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Abstract. The goal of this work is to prove the smoothing property of
the evolution process associated with the semilinear heat equation with
delay, which is defined on a one-dimensional moving boundary domain.
Then, as a consequence of the smoothing property, we can estimate the
fractal dimension of the pullback attractors associated with this parabolic
problem.
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1 Introduction

Let o, 8 : R — R be two functions such that 5(t) > «(t) for all t € R. Let us
denote by Z; := (a(t), 3(t)) the open interval at the time ¢ € R, with ends o(t)
and ((t), and whose length is given by the function v(¢) = |Z;| = 8(t) — a(t) > 0.

Thus, on the functions «, 5 and 7 consider the following hypotheses:
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(H1) o,8€ C?*(R) and 0 < v < y(t) < for all t € R;
(H2) o/, 5" € L*(R).
The following hypothesis refers to the delay term:

(H3) For h > 0 fixed, let 6(t) be a C'-function (or continuously differentiable

function) such that §(¢) > 0 for all t € R, h = supd(t) > 0 and §, =
teR

supd’(t) < 1.

teR

And, for the pullback asymptotic analysis the following conditions will be

necessary:

(H4) We will assume that

I, .= U Z, = U (a(s), B(s)) is bounded for any t € R.

s<t s<t

Given 7,7 € R with 7 < T, we define the non-cylindrical regions @1 and

Q- as
U Zox{t} and Q.= |J Zx{th

te(r,T) te(r,+00)

Finally, let us denote by Z = (0,1) and for each ¢ € R consider the map
re =71(t) : Zy — Z defined as

x — a(t)
()

and for each ¢ € R let us denote by r; := rt__lé(t) ory: Ly = Ly s(p)-

ri(x) =r(z,t) = Vx € Iy,

Given 7 € R, the heat transfer equation with delay on the non-cylindrical
region ), and with homogeneous Cauchy-Dirichlet boundary conditions, denoted
by (DHE), is:

O 0T gfu) = ) +u(Ft - 6() in Q.

u(a(t),t) =u(B(t),t) =0 Vte [r,+0), (DHE)
u(t)=u" inZ,,

u(t+s)=¢(s) inZ;4,and s e (—h,0),

where ¢y > 0 is the thermal conductivity, u is the temperature function, u” is

the temperature in the initial time ¢ = 7, ¢ is the initial condition with memory
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defined on interval (—h,0) with & > 0, and f € L} .(Q,) is the heat source,
and g € C1(R) is a given function for which there exist non-negative constants

o, a1, Bp and [, and p > 2 such that
—Bo+ apgls|P < g(s)s < Bo+ ai|s]P Vs eER,

and
g(s)>-1 VseR. (1.1)

Before commenting further on this, let us do a timeline of what has already
known about the problems related to the system (DHE). Between the years 2008
and 2009, the n-dimensional case of the problem (DHE) was treated in [2, 3],
but without a memory term. In their paper is proved the existence of strong
and weak solutions, and the existence of pullback attractors on tempered uni-
verses. In the year 2022, in [5] the authors worked on problem (DHE), proving
the existence of strong and weak solutions, and the existence of a pullback at-
tractor with finite fractal dimension. To estimate the fractal dimension of the
pullback attractor, the Lyapunov exponent method was used, and for this, it was
necessary to assume that the nonlinear function g € C?(R). Recently in [6] the
n-dimensional case of problem (DHE) was studied, with a more general memory
term. The authors proved the existence of strong and weak solutions, and the
finite fractal dimension of the pullback attractor. The last one was possible by
assuming that the nonlinear term g € C?(R) is globally Lipschitz, and with this
guarantee that the evolution process satisfies the smoothing property.

The main objective of this work is to study the fractal dimension of the
pullback attractors of (DHE) via the smoothing property of the evolution process
associated. For this, it is sufficient to assume that the nonlinear function g €
C*(R), which is an improvement compared to the paper [6].

This paper is organized as follows: In Section 2 we present some results and
definitions that are fundamental to have a better understanding of the paper, for
example, a special class of Bochner spaces and results about fractal dimension
associated with evolution processes acting on families of Banach spaces. We also
remember the results of the existence, regularity, and uniqueness of weak solu-
tions, and the existence of pullback attractors associated with (DHE). Section
3 is dedicated to obtaining results on the continuous dependence on initial data
taken in the sections of the pullback attractor. Finally, the Section 4 is devoted
to estimating the fractal dimension of each section (or fiber) of the pullback
attractors associated with the problem (DHE).
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2 Abstract Setting of the Problem and Known
Results

2.1 Functional spaces

In order to state the problem in the correct framework, let us consider the

following time-dependent Banach spaces: For each ¢ € R let us denote by |- |,

the norm of the Banach space LP(Z;). For the special case p = 2, the norm of the
Hilbert space L?(Z;) will be denoted by | - |; and its inner product by (-,-);. The
norm for the Sobolev space Hg(Z;) will be denoted by || - ||;. Finally, for each
t € R, denote by (-,-)_1,+ the duality product between H~'(Z;) and H}(Z;).

