
of materials with periodic microstructure. When voids reach the outer
boundary of the RVE, the periodic condition is only applied if the
voids are positioned in a periodic manner on opposite faces of the
RVE (see Fig. 3). In this particular case, the mean normal 𝑵̄ is null
by definition and ̄̄𝑿 vanishes in the problem with periodic boundary
conditions due to being a constant tensor (see more details in Dos
Santos et al. (2023)). Consequently, Eq. (14) is automatically satisfied
with the periodic constraint.
5

In particular, the incorporation of the periodic condition for RVEs
with rectangular or cubic shapes (cases in which the normal vector is
constant on each surface) in Eq. (15) results in:

∫𝜕𝛺𝑠,𝑏+(𝑗)
𝜇

𝑢̃𝑖𝑑𝐴 = 0. (19)

for each positive surface 𝑗.
Therefore, the set of admissible fluctuations for the periodic bound-

ary condition is composed of

̃𝑝𝑒𝑟 =

{

𝒖̃ sufficiently regular in 𝛺𝑠
𝜇 , 𝒖̃

(

𝒀 +) = 𝒖̃ (𝒀 −) ,∫𝛺𝑠
𝜇

𝒖̃𝑑𝑉 = 𝟎,

∫𝜕𝛺𝑠,𝑏+(𝑖)
𝜇

𝒖̃𝑑𝐴 = 𝟎, for each positive surface 𝑖

}

.

(20)

2.2.3. Sets of admissible fluctuations for direct constraint
Null fluctuations on the RVE boundary can also be defined as

subsets of solutions that satisfy the kinematic admissibility. Thus, the
direct boundary condition emerges as

𝒖̃ (𝒀 ) = 𝟎, ∀𝒀 ∈ 𝜕𝛺𝑠,𝑏
𝜇 . (21)

Thus, the set of admissible solutions for the direct constraint is given
by

̃𝑑𝑖𝑟 =

{

𝒖̃ sufficiently regular in 𝛺𝑠
𝜇 , 𝒖̃ (𝒀 ) = 𝟎, ∀𝒀 ∈ 𝜕𝛺𝑠,𝑏

𝜇 ,

∫𝛺𝑠
𝜇

𝒖̃𝑑𝑉 = 𝟎
}

. (22)

Finally, we can conclude that ̃𝑑𝑖𝑟 ⊂ ̃𝑝𝑒𝑟 ⊂ ̃ . Therefore, the
solutions obtained with direct and periodic boundary conditions respect
the minimal kinematic admissible constraint (i.e., least kinematically
constrained).

2.3. Principle of multi-scale virtual power

The Principle of Multi-scale Virtual Power (PMVP) is employed to
ensure the conservation of the virtual power in the scale transition. In
particular, a dual formulation based on the Lagrange multiplier method
is explored to define the PMVP. Some advantages of this approach are:
(i) the Lagrange multipliers allow us to understand the reactive nature
of kinematic constraints, and (ii) the Lagrange multipliers can be used

to recover the homogenised stresses. Moreover, Rodrigues Lopes et al.
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(2021) showed that the Lagrange multipliers method could be compu-
tationally efficient to enforce micro-scale constraints in the context of
multi-scale modelling based on computational homogenisation.

For the particular case of the minimal constraint, whose set of ad-
missible fluctuations is defined in Eq. (16), the PMVP can be expressed
by

𝑷 ∶ 𝛿𝑭 +𝗤 ⋮ 𝛿𝗚 = 1
𝑉𝜇

[

∫𝛺𝑠
𝜇

𝑷 𝜇 ∶
(

𝛿𝑭 + 𝛿𝗚 ⋅ 𝒀 + ∇𝑌 𝛿𝒖̃
)

𝑑𝑉

−𝛿𝝀𝑳 ∶

(

∫𝜕𝛺𝑠,𝑏
𝜇

𝒖̃⊗
(

𝑵 − 𝑵̄
)

𝑑𝐴

)

−𝝀𝑳 ∶

(

∫𝜕𝛺𝑠,𝑏
𝜇

𝛿𝒖̃⊗
(

𝑵 − 𝑵̄
)

𝑑𝐴

)

−𝛿𝝀𝗠 ⋮

(

∫𝜕𝛺𝑠,𝑏
𝜇

𝒖̃⊗
(

𝑵 ⊗ 𝒀 − ̄̄𝑿
)

𝑑𝐴

)

−𝝀𝗠 ⋮

(

∫𝜕𝛺𝑠,𝑏
𝜇

𝛿𝒖̃⊗
(

𝑵 ⊗ 𝒀 − ̄̄𝑿
)

𝑑𝐴

)

− ∫𝛺𝑠
𝜇

𝛿𝝀𝑉 ⋅ 𝒖̃𝑑𝑉 − ∫𝛺𝑠
𝜇

𝝀𝑉 ⋅ 𝛿𝒖̃𝑑𝑉

]

,

∀
(

𝛿𝑭 , 𝛿𝗚, 𝛿𝒖̃, 𝛿𝝀𝑳, 𝛿𝝀𝗠, 𝛿𝝀𝑉
)

,

(23)

where the Lagrange multipliers 𝝀𝑉 , 𝝀𝑳 and 𝝀𝗠 enforce the constraints
defined by Eqs. (13)–(15), respectively.

Similar expressions are defined for the cases of the periodic and
direct constraints. More details can be found in Dos Santos et al. (2023).

2.3.1. Micro-scale equilibrium problem
The weak micro-equilibrium equation is derived from the PMVP, by

setting 𝛿𝑭 = 𝟎 and 𝛿𝗚 = 𝟎. For the minimal constraint, it is expressed
by:

∫𝛺𝑠
𝜇

𝑷 𝜇 ∶ ∇𝑌 𝛿𝒖̃𝑑𝑉

− 𝛿𝝀𝑳 ∶

(

∫𝜕𝛺𝑠,𝑏
𝜇

𝒖̃⊗
(

𝑵 − 𝑵̄
)

𝑑𝐴

)

−𝝀𝑳 ∶

(

∫𝜕𝛺𝑠,𝑏
𝜇

𝛿𝒖̃⊗
(

𝑵 − 𝑵̄
)

𝑑𝐴

)

−𝛿𝝀𝗠 ⋮

(

∫𝜕𝛺𝑠,𝑏
𝜇

𝒖̃⊗
(

𝑵 ⊗ 𝒀 − ̄̄𝑿
)

𝑑𝐴

)

−𝝀𝗠 ⋮

(

∫𝜕𝛺𝑠,𝑏
𝜇

𝛿𝒖̃⊗
(

𝑵 ⊗ 𝒀 − ̄̄𝑿
)

𝑑𝐴

)

− 𝛿𝝀𝑉 ⋅ ∫𝛺𝑠
𝜇

𝒖̃𝑑𝑉 − 𝝀𝑉 ⋅ ∫𝛺𝑠
𝜇

𝛿𝒖̃𝑑𝑉 = 𝟎 ∀
(

𝛿𝒖̃, 𝛿𝝀𝑳, 𝛿𝝀𝗠, 𝛿𝝀𝑉
)

.

