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Abstract. The goal of this work is to prove the smoothing property of
the evolution process associated with the semilinear heat equation with
delay, which is defined on a one-dimensional moving boundary domain.
Then, as a consequence of the smoothing property, we can estimate the
fractal dimension of the pullback attractors associated with this parabolic
problem.
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1 Introduction

Let α, β : R→ R be two functions such that β(t) > α(t) for all t ∈ R. Let us
denote by It :=

(
α(t), β(t)

)
the open interval at the time t ∈ R, with ends α(t)

and β(t), and whose length is given by the function γ(t) = |It| = β(t)−α(t) > 0.
Thus, on the functions α, β and γ consider the following hypotheses:
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(H1) α, β ∈ C2(R) and 0 < γ0 < γ(t) < γ1 for all t ∈ R;

(H2) α′, β′ ∈ L∞(R).

The following hypothesis refers to the delay term:

(H3) For h > 0 fixed, let δ(t) be a C1-function (or continuously differentiable
function) such that δ(t) ≥ 0 for all t ∈ R, h = sup

t∈R
δ(t) > 0 and δ∗ =

sup
t∈R

δ′(t) < 1.

And, for the pullback asymptotic analysis the following conditions will be
necessary:

(H4) We will assume that

It :=
⋃
s≤t

Is =
⋃
s≤t

(
α(s), β(s)

)
is bounded for any t ∈ R.

Given τ, T ∈ R with τ ≤ T , we define the non-cylindrical regions Qτ,T and
Qτ as

Qτ,T :=
⋃

t∈(τ,T )

It × {t} and Qτ :=
⋃

t∈(τ,+∞)

It × {t}.

Finally, let us denote by I = (0, 1) and for each t ∈ R consider the map
rt = r(t) : It → I defined as

rt(x) = r(x, t) =
x− α(t)
γ(t)

, ∀x ∈ It,

and for each t ∈ R let us denote by r̃t := r−1t−δ(t) ◦ rt : It → It−δ(t).
Given τ ∈ R, the heat transfer equation with delay on the non-cylindrical

region Qτ and with homogeneous Cauchy-Dirichlet boundary conditions, denoted
by (DHE), is:

∂u

∂t
− c0

∂2u

∂x2
+ g(u) = f(t) + u

(
r̃t, t− δ(t)

)
in Qτ ,

u(α(t), t) = u(β(t), t) = 0 ∀t ∈ [τ,+∞),

u(τ) = uτ in Iτ ,

u(τ + s) = φ(s) in Iτ+s and s ∈ (−h, 0),

(DHE)

where c0 > 0 is the thermal conductivity, u is the temperature function, uτ is
the temperature in the initial time t = τ , φ is the initial condition with memory
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defined on interval (−h, 0) with h > 0, and f ∈ L1
loc(Qτ ) is the heat source,

and g ∈ C1(R) is a given function for which there exist non-negative constants
α0, α1, β0 and l, and p ≥ 2 such that

−β0 + α0|s|p ≤ g(s)s ≤ β0 + α1|s|p ∀s ∈ R,

and
g′(s) ≥ −l ∀s ∈ R. (1.1)

Before commenting further on this, let us do a timeline of what has already
known about the problems related to the system (DHE). Between the years 2008
and 2009, the n-dimensional case of the problem (DHE) was treated in [2, 3],
but without a memory term. In their paper is proved the existence of strong
and weak solutions, and the existence of pullback attractors on tempered uni-
verses. In the year 2022, in [5] the authors worked on problem (DHE), proving
the existence of strong and weak solutions, and the existence of a pullback at-
tractor with finite fractal dimension. To estimate the fractal dimension of the
pullback attractor, the Lyapunov exponent method was used, and for this, it was
necessary to assume that the nonlinear function g ∈ C2(R). Recently in [6] the
n-dimensional case of problem (DHE) was studied, with a more general memory
term. The authors proved the existence of strong and weak solutions, and the
finite fractal dimension of the pullback attractor. The last one was possible by
assuming that the nonlinear term g ∈ C2(R) is globally Lipschitz, and with this
guarantee that the evolution process satisfies the smoothing property.