On the other hand, in the same way as [3, 5, 6], we are going to consider
a special class of Bochner spaces that are defined on time-dependent Banach

spaces. Then, for each 7 € R, let us define by:
Cr2(Z,) = {¢ € C([~h,0}; Use[-n,0)L*(Zr1s)) = ¢(s) € L*(Z+1s) Vs € [—h, o]},

with norm defined by [|$lc,,(z,) == sup |@(s)|r4s, for all ¢ € Cp2(Z;).

s€[—h,

L2,(T,) == {¢ € L2( = h,0;Useiono L3 (Trss)) - 6(5) € L(Zr4s) aue. s € [—h,o]},
0
with norm H(b”%iz(IT) = [h |p(s) |24 4ds, for all ¢ € L2,(Z,).

Cry(T,) = {¢ € C([=h, 0; U —no HE(Zrys)) : 6(5) € HE(Z 1) Vs € [—h,o]},

with norm H¢”C’Hé (z,) = Sup | ||¢(S)H‘r+sa for all ¢ € Cp2 (IT)7 and
0

s€[—

130 (T7) 1= {6 € L2( = b0 e no H3 (Trss)) 5 6(5) € HY(Tris) ace. s € [=h,0

0
with norm Hd)”%i;(l) @) = [h ¢(s)]|24ds, for all ¢ € L%& (Z;).
Observe that Cr2(Z;) — L3,(Z,) and Chy (Z,) — Lilé (Z;) < L3,(Z;) for
all 7 € R. On the other hand, we consider

M2,(Z,) := L*(Z,) x L2.(Z,) with norm | (u, ¢)Hi432<17> = ul? + ||¢||2Liz(L).
and

M} (Z,) i= Hy(Zr)x L33 (Z;) with norm ||(u77¢)||?wi11(17) = \|uf||3+\|¢||izl(17).
0 0
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Note that L*(Z;) x Cp2(Z;) < M3.(Z.) and Méé (Z;) < M3,(Z;) for all T € R.

On the other hand, let {X;}:cr be a family of Banach spaces and consider the
interval [—h, 0] with & > 0. Given a function u defined on R, such that u(t) € X;
for each t € R, then for t € R we denote by u; the function:

ug :[[—h,0] = {X¢4s: s € [—h,0]}
s = w(s) = u(t+s) € Xpys.

For example, let 7 € R and h > 0. Thus, if u € L?(7 — h,7; L?>(Z;)), then
U € L%g (I-,—)

2.2 Fractal dimension

In this section we introduce the definition of fractal dimension of compact
sets, e.g. [1, 7]. We also state a recent result, see [6, Theorem 4.11], to esti-
mate the fractal dimension of families of time-dependent compact sets, which

are associated with a family of time-dependent maps that satisfy the smoothing
property.
Definition 2.1. Let X be a metric space and K a compact subset of X. The

fractal dimension of K is defined by

log Nx (K
dimy(K, X) = limsup log Nx (K, 7)
r—0 —logr
where Nx (K, r) is the minimum number of balls of radius r that cover K.
Proposition 2.2. (¢f. [1, Lemma 4.2]) Let X, Y be two normed spaces. Con-

sider € C X, and f : € — Y a Hélder continuous function with exponent 0,
0 € (0,1], i.e. there exists an L > 0 such that

1f@@) = fW)lly < Llle —yl%,

for all xz,y € €. Then

< dsz(‘ﬁ,X)
- 0
Theorem 2.3. (c¢f. [6, Theorem 4.11]) Let {X;}ier and {Yi}ier families of

normed vector spaces such that Y; is compactly embedded in Xy for every t € R.

dims(f(%),Y)

Assume that {6;}ier s a family of bounded subsets of {X:}ier and there exists
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a non-decreasing function o : R — (0,4+00) such that for each t € R there erists
u; € 6; satisfying
¢: C Bx,(ut,0(t)) forall teR. (2.1)

Assume that there exists a family of operators {L; : X¢:—1 — Yi}ier such that
e Negative invariance ¢; C L;%;_1 for allt € R;

e Smoothing property there ezists a function k : R — (0,4+00) such that

ILs2 = Leylly, < w@)lle = yllx, ., Yo,y € Gon, VEER;

e Entropy control also assume that there exists a discrete function N : R — N
such that
SUpP V7 4,005) < N (1),
s<t

where Nt := Nx,(By,(0,1),¢) for any e >0 and t € R.

Then,

1 t
sup dimys(6s, Xs) < M for all t €R.
s<t log 2

Remark 2.4. Theorem 2.3 can be formulated in the discrete framework, i.e.,
{Xm}tmez, {Ym}tmez, {Lm}mez and {€ntmez such that Y, —— X, (Y, is
compactly embedded in X,,), €, C L, n—1 for all m € Z, and all conditions of
Theorem 2.3 are satisfied. On the other hand, keep in mind also that Theorem
2.3 can be formulated not for all time, but for we can assume the existence of a
maximum time tg € R or Z, such that all the conditions of the theorem are valid
for all t < tg.