(24)

2.3.2. Homogenised stress tensors and consistent tangents
In general, the first Piola–Kirchhoff stress and the homogenised

higher-order stress tensors are obtained by volume averaging through:

𝑷 = 1
𝑉𝜇 ∫𝛺𝑠

𝜇

𝑷 𝜇𝑑𝑉 , (25)

and

𝗤 = 1
𝑉𝜇 ∫𝛺𝑠

𝜇

(

𝑷 𝜇 ⊗ 𝒀
)𝑆 𝑑𝑉 , (26)

where ∙𝑆 denotes the right-hand symmetry operator.
For each of the sets of admissible fluctuations, the homogenised

stress tensors can also be expressed in terms of the Lagrange multipliers
employed to enforce the corresponding constraints. This fact is partic-
ularly interesting for a more efficient computation of the homogenised
stresses and of the consistent macroscopic tangents. The finite element
method is employed to solve the discrete form of the multi-scale
6

problem, encompassing the Newton–Raphson scheme for the iterative
solution of the corresponding non-linear systems of equations at both
scales. Therefore, the homogenised consistent tangents (𝗔, 𝗔𝗚, 𝗛 and
𝗛𝑭 ) must be defined to solve the non-linear macroscopic equilibrium
problem with the Newton–Raphson scheme:

𝗔 = 𝜕𝑷
𝜕𝑭

, (27)

𝗔𝗚 = 𝜕𝑷
𝜕𝗚

, (28)

𝗛 = 𝜕𝗤
𝜕𝗚

, (29)

𝗛𝑭 = 𝜕𝗤
𝜕𝑭

. (30)

Further details of the computational implementation for FE2 simula-
tions are described in Dos Santos et al. (2023).

3. Numerical examples

In what follows, several coupled multi-scale numerical examples
of mechanical metamaterials and architected materials are presented
to show the applicability and robustness of the second-order com-
putational strategy. For all numerical examples, the results of multi-
scale simulations based on second-order homogenisation are compared
with the responses provided by Direct Numerical Simulations (DNS)
and first-order homogenisation theory. Multi-scale simulations are con-
ducted in the context of the FE2 framework, i.e., finite element analyses
at both macro and micro-scales. To comply with the C1-continuity
requirement, mixed finite elements were employed at the macro-scale
(see more details in Rodrigues Lopes and Andrade Pires (2022d)).
Different lengths for RVEs (multi-scale simulations) and unit cells (DNS
simulations) are defined to assess the impact of the size effect on
the global mechanical behaviour of the investigated structures. Mesh
convergence studies are conducted in the context of multi-scale simu-
lations to verify the appropriate mesh refinement for modelling each
structural problem. Although the results are presented and discussed
only for the macro-scale mesh refinement, convergence studies were
also carried out for the micro-scale, resulting in the meshes selected
for the RVE (multi-scale models) and the unit cells (DNS models).
In this sense, mesh convergences are obtained both on the macro-
scale and on the micro-scale, in which only the macro-scale results are
presented. Furthermore, the simulated materials are assumed to have
elastic constitutive behaviour.

3.1. Numerical example 1: novel metamaterial with tension/compression-
induced undulation

The first numerical example aims to investigate a new design for a
mechanical metamaterial, which displays transverse undulation when
subjected to tensile or compressive loading. This represents an ex-
otic behaviour that is significantly different from what is observed
in conventional materials. To the authors’ best knowledge, this is the
first time that a metamaterial of this type is examined. This new
microstructure can be explored for shape-shifting applications in archi-
tected robotic metamaterials, for instance. The mechanical behaviour
of this architected material is illustrated by two-dimensional finite
element models, considering plane strain conditions. Regarding the
elastic properties of the metamaterial, Young’s modulus of 𝐸 = 210
GPa and Poisson’s ratio of 𝜈 = 0.3 are assumed.

3.1.1. DNS models
Fig. 4 shows the unit cell geometry for the new metamaterial, along

with the mesh that is composed of isoparametric 8-noded quadratic
quadrilateral elements (Q8) with 4 integration points. DNS models are
formed by periodic arrays based on the unit cell of Fig. 4. In this
context, Fig. 5 presents three DNS models proposed to numerically
simulate the new metamaterial: (i) DNS model 1 (20 × 8 unit cells),
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Fig. 4. Unit cell and RVE.
Table 1
Mesh of DNS models.

DNS Elements (Q8) Nodes

Model 1 - Size 1 (𝑙𝜇 = 0.500 mm) 27 520 95 381
Model 2 - Size 2 (𝑙𝜇 = 0.333 mm) 61 920 214 231
Model 3 - Size 3 (𝑙𝜇 = 0.250 mm) 110 080 380 521

(ii) DNS model 2 (30 × 12 unit cells) and (iii) DNS model 3 (40 × 16
unit cells). It is worth mentioning that the macroscopic dimensions of
the DNS models are the same. Thus, the unit cell size (𝑙𝜇) is different
for each DNS model: (I) DNS model 1: 𝑙𝜇 = 1.000 mm, (II) DNS model
2: 𝑙𝜇 = 0.500 mm, and (iii) DNS model 3: 𝑙𝜇 = 0.250 mm. The material
volume fraction is the same for all DNS models. Moreover, mesh data
for the DNS models are presented in Table 1.

Regarding the boundary conditions of the DNS model, zero displace-
ments are prescribed on the left side of the structure (𝑢0𝑥 = 𝑢0𝑦 = 0). On
the right side of the structure, zero displacements are prescribed ver-
tically (𝑢0𝑦 = 0) and non-zero displacements are imposed horizontally
(𝑢0𝑥 ≠ 0) considering: (i) 𝑢0𝑥 = 0.5 mm (loading programme associated
with tension), and (ii) 𝑢0𝑥 = −0.5 mm (loading programme associated
with compression). The prescribed displacements are imposed in 10
equally-spaced increments.

The deformed configuration of the DNS models for the tensile and
compressive loadings is shown in Figs. 6 and 7, respectively. Note
that the new material has a tension/compression-induced undulation
behaviour, which is a different response than expected for a natural
material. Moreover, the shape of the induced vertical waves inverts,
when comparing deformation induced by tension and compression. It
must be noted that the size of the unit cell size has no significant
influence on the maximum vertical displacements of the deformed
structure. Therefore, this new metamaterial does not display significant
size effects, concerning the microstructural size. Note that the loading
programme associated with compression results in higher values for the
maximum vertical displacement compared to the loading programme
associated with tension.

3.1.2. Multi-scale simulations
The three boundary conditions derived from the second-order multi-

scale formulation, introduced in Section 2.2, are imposed to investigate
the new metamaterial: (I) second-order minimal constraint (2nd-order
— Minimal) or lower bound, (II) second-order periodic constraint (2nd-
order — Periodic), and (III) second-order direct constraint (2nd-order
— Direct) or upper bound. For comparison purposes, three boundary
conditions derived from the classical first-order multi-scale formulation
(see Reis and Andrade Pires (2013)) were also investigated: (i) first-
order uniform traction boundary condition (1st-order - Traction) or
7

lower bound, (ii) first-order periodic boundary condition (1st-order
— Periodic), and (iii) first-order linear boundary condition (1st-order
Linear) or upper bound.

In the context of coupled multi-scale analyses, modelling aspects of
the macro-scale (described by a second gradient theory) and the micro-
scale (governed by a first gradient continuum mechanics) must be
defined. As shown in Fig. 8, the geometry and boundary conditions of
the structure at the macro-scale are consistent with the DNS model. For
the simulations with second-order homogenisation, mixed quadrilateral
finite elements (Q8F4L1) with 4 integration points were employed at
macro-scale to comply with the C1-continuity requirement (Rodrigues
Lopes and Andrade Pires, 2022d). For first-order homogenisation, stan-
dard isoparametric elements with 8 nodes (Q8) and 4 integration points
were used. This type of element was also employed at the RVE level,
for both cases. The micro-scale is modelled by the RVE shown in Fig. 4.
The geometry, boundary conditions and mesh of the RVE are the same
as those defined for the unit cells of the DNS models. Hence, the loading
programmes associated with tension (𝑢0𝑥 = 0.5 mm) and compression
(𝑢0𝑥 = −0.5 mm) were imposed at the macro-scale to perform the
multi-scale simulations.

In the first place, three macro-scale meshes were investigated in
order to verify the convergence of results for multi-scale analyses. The
RVE discretisation is kept consistent with the meshes employed in the
DNS. The mesh data, including the number of elements and nodes, is
presented in Fig. 9. The mesh refinement studies, performed for 𝑙𝜇 =
0.500 mm and based on the horizontal reaction force (𝐹𝑥), are presented
in Tables 2 and 3 for tension and compression loading programmes,
respectively. To be more precise, 𝐹𝑥 is determined by the sum of nodal
horizontal reaction forces on the right side of the structure, where the
displacement is imposed. Since the relative differences are small, there
is no influence of the macroscopic discretisation in the obtained results.
Therefore, mesh 1 is sufficient to perform the multi-scale analyses.