The main objective of this work is to study the fractal dimension of the
pullback attractors of (DHE) via the smoothing property of the evolution process
associated. For this, it is sufficient to assume that the nonlinear function g ∈
C1(R), which is an improvement compared to the paper [6].

This paper is organized as follows: In Section 2 we present some results and
definitions that are fundamental to have a better understanding of the paper, for
example, a special class of Bochner spaces and results about fractal dimension
associated with evolution processes acting on families of Banach spaces. We also
remember the results of the existence, regularity, and uniqueness of weak solu-
tions, and the existence of pullback attractors associated with (DHE). Section
3 is dedicated to obtaining results on the continuous dependence on initial data
taken in the sections of the pullback attractor. Finally, the Section 4 is devoted
to estimating the fractal dimension of each section (or fiber) of the pullback
attractors associated with the problem (DHE).
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2 Abstract Setting of the Problem and Known
Results

2.1 Functional spaces

In order to state the problem in the correct framework, let us consider the
following time-dependent Banach spaces: For each t ∈ R let us denote by | · |p,t
the norm of the Banach space Lp(It). For the special case p = 2, the norm of the
Hilbert space L2(It) will be denoted by | · |t and its inner product by (·, ·)t. The
norm for the Sobolev space H1

0 (It) will be denoted by ‖ · ‖t. Finally, for each
t ∈ R, denote by 〈·, ·〉−1,t the duality product between H−1(It) and H1

0 (It).
On the other hand, in the same way as [3, 5, 6], we are going to consider

a special class of Bochner spaces that are defined on time-dependent Banach
spaces. Then, for each τ ∈ R, let us define by:

CL2(Iτ ) :=
{
φ ∈ C

(
[−h, 0];∪s∈[−h,0]L2(Iτ+s)

)
: φ(s) ∈ L2(Iτ+s) ∀s ∈ [−h, 0]

}
,

with norm defined by ‖φ‖CL2 (Iτ ) := sup
s∈[−h,0]

|φ(s)|τ+s, for all φ ∈ CL2(Iτ ).

L2
L2(Iτ ) :=

{
φ ∈ L2

(
− h, 0;∪s∈[−h,0]L2(Iτ+s)

)
: φ(s) ∈ L2(Iτ+s) a.e. s ∈ [−h, 0]

}
,

with norm ‖φ‖2L2
L2 (Iτ )

:=

∫ 0

−h
|φ(s)|2τ+sds, for all φ ∈ L2

L2(Iτ ).

CH1
0
(Iτ ) :=

{
φ ∈ C

(
[−h, 0];∪s∈[−h,0]H1

0 (Iτ+s)
)
: φ(s) ∈ H1

0 (Iτ+s) ∀s ∈ [−h, 0]
}
,

with norm ‖φ‖C
H1

0
(Iτ ) := sup

s∈[−h,0]
‖φ(s)‖τ+s, for all φ ∈ CL2(Iτ ), and

L2
H1

0
(Iτ ) :=

{
φ ∈ L2

(
− h, 0;∪s∈[−h,0]H1

0 (Iτ+s)
)
: φ(s) ∈ H1

0 (Iτ+s) a.e. s ∈ [−h, 0]
}
,

with norm ‖φ‖2L2

H1
0

(Iτ ) :=

∫ 0

−h
‖φ(s)‖2τ+sds, for all φ ∈ L2

H1
0
(Iτ ).