Lemma 2.5. (c¢f. [6, Lemma 4.13]) Let X, be normed vector spaces and F' :
X — Y an isometry, that is,

[1F(u) = F(o)lly = llu—vllx, Vu,veX.
Assume that W' is a totally bounded subset of Y such that
FW)cw'. (2.2)
Then, W is totally bounded in X and for any ¢ > 0 we have

Nx[W,e] < Ny[W', ¢].
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2.3 Weak solutions to (DHE)

This section is devoted to recalling the existence, uniqueness and regularity of
weak solutions of the problem (DHE). It should be noted that the demonstrations
of these results are done via the Galerkin method, which can be consulted in [5,
Theorem 3.2], also see [2, 3, 6, 7].

For 7 < T, let us start defining the space of the test functions as

U = € L2 T HYE) 0 D/(@rr) : 22 € 12(Qur). 4(r) = (1) =0,

Definition 2.6. Given f € L?(7,T; H~1(Z;)), by weak solution of (DHE) asso-
ciated to the initial condition (u”,$) € M7,(Z,), we understand a function u,
belonging to the class

w€ L*(Qrnr)NLP(Qr7)NC([1,T); L*(Z:)) N L3(7, T HY(Zy)),

2.3
% € L*(r,T; H NZy)) + LYQ..1), .

where % + % = 1, which satisfies the weak formulation

[ —ule )52 w0 + o052 w0 + glule, )l o
Qr.r

T (2.4)
= [ G ptn-rirs [ utEi). e o)t iz
for all ¢ € U, and
u(T) =u” and u(7 + s) = ¢(s) a.e. s € (—h,0). (2.5)

And by strong solution, associated to the initial condition (u”, ¢) € M?,(Z;), we
understand a function u satisfying (2.4) and (2.5), belonging to the class

w€ L*(Qr—nr)NLA(1,T; HX(Zy)) N C([7, T); HY (Z;)) N L (7, T; LP(Zy)),
% € L*(1,T; L*(T)).

Now, we are in position to state the result of existence, regularity and unique-

ness of weak solution for (DHE). The proof of this result is via Galerkin method.

Theorem 2.7. (Ezistence, reqularity and uniqueness, cf. [5, Theorem 8.2, The-
orem 3.5]) Suppose that conditions (H1)-(H3) hold. Let us consider T, T with
T <T, (u,9) € M?:(Z;), and f € L*(r,T; H *(Z;)). Then, there exists a
unique weak solution of the problem (DHE).
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o Ifu” € Hy(Z;), ¢ € L3.(Z;), and f € L*(7,T;L*(Z;)). Then, the weak
solution of the problem (DHE) belongs to

u € L*(1,T; H*(Z;)) N L (1, T; HY (T;)) with % € L*(1,T; L*(Ty)).

Remark 2.8. If the initial condition with memory ¢ € Cr2(Z;) with ¢(0) =
then the weak solution of (DHE) u belongs to C([r —h,T]; L*(Z;)). If u is strong
solution and ¢ € Cya(Z;) with ¢(0) = u”, then u € C([r -, T; HYTY)).
Note that any weak solution v to (DHE) can be taken as test function in the

weak formulation (2.4). Thus, we obtain the First Energy Equality

1d ~
5%\U(t)lf +eollu®)l + (g(u), w)e = (f,u)-re + (u(Te,t = 8(8),u),,  (2.6)
ae. te(r,T).
o If w is a strong solution of (DHE), then we obtain the Second Energy Equality

L o — (0. 28) = (1. 28),~ (e~ 28)

ae. te(r,T).

2.4 Pullback attractor associated with (DHE)

In this section we are interested in presenting the result about the existence of
the pullback attractors associated with (DHE), on the families of Banach spaces
{Cr2(Ty) }rer and { M7 (Ze) }ier.

Under the hypotheses (H1)-(H4) and f € L? _(R;H '(Z;)), Theorem 2.7
guarantees the existence of the continuous evolution processes {U(¢,7) : (¢, 7) €
R2} and {S(t,7) : (t,7) € R3} defined as

loc

U(t,7): Cr2(Z;) = Cr2(Zy) by U(t, 7)o =w(-;7,0), (2.7)

where u(-) = u(-;7,¢) is the unique weak solution of (DHE) associated to the
initial condition ¢ € Cr2(Z,) for any (t,7) € R2, and

S(t,7): M?2(Z,) = M3.(Z;) by S(t,7)(u",¢)= (u(t;T, u”, @), ue (-5 T, u7,¢)),

(2.8)

where u(-) = u(-;7,u”, @) is the unique weak solution of (DHE) associated to the
initial condition (u”,¢) € M?,(Z;) for any (¢,7) € R2.