In the second place, three RVE lengths were investigated, corre-
sponding to the unit cell sizes considered in the DNS simulations: 𝑙𝜇 =
0.500 mm, 𝑙𝜇 = 0.333 mm and 𝑙𝜇 = 0.250 mm. Figs. 10(a) and 10(b)
show the comparison of the horizontal reactive force obtained with
the multi-scale simulations (first- and second-order homogenisation)
and the DNS models, considering axial tension and axial compression,
respectively. For quantitative comparison purposes, Tables 4, 5, 6 and
7 show the relative differences (in modulus) of the multi-scale models
compared to the respective DNS models. In order to contribute to
the discussion of results, the deformed macroscopic meshes for the
multi-scale models with 𝑙𝜇 = 0.50 mm are shown in Figs. 11 and
12. The multi-scale simulations also capture both the tension and
compression-induced undulation for the novel metamaterial. Regard-
ing simulations with second-order multi-scale models: (i) the periodic
constraint provides results in close agreement with the DNS model, (ii)
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Fig. 5. Geometry of the DNS models (𝐿𝑥 = 10 mm and 𝐿𝑦 = 4 mm).
Table 2
Mesh study for multi-scale analysis with RVE length 1 (𝑙𝜇 = 0.500 mm) — loading programme associated
with tension: mesh x reaction force (𝐹𝑥).

Reaction force 𝐹𝑥 (N)

Mesh 1 Mesh 2 Mesh 3 Differences in module

Multi-scale models (1) (2) (3) (2) to (1) (3) to (2)

2nd-order: Minimal 102.58 101.82 101.67 0.75% 0.14%
2nd-order: Periodic 209.95 207.31 206.29 1.26% 0.49%
2nd-order: Direct 1469.22 1466.08 1464.92 0.21% 0.08%

1st-order: Uniform traction 91.57 89.90 89.14 1.82% 0.85%
1st-order: Periodic 196.69 193.91 192.59 1.42% 0.68%
1st-order: Linear 1462.73 1458.62 1456.75 0.28% 0.13%
the minimum constraint represents a lower bound, but keeping close to
the model response DNS, (iii) the direct constraint results in an upper
bound, i.e. the stiffest solution (most kinematically constrained), whose
response has a significant difference when compared to DNS model.
Furthermore, the previously described conclusions are analogous to
first-order multi-scale simulations under the respective assumptions
of: (I) periodic boundary condition, (II) uniform traction boundary
8

condition, and (III) linear boundary condition. These observations are
consistent with the maximum vertical displacement values obtained.
The first- and second-order multi-scale models lead to similar values of
the macroscopic reaction force, but the deformed macroscopic model is
slightly affected by the selected formulation. Nonetheless, the periodic
boundary conditions are the ones that result in maximum vertical
displacements closer to the values obtained with the DNS.
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Fig. 6. Vertical displacements in mm (scale factor = 4) for DNS models with loading programme related to axial tension.

Fig. 7. Vertical displacements in mm (scale factor = 4) for DNS models with loading programme related to axial compression.
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Fig. 8. Geometry and boundary conditions (𝐿𝑥 = 10 mm and 𝐿𝑦 = 4 mm).
Fig. 9. Macro-scale meshes.
Table 3
Mesh study for multi-scale analysis with RVE length 1 (𝑙𝜇 = 0.500 mm) — loading programme associated
with compression: mesh x reaction force (𝐹𝑥).

Reaction force 𝐹𝑥 (N)

Mesh 1 Mesh 2 Mesh 3 Differences in module

Multi-scale models (1) (2) (3) (2) to (1) (3) to (2)

2nd-order: Minimal −94.08 −93.07 −92.71 1.07% 0.39%
2nd-order: Periodic −185.06 −183.25 −182.57 0.98% 0.37%
2nd-order: Direct −1409.28 −1407.64 −1407.08 0.12% 0.04%

1st-order: Uniform traction −81.22 −79.98 −79.43 1.52% 0.69%
1st-order: Periodic −172.00 −170.24 −169.44 1.02% 0.48%
1st-order: Linear −1401.71 −1399.46 −1398.46 0.16% 0.07%
3.1.3. Analysis of the homogenised properties
The initial consistent tangents are interesting to understand better

the axial tension/compression-induced undulation for the new meta-
material. The coupling-tangents 𝗔𝗚 and 𝗛𝑭 , which couple first and
second-order deformation modes, have null values for all components
in this numerical example. Therefore, the observed mechanical be-
haviour is not a consequence of that kind of coupling, and that is
the reason why first-order homogenisation is able to capture the un-
dulation. Alternatively, the consistent tangent 𝗔, which associates 𝑷
with 𝑭 , is assessed to understand better the coupling mechanism that
characterises this metamaterial.
10
For two-dimensional problems, the classical constitutive law for
a homogeneous isotropic material can be written in simplified form
as (Rodrigues Lopes and Andrade Pires, 2022d):

⎡

⎢

⎢

⎢

⎢

⎣

𝑃11
𝑃21
𝑃12
𝑃22

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝜆 + 2𝜇 0 0 𝜆
0 𝜇 𝜇 0
0 𝜇 𝜇 0
𝜆 0 0 𝜆 + 2𝜇

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝐹11 − 1
𝐹21
𝐹12

𝐹22 − 1

⎤

⎥

⎥

⎥

⎥

⎦

, (31)

where 𝜇 and 𝜆 are the Lamé parameters.
For multi-scale analysis, the initial version for the consistent tangent

𝗔 is equivalent to the homogenised elastic constitutive tensor indicated
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Fig. 10. Size effect study considering the macro-scale mesh 1: RVE length x reaction force (𝐹𝑥).
Table 4
Size effect study considering the macro-scale mesh 1 for loading programme associated
with tension: differences in reaction forces (𝐹𝑥) for second-order multi-scale models
compared to DNS models.

RVE length 𝐹𝑥 (N) and difference compared to DNS model

(mm) DNS Minimal Periodic Direct

𝑙𝜇 = 0.500 mm 194.89 102.58 47.36% 209.95 7.73% 1469.22 653.88%
𝑙𝜇 = 0.333 mm 192.88 97.30 49.55% 203.35 5.43% 1465.75 659.94%
𝑙𝜇 = 0.250 mm 191.89 95.10 50.44% 200.77 4.63% 1464.47 663.19%

Table 5
Size effect study considering the macro-scale mesh 1 for loading programme associated
with tension: differences in reaction forces (𝐹𝑥) for first-order multi-scale models
compared to DNS models.