Observe that CL2(Iτ ) ↪→ L2
L2(Iτ ) and CH1

0
(Iτ ) ↪→ L2

H1
0
(Iτ ) ↪→ L2

L2(Iτ ) for
all τ ∈ R. On the other hand, we consider

M2
L2(Iτ ) := L2(Iτ )× L2

L2(Iτ ) with norm ‖(u, φ)‖2M2
L2 (Iτ )

:= |u|2τ + ‖φ‖2L2
L2 (Iτ )

.

and

M2
H1

0
(Iτ ) := H1

0 (Iτ )×L2
H1

0
(Iτ ) with norm ‖(uτ , φ)‖2M2

H1
0

(Iτ ) := ‖u
τ‖2τ+‖φ‖2L2

H1
0

(Iτ ).
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Note that L2(Iτ )×CL2(Iτ ) ↪→M2
L2(Iτ ) and M2

H1
0
(Iτ ) ↪→M2

L2(Iτ ) for all τ ∈ R.
On the other hand, let {Xt}t∈R be a family of Banach spaces and consider the

interval [−h, 0] with h > 0. Given a function u defined on R, such that u(t) ∈ Xt

for each t ∈ R, then for t ∈ R we denote by ut the function:

ut :[−h, 0]→ {Xt+s : s ∈ [−h, 0]}

s 7→ ut(s) = u(t+ s) ∈ Xt+s.

For example, let τ ∈ R and h > 0. Thus, if u ∈ L2(τ − h, τ ;L2(It)), then
ut ∈ L2

L2(Iτ ).

2.2 Fractal dimension

In this section we introduce the definition of fractal dimension of compact
sets, e.g. [1, 7]. We also state a recent result, see [6, Theorem 4.11], to esti-
mate the fractal dimension of families of time-dependent compact sets, which
are associated with a family of time-dependent maps that satisfy the smoothing
property.

Definition 2.1. Let X be a metric space and K a compact subset of X. The
fractal dimension of K is defined by

dimf (K,X) = lim sup
r→0

logNX(K, r)

− log r
,

where NX(K, r) is the minimum number of balls of radius r that cover K.

Proposition 2.2. (cf. [1, Lemma 4.2]) Let X, Y be two normed spaces. Con-
sider C ⊂ X, and f : C → Y a Hölder continuous function with exponent θ,
θ ∈ (0, 1], i.e. there exists an L > 0 such that

‖f(x)− f(y)‖Y ≤ L‖x− y‖θX ,

for all x, y ∈ C . Then

dimf (f(C ), Y ) ≤ dimf (C , X)

θ
.

Theorem 2.3. (cf. [6, Theorem 4.11]) Let {Xt}t∈R and {Yt}t∈R families of
normed vector spaces such that Yt is compactly embedded in Xt for every t ∈ R.
Assume that {Ct}t∈R is a family of bounded subsets of {Xt}t∈R and there exists
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a non-decreasing function % : R→ (0,+∞) such that for each t ∈ R there exists
ut ∈ Ct satisfying

Ct ⊂ BXt(ut, %(t)) for all t ∈ R. (2.1)

Assume that there exists a family of operators {Lt : Xt−1 → Yt}t∈R such that

• Negative invariance Ct ⊂ LtCt−1 for all t ∈ R;

• Smoothing property there exists a function κ : R→ (0,+∞) such that

‖Ltx− Lty‖Yt ≤ κ(t)‖x− y‖Xt−1
, ∀x, y ∈ Ct−1, ∀t ∈ R;

• Entropy control also assume that there exists a discrete function N : R→ N
such that

sup
s≤t

Ns
1/4κ(s) ≤ N (t),

where N t
ε := NXt(BYt(0, 1), ε) for any ε > 0 and t ∈ R.

Then,

sup
s≤t

dimf (Cs, Xs) ≤
logN (t)

log 2
for all t ∈ R.

Remark 2.4. Theorem 2.3 can be formulated in the discrete framework, i.e.,
{Xm}m∈Z, {Ym}m∈Z, {Lm}m∈Z and {Cm}m∈Z such that Ym ↪→↪→ Xm (Ym is
compactly embedded in Xm), Cm ⊂ LmCm−1 for all m ∈ Z, and all conditions of
Theorem 2.3 are satisfied. On the other hand, keep in mind also that Theorem
2.3 can be formulated not for all time, but for we can assume the existence of a
maximum time t0 ∈ R or Z, such that all the conditions of the theorem are valid
for all t ≤ t0.