In what follows we are going to define the universes where we will look for

pullback attractors associated with the evolution processes U(:,-) and S(:,-).
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These universes will have a tempered condition associated with the dissipation of
evolution processes, which are associated with a positive non-increasing function
n: R — (0,400), such that for each ¢t € R we denote by n; := n(t). An example
of this type of function is n, = Ay for all £ € R, that is the first eigenvalue of
—;—; on H} (1), i.e.

H HLQ(It
= min
weHy(1),w0 lwlZay,)

)

such that, under the assumption of hypothesis (H4), A\ ) : R — (0, 4+00) with

t — A1, is a non-increasing function, i.e. if s <¢, then A; ; < Aq 5.

Definition 2.9. (Tempered universes) Given a non-increasing function n : R —
(0, +00), we define by

D,(Cp2) the class of all families of nonempty subsets D={D{t) :tc¢
R, D(t) C Cr2(Z;) and D(t) # 0} such that, for all ¢t € R

mT =
Tl}mooe 4;111() ||</>HCL2(IT) 0.

2. D, (M3,;) the class of all families of nonempty subsets D={D@) :tce
R, D(t) C M?,(Z;) and D(t) # 0} such that, for all ¢ € R

lim e sup (v, 9)|3 = 0.
To=00 (y,4)eD(r) M2 (Tr)

Given 7 : R — (0,400) let us denote by Z:" the set of all functions f €

L? (R; H=1(Z;)) such that

loc

t
[ @R s < voo vieR

Theorem 2.10. (¢f. [5, Theorem 5.12, Remark 5.14]) Let p > 2 and sup-
pose that conditions (H1)-(Hj) hold. Assume that there exists a non-increasing
bounded function n : R — (0,+00) such that f € I2". Then, the families
Bn,Mi2 = {Buz, @) [0, R(H)] - t € R} and By c,, = {Bc,, )0, R()] : t € R}
are pullback D, (M?;)-absorbing and pullback D, (Cyz)-absorbing, for the pro-

cesses S(+,-) and U(-,-) respectively, where

R2(t):1+(1+h)e’“h/t e~ m(t=0) [ﬁp(t)+cal||f(0)||2,1’9]d0, (2.9)

— 00
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where ﬁp : R — (0,+00) is a non-decreasing positive function. Moreover,
En,M; € D,(M3%.) and B, c,, € Dy(Cr2).

Then, there exist the minimal pullback Dy (Crz2)-attractor Ap, (c,,) € Dy(Cr2)
and the minimal pullback D, (M3,)-attractor 'AD"I(Miz) € D, (M%) for the pro-
cesses U(+,+) and S(-,-) respectively, and the following relationships hold

Ap, (m2,)(t) C Barz,(z) [0, R(D)]  and  Ap, c,»)(t) C Be,,(z) [0, R(D)],

forallt € R. Moreover, the following relationship between ADW(M;) and ADn(CLz)

which is:

Ji(Ap, (c,2) (1) = Ap,ar2,) (1), for allt €R, (2.10)

where J; + Cr2(Zy) — M?.(Ly), defined by Ji(¢) = (¢(0),¢), is the canonical

mjection map.

3 Continuous dependence with initial data on the

pullback attractor.

In this section we study the continuous dependence on the chosen initial data
in the sections of the pullback attractor Ap Mm2,)- For this, in the same way as
L
[4], we are going to consider f € L? (R; L?(Z;)) satisfying

loc

My(t) := sup/ 1f(r)||?y dr < +oo, forallt €R. (3.1)
s<t Js—1

Note that, if f satisfies (3.1) then f € 2" and the existence of a pullback
D,, (M3, )-attractor is still guaranteed by Theorem 2.10. Note that we take f €
L} (R; L*(Z;)) to guarantee the regularity on the solutions of (DHE), given in
Theorem 2.7.

On the other hand, it follows from Theorem 2.10 that

Ap, (uz,)(t) C Bz, z,)[0, R(1));

for all t € R, i.e.

t
||(“»¢)||?w§2(zt)§1+(1+h)6’“h/ e~ [H, (1) + 2| f(r)]|21,]ds, (3.2)

— 00
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for all (u, @) € ADn(Mi2)(t)’ t € R. Then, note that using (3.1), we have

t ~
e—mt/ e [Hy(t) + 2] £ (r)|2, ) dr =

—00

e e] t—n
—ent Y / e [Hy(t) + 2] f ()21, ]dr
n=0"?t

—(n+1)
[e’e} t—n
<ent e [0 0 v i
e t—(n+1)
< (1— e ™) [Hy(t) +2M (¢)]

< (L ) [Hy () +2M (1))
Therefore, making 7 = sup,cp 7, we deduce from (3.2) that
H(ua ¢)HM22 (Z4) < Rp(t) for all (U, ¢) € 'ADW(MEQ)(t)v te Rv (33)
where R, : R — (0, 400) is a non-decreasing positive function, given as
R2(t) = 1+ (1+ h)e"™ (1 + ;") [Hy(t) + 2M; (1))

On the other hand, we are going to show an estimative on the delay term of
(DHE), u(7s, s—4(s)), that will be used in this work. Observe that, by hypotheses
(H1) and (H3) and applying the change of variable with respect to the spatial

variable, we have

t t rB(s)
[ s = sepBas = [ [ty (o). s - o) Pdads
T T Ja(s)

= [ [ 1 05 = 8P ()

e .2
/ /a<s st u(z, s —8(s))] (s — (s ))dxds (3.4)

t—6() ﬁ(s
1 / / u(z, 5)|*dxds
70 - a(s)
< 2

< 5[_h| u(s)2ds,

for all 7 < ¢, where ¢§ = ——'5.