RVE length 𝐹𝑥 (N) and difference compared to DNS model

(mm) DNS Uniform traction Periodic Linear

𝑙𝜇 = 0.500 mm 194.89 91.57 53.02% 196.69 0.93% 1462.73 650.55%
𝑙𝜇 = 0.333 mm 192.88 91.57 52.53% 196.69 1.98% 1462.73 658.38%
𝑙𝜇 = 0.250 mm 191.89 91.57 52.28% 196.69 2.50% 1462.73 662.29%

in Eq. (31), i.e.,

⎡

⎢

⎢

⎢

⎢

⎣

𝑃11
𝑃21
𝑃12
𝑃22

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐴1111 𝐴1121 𝐴1112 𝐴1122
𝐴2111 𝐴2121 𝐴2112 𝐴2122
𝐴1211 𝐴1221 𝐴1212 𝐴1222
𝐴2211 𝐴2221 𝐴2212 𝐴2222

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝐹11 − 1
𝐹21
𝐹12

𝐹22 − 1

⎤

⎥

⎥

⎥

⎥

⎦

. (32)

In this context, the initial results of 𝗔 for multi-scale models are
presented in matrix representation (𝑨) as follows:
11
(i) linear boundary condition (first-order model) and direct con-
straint (second-order model):

𝑨𝑙𝑖𝑛𝑒𝑎𝑟
1𝑠𝑡−𝑜𝑟𝑑𝑒𝑟 ≈ 𝑨𝑑𝑖𝑟𝑒𝑐𝑡

𝑠𝑒𝑐𝑜𝑛𝑑−𝑜𝑟𝑑𝑒𝑟

=

⎡

⎢

⎢

⎢

⎢

⎣

16045.84 -11492.74 -11492.74 11722.31
-11492.74 14105.26 14105.26 -9740.49
-11492.74 14105.26 14105.26 -9740.49
11722.31 -9740.49 -9740.49 58206.23

⎤

⎥

⎥

⎥

⎥

⎦

MPa,

(ii) periodic boundary condition (first-order model) and periodic
constraint (second-order model):

𝑨𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐
1𝑠𝑡−𝑜𝑟𝑑𝑒𝑟 ≈ 𝑨𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐

2𝑛𝑑−𝑜𝑟𝑑𝑒𝑟

=

⎡

⎢

⎢

⎢

⎢

⎣

12418.76 -11928.96 -11928.96 10715.56
-11928.96 12158.33 12158.33 -10949.70
-11928.96 12158.33 12158.33 -10949.70
10715.56 -10949.70 -10949.70 57206.25

⎤

⎥

⎥

⎥

⎥

⎦

MPa,

(iii) uniform traction boundary condition (first-order model) and
minimum constraint (second-order model):

𝑨𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛
1𝑠𝑡−𝑜𝑟𝑑𝑒𝑟 ≈ 𝑨𝑚𝑖𝑛𝑖𝑚𝑎𝑙

2𝑛𝑑−𝑜𝑟𝑑𝑒𝑟

=

⎡

⎢

⎢

⎢

⎢

⎣

3555.25 -2693.13 -2693.13 2500.95
-2693.13 2225.52 2225.52 -2010.42
-2693.13 2225.52 2225.52 -2010.42
2500.95 -2010.42 -2010.42 48814.20

⎤

⎥

⎥

⎥

⎥

⎦

MPa,

where the responses are similar for all RVE lengths. It is also worth
mentioning that the initial values for 𝑨 are the same in tension and
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Table 6
Size effect study considering the macro-scale mesh 1 for loading programme associated with compression:
differences in reaction forces (𝐹𝑥) for second-order multi-scale models compared to DNS models.

RVE length 𝐹𝑥 (N) and difference compared to DNS model

(mm) DNS Minimal Periodic Direct

𝑙𝜇 = 0.500 mm −171.81 −94.08 45.24% −185.06 7.71% −1409.28 720.27%
𝑙𝜇 = 0.333 mm −170.31 −87.94 48.36% −178.30 4.69% −1405.22 725.09%
𝑙𝜇 = 0.250 mm −169.56 −85.32 49.68% −175.72 3.63% −1403.73 727.85%
Table 7
Size effect study considering the macro-scale mesh 1 for loading programme associated with compression:
differences in reaction forces (𝐹𝑥) for first-order multi-scale models compared to DNS models.

RVE length 𝐹𝑥 (N) and difference compared to DNS model

(mm) DNS Uniform traction Periodic Linear

𝑙𝜇 = 0.500 mm −171.81 −81.22 52.73% −172.00 0.11% −1401.71 715.86%
𝑙𝜇 = 0.333 mm −170.31 −81.22 52.31% −172.00 0.99% −1401.71 723.03%
𝑙𝜇 = 0.250 mm −169.56 −81.22 52.10% −172.00 1.44% −1401.71 726.66%
F
e

t
a

f
e

𝑨

w

f
w
s

s
p
o
t

3
b

o
m
t
M
f

3

i
d
m
T
w
s
c
C
v

compression, and that they are not dependent on the type of multi-scale
formulation (first or second-order).

It is noteworthy that all components of 𝑨 have non-null values,
nlike the idealisation of Eq. (31). Specifically, negative values arise for
omponents of 𝑨 (see values highlighted in pink and light grey) com-
ared to Eq. (31). Such components of 𝑨 with negative values are asso-
iated with coupling mechanisms relating to axial tension/compression
nd shear. Furthermore, the differences between the pink and light
rey components occur due to the geometry of the RVE, since the
omogenised material is not isotropic and the stiffness depends on
he direction. Therefore, the effect of tension/compression-induced
ndulation is related to the coupling between tension/compression and
hear, quantified by the shaded values in the initial consistent tangent
, which is promoted by the geometry of the new micro-architected
aterial.

Moreover, the maximum vertical displacements are superior for the
oading associated with compression when compared to the loading
rogramme associated with tension, except for the linear boundary
ondition (first-order model) and the direct constraint (second-order
odel), which result in similar responses. In order to explain this differ-

nce, Fig. 13 shows the evolution of 𝗔 for multi-scale models based on
econd-order computational homogenisation considering the integra-
ion point 𝐼𝐴 at macro-scale mesh 1 (see Fig. 9(a)). In addition, Fig. 14
isplays the particular case of the 𝐴2111 component that relates 𝑃21 with
11, i.e., the coupling effect between shear and tension/compression. It

s possible to observe that the evolution of the responses is different
or tension and compression, which contributes to the difference in
he maximum vertical macroscopic displacements. In particular, the
ifferences in the evolution of 𝗔, considering compression and tension,
re more pronounced for periodic and minimal constraint, in which
stronger coupling occurs for the compression loading programme.

uch observations justify the differences in the maximum displacements
bserved in periodic and minimal constraint models when comparing
ension and compression. Such a difference is not observed for the
irect constraint since it is the most restrictive boundary condition.
urthermore, it must be highlighted that only finite strain formulations
ike those considered here are able to capture these asymmetries due to
on-linear geometrical effects. Finally, it is worth mentioning that the
onclusions are analogous to multi-scale models based on first-order
omogenisation.

.1.4. Symmetry class of the homogenised material properties
It is also relevant to explore the symmetry class related to the

aterial properties of the new mechanical metamaterial with tension/
ompression-induced undulation. In this case, three-dimensional simu-
ations are employed to verify more components of the homogenised
lastic constitutive tensor associated, unravelling other possible cou-
12

lings. In this context, an analogous three-dimensional unit cell (see t
ig. 15) was simulated to obtain the initial consistent tangent 𝗔 that is
quivalent to the homogenised elastic constitutive tensor.

For three-dimensional analysis, the constitutive relationship be-
ween 𝑷 and 𝑭 , taking into account 𝗔, can be expressed in matrix form
s in Eq. (33).

Due to the conditions of major and minor symmetries at the unde-
ormed configuration, an anisotropic material exhibits 21 independent
lastic constants. Thus, 𝗔 can be rewritten in simplified matrix form as

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐴1111 𝐴1122 𝐴1133 𝐴1123 𝐴1131 𝐴1112
𝐴2211 𝐴2222 𝐴2233 𝐴2223 𝐴2231 𝐴2212
𝐴3311 𝐴3322 𝐴3333 𝐴3323 𝐴3331 𝐴3312
𝐴2311 𝐴2322 𝐴2333 𝐴2323 𝐴2331 𝐴1312
𝐴3111 𝐴3122 𝐴3133 𝐴3123 𝐴3131 𝐴3112
𝐴1211 𝐴1222 𝐴1233 𝐴1223 𝐴1231 𝐴1212

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (34a)

here the 6 × 6 matrix is symmetric due to major symmetry.
For example, considering Eq. (33), the initial consistent tangent for

irst- and second-order periodic multi-scale models is given in Eq. (34b),
here negative components with shear–normal coupling (pink box) and

hear–shear coupling (light grey box) can be observed.
It is worth mentioning that material symmetry refers to how con-

titutive properties vary with respect to direction in a fixed material
oint. In particular, the new metamaterial is called monoclinic with
ne plane of material symmetry (in this case, 𝑋3 direction). Therefore,
he metamaterial has 13 independent elastic constants.