Lemma 2.5. (cf. [6, Lemma 4.13]) Let X ,Y be normed vector spaces and F :

X → Y an isometry, that is,

‖F (u)− F (v)‖Y = ‖u− v‖X , ∀u, v ∈ X .

Assume that W ′ is a totally bounded subset of Y such that

F (W ) ⊂W ′. (2.2)

Then, W is totally bounded in X and for any ε > 0 we have

NX [W, ε] ≤ NY [W ′, ε].
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2.3 Weak solutions to (DHE)

This section is devoted to recalling the existence, uniqueness and regularity of
weak solutions of the problem (DHE). It should be noted that the demonstrations
of these results are done via the Galerkin method, which can be consulted in [5,
Theorem 3.2], also see [2, 3, 6, 7].

For τ < T , let us start defining the space of the test functions as

Uτ,T =
{
ϕ ∈ L2(τ, T ;H1

0 (It)) ∩ Lp(Qτ,T ) :
∂ϕ

∂t
∈ L2(Qτ,T ), ϕ(τ) = ϕ(T ) = 0

}
.

Definition 2.6. Given f ∈ L2(τ, T ;H−1(It)), by weak solution of (DHE) asso-
ciated to the initial condition (uτ , φ) ∈ M2

L2(Iτ ), we understand a function u,
belonging to the classu ∈ L

2(Qτ−h,T ) ∩ Lp(Qτ,T ) ∩ C([τ, T ];L2(It)) ∩ L2(τ, T ;H1
0 (It)),

∂u

∂t
∈ L2(τ, T ;H−1(It)) + Lq(Qτ,T ),

(2.3)

where 1
p +

1
q = 1, which satisfies the weak formulation∫

Qτ,T

−u(x, t)∂ϕ
∂t

(x, t) + c0
∂u

∂x
(x, t)

∂ϕ

∂x
(x, t) + g(u(x, t))ϕ(x, t)dxdt

=

∫ T

τ

〈f(t), ϕ(t)〉−1,tdt+
∫
Qτ,T

u(r̃t(x), t− δ(t))ϕ(x, t)dxdt,
(2.4)

for all ϕ ∈ Uτ,T and

u(τ) = uτ and u(τ + s) = φ(s) a.e. s ∈ (−h, 0). (2.5)

And by strong solution, associated to the initial condition (uτ , φ) ∈M2
L2(Iτ ), we

understand a function u satisfying (2.4) and (2.5), belonging to the classu ∈ L
2(Qτ−h,T ) ∩ L2(τ, T ;H2(It)) ∩ C([τ, T ];H1

0 (It)) ∩ L∞(τ, T ;Lp(It)),
∂u

∂t
∈ L2(τ, T ;L2(It)).

Now, we are in position to state the result of existence, regularity and unique-
ness of weak solution for (DHE). The proof of this result is via Galerkin method.

Theorem 2.7. (Existence, regularity and uniqueness, cf. [5, Theorem 3.2, The-
orem 3.5]) Suppose that conditions (H1)-(H3) hold. Let us consider τ , T with
τ < T , (uτ , φ) ∈ M2

L2(Iτ ), and f ∈ L2(τ, T ;H−1(It)). Then, there exists a
unique weak solution of the problem (DHE).



150 A. N. Carvalho, H. López-Lázaro, J. Huaccha-Neyra

• If uτ ∈ H1
0 (Iτ ), φ ∈ L2

L2(Iτ ), and f ∈ L2(τ, T ;L2(It)). Then, the weak
solution of the problem (DHE) belongs to

u ∈ L2(τ, T ;H2(It)) ∩ L∞(τ, T ;H1
0 (It)) with

∂u

∂t
∈ L2(τ, T ;L2(It)).