Proposition 3.1. Let p > 2 and suppose that conditions (H1)-(Hj) hold. As-

sume that there exists a non-increasing bounded function n: R — (0,400) such
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that f € L} (R; L?(Z;)) satisfying (3.1). Then there exists a non-decreasing func-
tion ¢ : R — (0,+00), such that

IIU(S)IILw(L,) <o(t) Vu(s) € Projrer, [Ap, 2, (s)], s <t,

where Projp 2,y : 2,(Zy) = L*(Zy) is a projection defined as Projpz(z,)(u, ¢) =
u, for all (u,¢) € Mgz (Z,). Note that, in particular, we have

Proji2(z,) |Ap, (M2, )] C L*™(Z;) forallteR. (3.5)
Proof. Tt follows from (3.3) that
[u(s)]s < Rp(t) for all u(s) € Projrz(z,) [ADn(Mzz)(S)]’ s <t. (3.6)

Now, let u(-) be a trajectory of (DHE) such that u(t) € Ap, (ns2,)(t) for all
L
t € R. Then, using the inequalities given in [5, Lemma 5.3] and (3.4), we have
that

o / u(6)[2d6 + 200 / ()26 < Ju(s — 1)_; +260m
s—1 s—1

1 S S = S
o [ IO sos+ [ 0= 50D G0+ [ juio)as

1 s -
< IR0 + 260 + - My (1) + / (9. 0 — 5(0))|2d0
s—1
s—1

1
< 2R2(t) + 2Bom + %Mf(t) + cﬁ/ |u(6)3d0

s—1—h
1
< (2 + hc§)Rf,(t) + 26071 + aMf(t)a

for all s <t. Then, we deduce that
/ ()26 + / (O 4d0 < Ry(t) forall s <1, (3.7)
s—1 s—1

where 7%,, : R — (0, +00) is a non-decreasing positive function defined as

R, (t) = (2+ hed)R2(t) + 2B0m1 + ¢ ' My (t)
P T

On the other hand, by [5, Lemma 5.5] we know that u(-) satisfies

s 200 [* 48
||U(3)||2§/ 1||u( )II5d6 + 01/ 1\ u(0)[b 5df + (;71

1 S
+— |u(7, 0 — (0 ))|9d9+*/ (0)[549,
Co Js—1

for all t € R.

min{co, 2a0}
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for all s <+¢. Thus, it follows from (3.4), (3.6) and (3.7) that

2017 hc? 1
+ {1 + ﬂ}RP(t) 4 Cio‘ng(t) + %Mf(t) for all s < t.

4Bom
Co Co

lu(s)]F <

Now, we know that, by hypothesis (H3) and Hg(Zs) < L>°(Z;), there exists
k¢ > 0 such that |[u(s)||p(z,) < kellu(s)|s for all s <t. Then, we obtain

2&1 s hcg 2 1
TR ) + TR+ M) .

45,
) iz, < RE{ o

for all s <t, and for any u(s) € Projrz(z,) [Ap (M22)(s)}. O
L

Theorem 3.2. Under the conditions (H1)-(Hj), let p > 2, 7 € R, and f €
L (R; L*(Z,)) that satisfies (3.1), and (u”, ¢1), (v7, ¢2) € ADH(MEQ)(T), Let us
denote by u(t) = u(t;u™, ¢1) and v(t) = v(t;v7, P2) the weak solutions of (DHE)
corresponding to initial values (u™, 1) and (v7, ¢a), respectively. Then, for all

t > 1, the following inequalities hold

u(t) = v(®)]; < r1e™ (T b)) — (07, G232 (3.8)
t
/ [u(s) —v(s)ll2ds < kel 1) = (07, d2)l3r,, z.)- (3.9)
where K14, kot are non-decreasing positive functions and K3 ¢—r = é[k:l,t(l +

ko ef2t (=) (t — 1))]. Moreover, if T+ 3h < t, we deduce that
Jus — vsHQcHé 2. < Fspa-rll @’ d1) = (07, 02)3s,, 2, (3.10)

for all s € [t — h,t], and

t
/ [y = Vil 22, z.)ds < Fopa—rll (W, 1) = (7, $2)13s, 0z, )- (3.11)
t—h L

where Ks ¢ 17, and Kett—r are positive functions and non-decreasing respect to

the first and second variables.