.2. Numerical example 2: two-dimensional architected material under
ending

The main goal of this numerical experiment is to show the capacity
f second-order homogenisation to deal with size effects of architected
aterials under bending through two-dimensional numerical simula-

ions. The elastic properties for the architected material are 𝐸 = 100
Pa and 𝜈 = 0.3. Moreover, the assumption of plane strain is adopted

or the two-dimensional structure.

.2.1. DNS models
The geometry for the periodic unit cells of the architected material

s indicated in Fig. 16. Information about all DNS models and the
iscretisation is provided in Table 8. It is important to note that the
aterial volume fraction remains invariant across all DNS models.
he DNS models are created as a periodic array from the unit cell,
here different cell sizes are defined. For illustration purposes, Fig. 17

hows three coarser DNS models. Regarding the Dirichlet boundary
onditions, the left side of the structure is fixed, i.e., 𝑢0𝑥 = 𝑢0𝑦 = 0.0.
oncerning the Neumann boundary conditions, a uniformly distributed
ertical load 𝑡0𝑦 is applied on the top side of the structure. Specifically,

−5
he loading programme 𝑡0𝑦 = −5.0 × 10 N/mm is imposed in 10
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w
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⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑃11
𝑃21
𝑃31
𝑃12
𝑃22
𝑃32
𝑃13
𝑃23
𝑃33

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐴1111 𝐴1121 𝐴1131 𝐴1112 𝐴1122 𝐴1132 𝐴1113 𝐴1123 𝐴1133
𝐴2111 𝐴2121 𝐴2131 𝐴2112 𝐴2122 𝐴2132 𝐴2113 𝐴2123 𝐴2133
𝐴3111 𝐴3121 𝐴3131 𝐴3112 𝐴3122 𝐴3132 𝐴3113 𝐴3123 𝐴3133
𝐴1211 𝐴1221 𝐴1231 𝐴1212 𝐴1222 𝐴1232 𝐴1213 𝐴1223 𝐴1233
𝐴2211 𝐴2221 𝐴2231 𝐴2212 𝐴2222 𝐴2232 𝐴2213 𝐴2223 𝐴2233
𝐴3211 𝐴3221 𝐴3231 𝐴3212 𝐴3222 𝐴3232 𝐴3213 𝐴3223 𝐴3233
𝐴1311 𝐴1321 𝐴1331 𝐴1312 𝐴1322 𝐴1332 𝐴1313 𝐴1323 𝐴1333
𝐴2311 𝐴2321 𝐴2331 𝐴2312 𝐴2322 𝐴2332 𝐴2313 𝐴2323 𝐴2333
𝐴3311 𝐴3321 𝐴3331 𝐴3312 𝐴3322 𝐴3332 𝐴3313 𝐴3323 𝐴3333

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐹11 − 1
𝐹21
𝐹31
𝐹12

𝐹22 − 1
𝐹32
𝐹13
𝐹23

𝐹33 − 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (33)
𝑨𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐
1𝑠𝑡−𝑜𝑟𝑑𝑒𝑟 = 𝑨𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐

2𝑛𝑑−𝑜𝑟𝑑𝑒𝑟 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

12473.61 10763.24 6971.06 0.00 0.00 -11957.20
10763.24 57342.19 20431.63 0.00 0.00 -10976.77
6971.06 20431.63 83820.80 0.00 0.00 -6880.19
0.00 0.00 0.00 22287.91 -6891.89 0.00
0.00 0.00 0.00 -6891.89 9241.15 0.00

-11957.20 -10976.77 -6880.19 0.00 0.00 12186.84

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

MPa, (34b)
𝑙
Table 8
Mesh of DNS models.

DNS Elements (Q8) Nodes

Model 1 - Size 1 (𝑙𝜇 = 1.000 mm) 3800 14 960
Model 2 - Size 2 (𝑙𝜇 = 0.500 mm) 15 200 57 819
Model 3 - Size 3 (𝑙𝜇 = 0.250 mm) 60 800 227 237
Model 4 - Size 4 (𝑙𝜇 = 0.167 mm) 136 800 508 255
Model 5 - Size 5 (𝑙𝜇 = 0.125 mm) 243 200 900 873
Model 6 - Size 6 (𝑙𝜇 = 0.100 mm) 380 000 1 405 091

equally spaced increments. Moreover, the distribution of the applied
load provides a linear shear force and a quadratic bending moment
along the length (𝐿𝑥) of the structure.

A comparison of the vertical displacements for three DNS models is
hown in Fig. 18. It is clear that the length of the unit cell plays an im-
ortant role in the deformable behaviour of the structure. In summary,
ecreasing the unit cell size increases the maximum displacements of
NS models, i.e., the structure becomes more flexible. Consequently,
NS model 1 is the stiffest and DNS model 3 is the most flexible.
urthermore, the deformed configuration of DNS model 2 is closer to
he response observed for DNS model 3. Thus, the size effects cannot
e neglected in the structure and higher-order continuum theories can
e necessary for modelling this type of architected material.

.2.2. Multi-scale simulations
This bending problem is also solved using multi-scale FE2 models,

ith both first and second-order homogenisation approaches. Different
lasses of boundary conditions are also considered, similar to the
nalysis performed in Section 3.1.2.

The RVE geometry and mesh were previously presented in Fig. 16.
egarding the macro-scale, the geometry and boundary conditions are

llustrated in Fig. 19. Moreover, mixed quadrilateral finite elements
Q8F4L1) with 4 integration points are defined for macro-scale (Ro-
rigues Lopes and Andrade Pires, 2022d). To perform a numerical
onvergence analysis, three meshes (see Fig. 20) were employed to
iscretise the macro-scale domain, and the simulations have been per-
ormed with an RVE length 𝑙𝜇 = 1.000 mm. The obtained maximum
ertical displacements are presented in Table 9, where it is observed
hat the maximum values are similar for all meshes due to small
elative differences. Consequently, mesh 1 is adopted for investigating
he architected material, from a multi-scale perspective.

In order to investigate the microstructural size effect, six values
ere considered for the RVE length: 𝑙𝜇 = 1.000 mm (size 1), 𝑙𝜇 =
.500 mm (size 2), 𝑙 = 0.250 mm (size 3), 𝑙 = 0.167 mm (size 4),
13

𝜇 𝜇
𝜇 = 0.125 mm (size 5) and 𝑙𝜇 = 0.100 mm (size 6). The results for
the maximum vertical displacement associated with each characteristic
length are shown in Fig. 21, where the values obtained with the
multi-scale models, both first- and second-order homogenisation, are
represented along with the corresponding DNS results. Tables 10 and
11 show the differences (in module) of multi-scale models compared
to DNS models. In addition, Figs. 22 and 23 show the results of the
vertical displacements of the deformed structures (𝑙𝜇 = 1.000 mm) for
the first- and second-order homogenisation strategies, respectively.

In general, second-order multi-scale models (minimal, periodic and
direct constraints) have similar results. An analogous conclusion is
observed for first-order multi-scale models (uniform traction, periodic
and linear boundary conditions). Moreover, since the size effect is
significant in this structure, the first-order (so-called classical) multi-
scale computational homogenisation scheme loses accuracy. It must be
highlighted that the response obtained with first-order homogenisation
is independent of the RVE length, and significant differences are ob-
served for larger RVEs. On the other hand, second-order multi-scale
computational homogenisation models capture the trend observed in
the DNS models, with an increase of the maximum displacements for
a reduction in the RVE size. It is worth noting that the responses are
close for smaller characteristic lengths of RVE. Therefore, second-order
homogenisation is needed to better predict the macroscopic behaviour
of the architected material, in particular, to capture the underlying size
effects.

3.3. Numerical example 3: three-dimensional architected material under
bending

This example aims to investigate an architected material under
bending through three-dimensional numerical simulations. The mate-
rial properties for the matrix are 𝐸 = 100 MPa and 𝜈 = 0.3.