Proof. Tt follows from the weak formulation (2.4) and using w(-) := u(-) —v(-) as

a test function, that

d ~

£|w|f +2co[[wl|f + 2(g(u) = g(v), w)e = 2(w (7, t = 8(1)), w(t)),.
Thus, by Holder’s inequality and Condition (1.1), we have

d 1 -
@\wﬁ + collw||f < 20wlf + (:()le(rt’t —8(t)I7-

s
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Now, integrating from 7 to t, we obtain

l/\WG%S*é@»ﬁd&
’ (3.12)

t t
Iw(t)\fﬂo/ lwl|3ds < Iw(7)|3+2l/ w(s)[2ds+

CoALt

Note that, in the same way as (3.4), we conclude
t
/ lw(7s, s — 6(s))|2ds < 05/ lw(s)|?ds. (3.13)
T—h
Therefore, from (3.12) and (3.13), we deduce that

t
()]} < kel d1) = (07, 82) 3,0z, + ﬁz,t/ w(s)[2ds, (3.14)

for all ¢ > 7, where k1 = max{l } and Ko; = (2l +

applying Gronwall’s inequality, we conclude the first part of the proof.

) . Then,

’ CO>\1 t Co>\1 t

Regarding the second part this theorem, let us consider ¢t > 7+3h, 6 € (—h,0),
and s € (¢t — 2h,t). Now, using w’ as a test function in the weak formulation
(2.4), we obtain

0/ O L L s+ 0) 2, = —(0() — g(0).w),.,
+ (w(Fst0,5+ 0 — 6(s +0)),w (s + 9))S+9

<19 (Olwls+olw’[s+o + [w(Tsto, 5+ 0 — (s +0))|st0|w|s+0,
where £ € [u(x,0 + s),v(z,0 + s)]. Now, by Proposition 3.1 we know that
Projz(z, {AD 22)(7’)} C [~o(t),0(t)] for all r <t.

Then, taking rs g = sup g'(r) and applying the Holder inequality, we
re[—o(t),o(t)]
deduce that

[ (s +0) 540 + co - Hw(s + O30 < ki glwlig + [w0(Tro, s +60 = 3(s +0)) |24
(3.15)
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Now, integrating from r to s, with [r, s] C [t — 2h,t] we derive

collw(s + )26 < collw(r + 0)[1244 + Htg/ |wlzy pde

+ / (P, €+ 0 — (04 0))2, ot

s5+6

s+0
= collwr + O)Psg + 2, / hol2de + / o (e, € — 3(6))2de
r4-60 r+60

t t
< collw(r + O)|Psp + 52, / fwl2de + / o (Fe, € — 8(6)) 2de,

since 7 <t — 3h. Using (3.8) and (3.13), we obtain

collw(s + 0)|21g < collw(r +0)|20 + w2, / o (0) 2de + 2 / (o)
< collw(r + )25 + Fase 7 61) — (07 82) [y 2z

for all [r, s] C [t — 2h, ], where ka4 7 := [cF + (2 + fi%’g)m’te"‘?)t(t*” (t—1)].
Now, for s € [t — h,t], again integrating in r, from ¢ — 2h to s with , we have

s+6
O < 2 | 24
collw(s +0)[5410 < s—t+2h )i onso [[w(r)|-dr
+ 2k g || (uT, 1) — (V7 02) I3, 2
t
o T T
<% [ o) + 2hwaa el 60) = 07 02l
for all s € [t — h,t]. Thus, using (3.9) we deduce that

[w(s +O)Z1o < rspa—rllw’, d1) = (07, ¢2)H?\4§2(L) (3.16)

hkgtt—r

for all s € [t — h, t], where K5 ¢ 1—r == (/@37t,t_7 +
in 6 € [—h, 0], we have

™ ) Taking the maximum

[wallZ ) < oo 7 60) = @7, 82) s ) Foraill s € [t = bl
Moreover, it follows from (3.15) and (3.16), that

t
2 2
| s < 07 00) = 07 )

for all t > 7 + 3h. O
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Remark 3.3. (Smoothness property associated with a sequence of points) By
regularity, if we consider f € Wllof (R; L*(Z;)), it is possible to prove that u’ €
L} (R;H™Y(Z;)) and v’ € L} (R; H}(Z;)), then v’ has continuous representa-
tion. Therefore, it follows from (3.11) and the mean value theorem that there

exists f € [t — h, 1] such that
Ml = el ) < Rone el 60— (260 B ey (317)
i~ villLz, 7y 2,(Z,)
for all 7 <t — 3h.
First step: Let us consider tq = 0, then exists fy € [to — h, to] such that
iy — 4 2,z ) < Fororo—r 0760 — (7 023,y (319

for all 7 <ty — 3h.
Second step: Now, let us consider t; = tg — 3h, then there exists i € [t1 —h,t]
such that

hHu%l - U;fl ||%,22(I€1) < "€6,t1’t1*7|‘(ur7 ¢1) — (7)7—7 ¢2)||?\422(IT)’ (3'19)
for all 7 < t; — 3h. Thus, taking 7 = #; in (3.18) we obtain
hHu%o - ,U;AO H%iz (Ifo) = K6, t0,t0—t1 ”(utl’¢1) B (ytl ’ ¢2)”?‘/11242 (I£1)’ (320)

and taking into account that s¢ ¢, (.) is @ non-decreasing function, and to—t1 < 4h,

we have
hllug, — ”%0||2Liz () = Ketoanll (U, d1) — (", @)y, z,, - (3.21)
Third step: Again, let to = t; — 3h, then there exists ¢, € [t2 — h, o] such that
hlug, — U%2||2L2LQ(zf2) < K6 ta to—r|[(u”, 1) — (7, ¢2)||?\4§2(L)7 (3.22)

for all 7 < t5 — 3h. Thus, in the same way as (3.21), making 7 = £ in (3.19) we
have

Wl =4 12, z, ) < Focoanll @, 00) = 0%, 00) sz, - (3:29)

Therefore, repeating the previous steps, there exists a family of point {f,,}>°_,
such that £, — —oo as m — 0o, and
I, =i, 122, @, ) < Al 60) = (0 )iz, )
for all m > 0, where &p, = Ke.to,4n/ P

Finally, it should be noted that the regularity obtained regarding the history
of the solution, i.e., us, is when the final time ¢ € R is located at a minimum

distance of size h > 0 with respect to the initial time 7, that is, t > 7 + h.
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4 Finite fractal dimension of the pullback attrac-

tor

In this section, we will focus on showing that the pullback attractors ADW( M2,)
and ADU(CLZ)’ given in Theorem 2.10, have finite fractal dimension. When the
non-increasing function n : R — (0,+00) is bounded and the external force
fe Wllo’f(R; L?(I)) satisfies the condition (3.1).

Given t € R let us consider the following Banach space

Yiz (D) = {¢ € L%g (T,) : ¢ € L2, (It)}’

with norm H¢||%/L2:HC1)

(T,) = ”¢Hii(1](1f) + ”QS/H%iz(It)'

Now, let us define W21 (Z;) = Hg(Zi) X Yz, (Zy). Then, it follows from
Lemma of Aubin-Lions-Simon, e.g. [6, Theorem 4,15, Lemma 4.16], that
Wiyeyy (Tr) <> Mi2(Z;) for all t € R. (4.1)
Corollary 4.1. Under the hypothesis (Hj), given € > 0 we have

sup NM1212 (Zs) (BWL2;H6 (Zs) (0’ 1)’ 5) = NMiz (Ir) (BWL2;H(1] (I) (0’ 1)7 5) : (42)

s<t

Proof. Given f:Z; - R and ¢ : Qs_p s — R, consider the extensions
Es,t(f) : It — R

flz), ifz eI,
0, if v ¢ Zg,

and
Eoi(p): I x (=h,0) — R

90("137 G)a if (l‘, 9) € sth,s;
0, if (2,0) ¢ Qs—n,s-

If (f,) € M2,(T,) = L2(T,) x L2,(Z,), then By, x B, ,(f, ) € M2, (I,) and

(x,0) — Eo () (x,0) =

I(Fs)larz, ) = 1Bsp X Bt (f, 0)ar2, 1)
Hence the map
By X Boy: M22(T,) — M2 (1)
(fa (P) — Es,t X Es,t(f7 50)
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is well-defined and it is an isometry. By hypothesis (H4) we know that I, :=
Us<tZs is a bounded subset of R, then in the same way as (4.1), if we consider
W2, g1 (1t), we obtain Wre, g (L) —— M3, (1;). Therefore (4.2) follows directly
from Lemma 2.5. O

Theorem 4.2. (Fractal Dimension) Suppose that conditions (H1)-(Hj) hold,
and g € CY(R) and p > 2. Assume that there exists a non-increasing bounded
function n : R — (0,400) such that f € Wll’z(R; L*(1})) satisfies (3.1). Then,

oc
the pullback attractors Ap, (M2,) and Apn(cm) given in Theorem 2.10 have finite
L

fractal dimension i.e.
dimy (ADT,(M;)(t)»Mzz (It)) <oo and dimy (ADU(CLQ)(t),CLz (7)) < o
for allt € R. Furthermore, the following relationship holds

sup dimy (Ap, (c,.)(t), Cr2(Ty)) < i,lelﬂg dimy (Apn(MEQ)(t), M3, (It)>

teR
1
_ log {NM; I;,) (BWL2;H5 1;,)(0,1), 47%)}

log 2
Proof. For t = 0, by Theorem 3.2 and Remark 3.3, we have that there exists a
sequence of points {f—m}mgo such that {_,, = —oc and

.

tom  iom

2 - £—7n _ tAfnL 2
2, ) S Al o) = (0 Bz, e (43)