3.3.1. DNS models
In this case, the architected material under study consists of periodic

cellular materials formed by the unit cell shown in Fig. 24. Fig. 25
presents the DNS models that represent the architected structures. Since
the structures are composed of a periodic arrangement of unit cells,
the volume fraction of the material is constant in all DNS models.
The left side of the structures is fixed, i.e., the following Dirichlet
boundary conditions are prescribed: 𝑢0𝑥 = 𝑢0𝑦 = 𝑢0𝑧 = 0. The loading
programme consists of a vertical tangential distributed load 𝑡0𝑦 = −1.0
× 10−3 N/mm2 imposed on the right side of the structure considering
10 increments (see detail in Fig. 26). With respect to internal forces, the
distribution of the applied load indicates a constant shear force and a
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Fig. 11. Vertical displacements in mm (scale factor = 4) for first- and second-order models compared to DNS model considering the RVE length 1, i.e., 𝑙𝜇 = 0.500 mm, and the
loading programme related to axial tension.
Table 9
Mesh study considering the maximum vertical displacement 𝑈𝑦 (mm) on the right side of the structure for
RVE size 1 (𝑙𝜇 = 1.000 mm).

Vertical displacement 𝑈𝑦 (mm)

Mesh 1 Mesh 2 Mesh 3 Differences in module

Multi-scale models (1) (2) (3) (2) to (1) (3) to (2)

2nd-order: Minimal −0.3956 −0.3923 −0.3906 0.83% 0.45%
2nd-order: Periodic −0.3932 −0.3899 −0.3883 0.84% 0.40%
2nd-order: Direct −0.3911 −0.3879 −0.3863 0.82% 0.43%

1st-order: Uniform traction −1.4063 −1.4076 −1.4077 0.09% 0.01%
1st-order: Periodic −1.3098 −1.3101 −1.3102 0.02% 0.01%
1st-order: Linear −1.3052 −1.3056 −1.3057 0.03% 0.01%
14
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Fig. 12. Vertical displacements in mm (scale factor = 4) for first- and second-order models compared to DNS model considering the RVE length 1, i.e., 𝑙𝜇 = 0.500 mm, and the
loading programme related to axial compression.
linear bending moment along the length (𝐿𝑥) of the structure. Meshes
data for the DNS models are shown in Table 12, where the 20-node
hexahedron element (H20) and 8 integration points were defined to
create the structured meshes. Since a large number of unit cells results
in a significant increase in elements and degrees of freedom of the
mesh, more refined DNS models were limited by the available memory
requirements of the computer used in the numerical simulations. This
limitation regarding memory requirements highlights a drawback of
more refined DNS models, whose simulation may become impractical.

Fig. 27 presents a comparison of the vertical displacements for the
DNS models. DNS model 1 is the structure with the most stiffness,
while DNS model 3 is the most flexible. The DNS 2 model presents
15
an intermediate response, being closer to the DNS 3 model. In this
manner, the architected structure has the so-called size dependence re-
lated to material microstructure. Therefore, the generalised continuum
mechanics can be more suitable for modelling this numerical example.

3.3.2. Multi-scale simulations
In the context of multi-scale numerical simulations based on first

and second-order computational homogenisation, the results are shown
only for periodic boundary conditions due to the better results when
compared with the DNS models. Regarding the coupled multi-scale
simulations, geometry and mesh parameters must be defined for the
macro and micro-scales. The RVE data are shown in Fig. 24, including
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Fig. 13. Norm of 𝗔 required for multi-scale modelling based on second-order homogenisation: comparison between compression and tension loading programmes.
Table 10
Maximum vertical displacement on the right side of the structure (𝑈𝑦) for all
second-order multiscale models, including differences in comparison with DNS
models.

RVE length 𝑈𝑦 (mm) and differences compared to DNS model

(mm) DNS Minimal Periodic Direct

𝑙𝜇 = 1.000 −0.545 −0.396 27.46% −0.393 27.92% −0.391 28.29%
𝑙𝜇 = 0.500 −0.970 −0.825 14.92% −0.820 15.46% −0.817 15.72%
𝑙𝜇 = 0.250 −1.206 −1.146 4.98% −1.138 5.64% −1.135 5.87%
𝑙𝜇 = 0.167 −1.262 −1.235 2.16% −1.226 2.86% −1.223 3.08%
𝑙𝜇 = 0.125 −1.284 −1.270 1.06% −1.261 1.77% −1.258 1.99%
𝑙𝜇 = 0.100 −1.294 −1.287 0.52% −1.277 1.24% −1.275 1.47%

Table 11
Maximum vertical displacement on the right side of the structure (𝑈𝑦) for all first-order
multiscale models, including differences compared to DNS models.

RVE length 𝑈𝑦 (mm) and differences compared to DNS model

(mm) DNS Uniform traction Periodic Linear

𝑙𝜇 = 1.000 −0.545 −1.406 157.84% −1.310 140.15% −1.305 139.30%
𝑙𝜇 = 0.500 −0.970 −1.406 45.02% −1.310 35.07% −1.305 34.59%
𝑙𝜇 = 0.250 −1.206 −1.406 16.65% −1.310 8.65% −1.305 8.27%
𝑙𝜇 = 0.167 −1.262 −1.406 11.40% −1.310 3.76% −1.305 3.39%
𝑙𝜇 = 0.125 −1.284 −1.406 9.57% −1.310 2.05% −1.305 1.69%
𝑙𝜇 = 0.100 −1.294 −1.406 8.72% −1.310 1.26% −1.305 0.90%

the mesh modelled with hexahedral elements (H20) and 8 integration
points. Fig. 28 illustrates the geometry and boundary conditions for the
macro-scale. Mixed hexahedral elements with 20 nodes (H20F8L1) and
8 integration points are employed to discretise the macro-scale (Ro-
drigues Lopes and Andrade Pires, 2022b). A mesh refinement study was
16
Table 12
Mesh of DNS models.

DNS Elements (H20) Nodes

Model 1 - Size 1 (𝑙𝜇 = 1.000 mm) 9000 59 316
Model 2 - Size 2 (𝑙𝜇 = 0.500 mm) 72 000 426 181
Model 3 - Size 3 (𝑙𝜇 = 0.333 mm) 243 000 1 385 596

performed for the macro-scale, in which two meshes were investigated
(see Fig. 29) for 𝑙𝜇 = 1.000 mm. As shown in Fig. 30, the mesh
convergence study was carried out, taking into account the maximum
vertical displacements of the structure. The responses are very close for
both meshes defined at the macro-scale, i.e., the result of mesh 1 is in
close agreement with the result of mesh 2. Thus, mesh 1 is sufficient to
compute the numerical simulations.

Fig. 31 shows the results of the size effects study for the architected
structures, in which multi-scale simulations based on first- and second-
order computational homogenisation with the periodic constraint are
confronted with DNS models. In this case, seven RVE lengths were
considered for the multi-scale simulations: 𝑙𝜇 = 1.000 mm (size 1),
𝑙𝜇 = 0.500 mm (size 2), 𝑙𝜇 = 0.333 mm (size 3), 𝑙𝜇 = 0.250 mm
(size 4), 𝑙𝜇 = 0.167 mm (size 5), 𝑙𝜇 = 0.125 mm (size 6) and 𝑙𝜇
= 0.100 mm (size 7). Note that multi-scale simulations allow us to
consider smaller RVE lengths with similar computational cost and
memory requirements, which is an advantage compared to DNS models
that were unfeasible due to the limited memory requirements of the
processing computer. The vertical displacements for first- and second-
order multi-scale periodic boundary conditions are presented in Figs. 32
and 33, respectively. The second-order homogenisation captures the
increase in the maximum vertical displacement with the reduction
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Fig. 14. Results for 𝐴2111 component with coupling between 𝑃21 and 𝐹11 considering the multi-scale modelling based on second-order homogenisation: comparison between
compression and tension loading programmes.