Now, denoting Sy, = S(t & —m1) forallm < 0. Then, Sy, : M7, (Z; ) —
M3?,)(Z; ) satisfies the smoothing property, i.e.,
||Sm(u’ ¢) - Sm(v’ <P) ||WL2;H(% (Ith) < RhH (U’7 ¢) - (Uv <P) ||Mi2 (I{7m+1)a (44)

for all (u, ¢) € ADW(MEZ)(E—mH)a m < 0, where, by (3.10), &5, := max{Ks 1, 4h, kn }-
On the other hand, for each s € R and € > 0 let us denote by
N2 = Nagz, @) (B, 2. (0:1),2)

Then, for ¢ = 4éh, it follows from Corollary 4.1 that

. 1

We also have by (3.3) that there exists a non-decreasing positive function R, :
R — (0, 400) such that

Ap, a2 (1) © Bage, z,) [0, ’Rp(t)}, for all ¢ € R. (4.6)
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Then, it follows from (4.4), (4.5) and (4.6) that {Sm, ADH(MEQ)(fm)} satisfies

m<0
all conditions of Theorem 2.3, therefore

1
log [NM§2(1,¢O) (BWLQ;H& 1;,)(0, 1), W)}

sup dim (AD,](MEZ)(fm)aMIQF (Ifm)) <

m<0

log 2

Since the pullback attractor is invariant and, by the continuous dependence, the

evolution process S(-,-) is Lipschitz, it follows from Proposition 2.2 that

log [NME2 (Ifo) (BWL2:H& (1,70)(07 1)’ ﬁ)]
log 2 ’

supdimy (Ap, (a2, (6), M7a(T.)) <
teR L
(4.7)
Now, from the estimate of the fractal dimension of each section of the pullback
attractor Ap, (p2,), we will be able to estimate the fractal dimension of each
L
section of the pullback attractor -ADT,(CLz)- Indeed, for each t € R, let us consider

the projection Projpz_(z,) : M?,(Zy) — L3,(Z;) such that
PrOJ’L;(L)(U» ¢)=¢ for all (u,p) € M?:(T;).
It follows from the identity (2.10), given in Theorem 2.10, that

Ap, (0, (1) = Projiz 1) (Ap, iz (1)), forall t € R.

Then, since for each ¢ € R the projection ProjLzz(L) is a continuous linear
L
map, it follows from Proposition 2.2 and the estimate of the fractal dimension of

Ap, (am2,) given in (4.7), that
L

lOg [NM2 (1; )(BW 2. 1 (I )(Oa 1)’ ﬁ)}
di t),Cr2 (L)) < L2t “Hp o L
ig}g img (ADH(CLQ)( ), Cr2(Zy)) < log 2

Acknowledgements

The authors thank the anonymous referee for his/her helpful comments. A. N.
Carvalho was partially supported by grant #2020/14075-6, Sao Paulo Research
Foundation (FAPESP) and CNPq 306213/2019-2, Brazil. H. Lopez-Lazaro was
partially supported by grant #2022/13001-4 and #2021,/01931-4, Sao Paulo Re-
search Foundation (FAPESP).



162

A. N. Carvalho, H. Lopez-Lézaro, J. Huaccha-Neyra

References

(1]

12l

13l

4]

7]

A. N. CARVALHO, J. A. LancA, J. C. ROBINSON, Attractors for Infinite-
dimensional Non-autonomous Dynamical Systems, Applied Mathematical

Sciences, Springer-Verlag, 182, 2012.

P. E. KLOEDEN, P. MARIN-RUBIO, J. REAL, Pullback attractors for a
semilinear heat equation in a non-cylindrical domain, Journal of Differential
Equations 244(2008), No. 8, 2062-2090.

P. E. KLOEDEN, J. REAL, C. SuN, Pullback attractors for a semilinear

heat equation on time-varying domains, Journal of Differential Equations

246(2009), No. 12, 4702-4730.

J. A. LANGA, A. MIRANVILLE, J. REAL, Pullback exponential attractors
Discrete and Continuous Dynamical Systems, 26(2010), No. 4, 1329-1357.

H. L. LorEz-LAzArRO, M. J. D. NascIMENTO, O. RuUBIO, Finite fractal
dimension of pullback attractors for semilinear heat equation with delay in
some domain with moving boundary, Nonlinear Analysis, 225(2022), 113—
107.

H. L. Lopez-Lazaro, M. J. D. Nascimento, C. Takaessu Junior, V. T.
Azevedo, Pullback attractors with finite fractal dimension for a semilin-
ear transfer equation with delay in some non-cylindrical domain, Journal of
Differential Equations 393 (2024), 58-101.

J. C. ROBINSON, Infinite-Dimensional Dynamical Systems: An Introduc-
tion to Dissipative Parabolic PDEs and the Theory of Global Attractors.
Cambridge Texts in Applied Mathematics, 2001.



	Introduction
	Abstract Setting of the Problem and Known Results
	Functional spaces
	Fractal dimension
	Weak solutions to (DHE)
	Pullback attractor associated with (DHE)

	Continuous dependence with initial data on the pullback attractor.
	Finite fractal dimension of the pullback attractor