Fig. 15. Three-dimensional unit cell or RVE.
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Fig. 16. Unit cell and RVE.

Fig. 17. Geometry of three DNS models (𝐿𝑥 = 25 mm and 𝐿𝑦 = 1 mm).

Fig. 18. Vertical displacement results for three DNS models (scale factor = 4).

Fig. 19. Geometry and boundary conditions.
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Fig. 20. Macro-scale meshes.
Fig. 21. RVE length x maximum vertical displacement 𝑈𝑦 (mm) on the right side of the structure for macro-mesh 1.
of the RVE length. As observed in the DNS models, the periodic
second-order multi-scale model associated with RVE size 2 (i.e., 𝑙𝜇
= 0.500 mm) provides a deformed response close to the RVE size 3
(i.e., 𝑙𝜇 = 0.333 mm). Therefore, the qualitative results of the second-
order approach adhere to the DNS models. The quantitative differences
between the second-order approach and DNS models can be associated
with higher-order terms not covered in the second-order strategy.
Furthermore, second-order effects were not adequately captured by
first-order homogenisation, where significant differences are observed
in comparison to DNS models.

3.4. Numerical example 4: three-dimensional metamaterial with
compression-induced twisting

The purpose of this example is to simulate three-dimensional meta-
materials with twisting behaviour when subjected to compression load-
ing, i.e., compression-induced twisting. Concerning the elastic proper-
ties of the matrix, the metamaterial is modelled with 𝐸 = 210 GPa and
𝜈 = 0.3.

3.4.1. DNS models
The morphology for the unit cells of the DNS models is shown in

Fig. 35, where the non-symmetric geometry is intentionally designed to
provide compression–torsion coupling. The numerical simulations are
performed considering the 8-node hexahedron solid element (H8) with
8 integration points. The unit cell mesh is composed of 1216 elements
19
Table 13
Mesh of DNS models.

DNS Elements (H8) Nodes

Model 1 - Size 1 (𝑙𝜇 = 0.500 mm) 29 184 56 235
Model 2 - Size 2 (𝑙𝜇 = 0.333 mm) 98 496 185 104
Model 3 - Size 3 (𝑙𝜇 = 0.250 mm) 233 472 433 293
Model 4 - Size 4 (𝑙𝜇 = 0.167 mm) 787 968 1 444 087

(H8) and 2700 nodes. In order to assess the size effect, four DNS
models were simulated (see Fig. 35). Note that the material volume
fraction remains constant across all DNS models. The bottom side of
the structure has the nodes fixed in the 3 directions, i.e., 𝑢0𝑥 = 𝑢0𝑦 =
𝑢0𝑧 = 0.0. With respect to the top side of the structure, a compressive
displacement of 𝑢0𝑦 = −0.1 mm is prescribed in the vertical direction,
considering 20 increments. Table 13 indicates the mesh data for each
DNS model. Furthermore, more refined DNS models were not added
due to the limitation of available memory requirements of the computer
used for the numerical simulations.

Fig. 36 presents the front view of the deformed DNS models after
imposing the load programme. Thus, the deformed structures show the
conversion of axial compression into torsion, i.e., a behaviour with
compression-induced twisting. Furthermore, the size effect is also clear
in the metamaterial, where the reduction of the rotation angle due to
the decrease in the unit cell length is observed for DNS models. Fig. 37,
with the top view of the deformed DNS models, also helps to visualise
the reduction in rotation due to the decrease in the RVE length.
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Fig. 22. Vertical displacements (mm) for first-order multi-scale models: all RVE sizes (scale factor = 4).

Fig. 23. Vertical displacements (mm) for second-order multi-scale models: Size 1, 2 and 3 (scale factor = 4).
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Fig. 24. Unit cell and RVE.

Fig. 25. Geometry of the DNS models (𝐿𝑥 = 25 mm and 𝐿𝑦 = 𝐿𝑧 = 1 mm).

Fig. 26. Detail of distributed vertical loading (𝑡𝑜𝑦) applied on the right side of DNS models.
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Fig. 27. Comparison of vertical displacements (mm) for DNS models (scale factor = 3).

Fig. 28. Geometry and boundary conditions for macro-scale (𝐿𝑥 = 25 mm and 𝐿𝑦 = 𝐿𝑧 = 1 mm).

Fig. 29. Macro-scale meshes.
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Fig. 30. Mesh study for RVE size 1 (𝑙𝜇 = 1.000 mm) taking into account the maximum vertical displacement 𝑈𝑦 (mm) on the right side of the structure: second-order periodic
constraint (2nd-order — Periodic: Size 1) and first-order periodic boundary condition (1st-order — Periodic: Size 1).

Fig. 31. RVE length x maximum vertical displacement 𝑈𝑦 (mm) on the right side of the structure: second-order periodic constraint with macro-scale mesh 1 (2nd-order — Periodic:
Mesh 1) and first-order periodic boundary condition with macro-scale mesh 1 (1st-order — Periodic: Mesh 1).

Fig. 32. Vertical displacements (mm) for first-order multi-scale periodic boundary condition: Size 1, 2 and 3 (scale factor = 3).

Fig. 33. Vertical displacements (mm) for second-order multi-scale periodic constraint: all RVE sizes (scale factor = 3).
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Fig. 34. Unit cell and RVE.
Fig. 35. Geometry (3D view) and boundary conditions for DNS models (𝐿𝑥 = 𝐿𝑧 = 1 mm and 𝐿𝑦 = 3 mm).
Fig. 36. Modulus of the displacement vector field for DNS models in a front view (scale factor = 4).
24
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Fig. 37. Modulus of the displacement vector field for DNS models in a top view (scale factor = 4).
Fig. 38. Geometry (3D view) and boundary conditions (𝐿𝑥 = 𝐿𝑧 = 1 mm and 𝐿𝑦 = 3 mm).
3.4.2. Multi-scale simulations
Regarding the multi-scale simulations based on second-order ho-

mogenisation, only the minimal constraint was considered to discuss
the results. Note that the periodic constraint is not applicable due to
the geometry of the RVE. Moreover, the direct constraint did not ad-
equately capture the compression-induced twisting because of the sig-
nificantly stiffer homogenised behaviour. For comparison purposes, the
classical uniform traction boundary condition derived from first-order
homogenisation was also investigated.

The geometry and mesh of the RVE are shown in Fig. 34. Concern-
ing the macro-scale problem, the geometry and boundary conditions
are depicted in Fig. 38. Mixed hexahedral elements with 20 nodes
(H20F8L1) and 8 integration points are employed in the finite element
discretisation at the macro-scale (Rodrigues Lopes and Andrade Pires,
2022b). Three macro-scale meshes shown in Fig. 39 were adopted to
evaluate mesh convergence. Fig. 41 presents the results of the mesh
refinement study for 𝑙𝜇 = 0.500 mm accounting for the rotation angle
(𝜃) of the deformed structure (see Fig. 40). In summary, the results are
close for all meshes investigated, indicating mesh convergence.

Towards multi-scale analyses, seven RVE lengths were investigated:
𝑙𝜇 = 0.500 mm (size 1), 𝑙𝜇 = 0.333 mm (size 2), 𝑙𝜇 = 0.250 mm
(size 3), 𝑙𝜇 = 0.167 mm (size 4), 𝑙𝜇 = 0.125 mm (size 5), 𝑙𝜇 =
0.100 mm (size 6) and 𝑙𝜇 = 0.083 mm (size 7). The results associated
with the rotation angle (𝜃) of the deformed structure (see Fig. 40)
for all RVE lengths are presented in Fig. 42. The deformed macro-
scale structures for some RVE lengths are shown in Fig. 43 (front
view) and Fig. 44 (top view) to compare results with DNS models.
In addition, Fig. 45 shows the distribution of the effective Cauchy
25
stress (MPa) for the deformed RVE (𝑙𝜇 = 0.500 mm) associated with
the integration point 𝐼𝐵 at macro-scale mesh 1 (see approximate region
indicated in Fig. 39(a)). The first-order multi-scale analyses performed
with the uniform traction boundary condition did not capture the
rotation of the structure. Although quantitative differences compared
to DNS models, the second-order multi-scale minimal constraint based
on second-order homogenisation captures the compression-induced tor-
sion at the macro-scale. It is worth highlighting the deformed RVE in
Fig. 45, where the effect of torsion is clear at the micro-scale.

Following the discussion for DNS models, the reduction of the
rotation angle for smaller RVE lengths was also captured in the coupled
second-order multi-scale simulations with minimal constraint. Thus,
the computational approach via second-order homogenisation captures
the size effect of the metamaterial with compression–torsion coupling.
Furthermore, a non-linear behaviour is observed in the curves relating
𝜃 and the RVE length.

3.4.3. Analysis of the homogenised properties
The consistent tangents required to solve the coupled multi-scale

problem are important for understanding the compression-induced tor-
sion observed for the metamaterial. In particular, the so-called coupling
tangents are more relevant to explain the coupling deformation mecha-
nism of torsion (second-order deformation mode) associated with com-
pression (first-order deformation mode). Concerning the cross-relations
established by these consistent tangents, 𝗔𝗚 (𝐴𝐺𝑖𝑗𝑘𝑙𝑚) associates 𝑷 (𝑃𝑖𝑗)
and 𝗚 (𝐺𝑘𝑙𝑚):

𝐴𝐺𝑖𝑗𝑘𝑙𝑚 =
𝜕𝑃𝑖𝑗 , (35)

𝜕𝐺𝑘𝑙𝑚
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Fig. 39. Macro-scale meshes.
Fig. 40. Rotation angle (𝜃) for a top view of the structure.
Fig. 41. Mesh study for RVE size 1 (𝑙𝜇 = 0.500 mm) accounting for the rotation angle (𝜃): second-order minimal constraint (2nd-order — Minimal: Size 1) and first-order uniform
traction boundary condition (1st-order — Traction: Size 1).
and 𝗛𝑭 (𝐻𝐹 𝑖𝑗𝑘𝑙𝑚) relates 𝗤 (𝑄𝑖𝑗𝑘) and 𝑭 (𝐹𝑙𝑚):

𝐻𝐹 𝑖𝑗𝑘𝑙𝑚 =
𝜕𝑄𝑖𝑗𝑘

𝜕𝐹𝑙𝑚
. (36)

In this context, Fig. 46 shows the norms of the initial consistent
tangents |𝗔 | and |𝗛 | of RVEs required for the FE2 framework with
26

𝗚 𝑭
minimal constraint related to second-order homogenisation. The non-
null values for the consistent tangents indicate their contribution to
the solution of the multi-scale problem based on second-order ho-
mogenisation. It is worth mentioning that there is a linear relationship
between the norm of consistent tangents and the RVE length. On the
other hand, these particular tangents are not considered in the solution
for the uniform traction boundary condition related to the multi-scale
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Fig. 42. RVE length x rotation angle: second-order minimal constraint with macro-scale mesh 1 (2nd-order — Minimal: Mesh 1) and first-order uniform traction boundary condition
with macro-scale mesh 1 (1st-order — Traction: Mesh 1).

Fig. 43. Modulus of the displacement vector field in mm for macro-scale structures (front view): Second-order — Minimal (scale factor = 4).

Fig. 44. Modulus of the displacement vector field in mm for macro-scale structures (top view): Second-order — Minimal (scale factor = 4).

Fig. 45. Effective Cauchy stress (MPa) for the deformed RVE (𝑙𝜇 = 0.500 mm) associated with the integration point 𝐼𝐵 at macro-scale mesh 1 (see approximate region indicated
in Fig. 39(a)) for the multi-scale analysis via second-order computational homogenisation under the minimal constraint assumption (scale factor = 4).
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Fig. 46. Norm of consistent tangents required for the second-order multi-scale modelling with minimal constraint.
Fig. 47. Results for 𝐴𝐺22312 component with coupling between normal stresses 𝑃22 and the torsion deformation mode 𝐺312.
strategy based on first-order homogenisation, where the compression–
torsion coupling was not captured. Therefore, |𝗔𝗚| and |𝗛𝑭 | were
important for the second-order multi-scale approach to capture the
effect of compression-induced torsion. For an in-depth discussion of
the effect of compression-induced twisting, Fig. 47 presents the 𝐴𝐺22312
component with coupling between normal stresses 𝑃22 and the torsion
deformation mode 𝐺312. Hence, the 𝐴𝐺22312 component indicates the
coupling between normal and torsional effects for the metamaterial.

4. Conclusions

In the present contribution, a multi-scale second-order compu-
tational homogenisation approach at finite strains was explored to
investigate the macroscopic behaviour of architected materials and
mechanical metamaterials. In order to demonstrate the robustness
and applicability of the second-order computational approach, several
numerical experiments were carefully investigated through two- or
three-dimensional coupled multi-scale simulations conducted in an
FE2 framework. The numerical examples account for different loading
programmes, including results associated with tension/compression-
induced undulation, bending, and compression-induced torsion. The
size effect due to the RVE length was assessed in all simulated struc-
tures. Moreover, the second-order approach was confronted with first-
order theory and DNS models, and mesh convergence studies have also
been performed.
28
Firstly, the behaviour of a novel mechanical metamaterial with
tension/compression-induced undulation has been analysed. When sub-
jected to tension or compression, its mechanical response is not influ-
enced by the size effect associated with the length of the unit cell, as
revealed in the numerical simulations with DNS models. Consequently,
the multi-scale approaches based on first- and second-order compu-
tational homogenisation presented similar results for the mechanical
behaviour of the metamaterial, capturing the tension/compression-
induced undulation. Regarding the accuracy of the multi-scale models,
periodic boundary conditions provided results in close agreement with
the DNS models, resulting in better predictions compared to other
classes of constraints. Moreover, the new exotic behaviour, which can
be employed in shape-shifting applications associated with soft robotics
and/or programmable materials, results from a non-conventional cou-
pling between tension/compression and shear that is quantified in the
material tangent modulus. This coupling is not associated with second-
order deformation modes and, consequently, is accurately predicted by
first-order homogenisation.

Secondly, numerical examples associated with bending highlighted
significant advantages of second-order strategies, compared to classical
first-order homogenisation. For two distinct architected materials, one
modelled in a 2D framework, and another one with 3D models, the
multi-scale second-order strategy presented responses in close agree-
ment with the results from DNS, unlike the first-order approaches. The
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size effects due to the RVE length revealed by DNS have been captured
by the multi-scale approach based on second-order homogenisation.

Finally, it has been shown that multi-scale models based on second-
order homogenisation can capture a complicated compression-induced
torsion effect. A 3D RVE has been devised to induce this kind of
effect and the corresponding DNS models reveal a size effect associated
with the RVE length, that affects the torsional rotation. First-order
homogenisation is not able to capture such deformation mode cou-
pling. At the same time, multi-scale models based on second-order
homogenisation can predict compression-induced torsion, as well as the
associated size effect.

In summary, the simulated numerical examples showed that the
second-order multi-scale strategy is capable of capturing relevant phe-
nomena in more advanced materials, such as second-order deformation
modes, coupling deformation mechanisms and size effects associated
with microarchitecture length. In addition, the computational cost
of solving DNS problems is alleviated with this kind of multi-scale
approach, especially in what concerns memory requirements and for
smaller sizes of the unit cell. Therefore, the developed computational
framework can be useful in practical applications for designing cellular
and lattice structures as well as mechanical metamaterials to obtain the
desired macroscopic behaviour, encompassing remarkable or extreme
properties and exotic functionalities. Nonetheless, when the exotic
behaviour is based on the coupling between first-order deformation
modes, first-order homogenisation is also adequate.
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