Remark 2.8. If the initial condition with memory φ ∈ CL2(Iτ ) with φ(0) = uτ ,
then the weak solution of (DHE) u belongs to C([τ −h, T ];L2(It)). If u is strong
solution and φ ∈ CH1

0
(Iτ ) with φ(0) = uτ , then u ∈ C([τ − h, T ];H1

0 (It)).
Note that any weak solution u to (DHE) can be taken as test function in the
weak formulation (2.4). Thus, we obtain the First Energy Equality

1

2

d

dt
|u(t)|2t + c0‖u(t)‖2t + (g(u), u)t = 〈f, u〉−1,t +

(
u(r̃t, t− δ(t)), u

)
t
, (2.6)

a.e. t ∈ (τ, T ).
• If u is a strong solution of (DHE), then we obtain the Second Energy Equality

1

2

d

dt
‖u(t)‖2t + c0

∣∣∣∂2u
∂x2

∣∣∣2
t
−
(
g(u),

∂2u

∂x2

)
t
= −

(
f,
∂2u

∂x2

)
t
−
(
u
(
r̃t, t− δ(t)

)
,
∂2u

∂x2

)
t
,

a.e. t ∈ (τ, T ).

2.4 Pullback attractor associated with (DHE)

In this section we are interested in presenting the result about the existence of
the pullback attractors associated with (DHE), on the families of Banach spaces
{CL2(It)}t∈R and {M2

L2(It)}t∈R.
Under the hypotheses (H1)-(H4) and f ∈ L2

loc(R;H−1(It)), Theorem 2.7
guarantees the existence of the continuous evolution processes {U(t, τ) : (t, τ) ∈
R2
d} and {S(t, τ) : (t, τ) ∈ R2

d} defined as

U(t, τ) : CL2(Iτ )→ CL2(It) by U(t, τ)φ = ut(·; τ, φ), (2.7)

where u(·) = u(·; τ, φ) is the unique weak solution of (DHE) associated to the
initial condition φ ∈ CL2(Iτ ) for any (t, τ) ∈ R2

d, and

S(t, τ) :M2
L2(Iτ )→M2

L2(It) by S(t, τ)(uτ , φ) =
(
u(t; τ, uτ , φ), ut(·; τ, uτ , φ)

)
,

(2.8)
where u(·) = u(·; τ, uτ , φ) is the unique weak solution of (DHE) associated to the
initial condition (uτ , φ) ∈M2

L2(Iτ ) for any (t, τ) ∈ R2
d.

In what follows we are going to define the universes where we will look for
pullback attractors associated with the evolution processes U(·, ·) and S(·, ·).



Smoothing property of an evolution process 151

These universes will have a tempered condition associated with the dissipation of
evolution processes, which are associated with a positive non-increasing function
η : R→ (0,+∞), such that for each t ∈ R we denote by ηt := η(t). An example
of this type of function is ηt = λ1,t for all t ∈ R, that is the first eigenvalue of
− ∂2

∂x2 on H1
0 (It), i.e.

λ1,t := min
w∈H1

0 (It),w 6=0

∥∥∂w
∂x

∥∥2
L2(It)

‖w‖2L2(It)

,

such that, under the assumption of hypothesis (H4), λ1,(·) : R → (0,+∞) with
t 7→ λ1,t, is a non-increasing function, i.e. if s ≤ t, then λ1,t ≤ λ1,s.

Definition 2.9. (Tempered universes) Given a non-increasing function η : R→
(0,+∞), we define by

1. Dη(CL2) the class of all families of nonempty subsets D̂ = {D(t) : t ∈
R, D(t) ⊂ CL2(It) and D(t) 6= ∅} such that, for all t ∈ R

lim
τ→−∞

eηtτ sup
φ∈D(τ)

‖φ‖2CL2 (Iτ ) = 0.

2. Dη(M2
L2) the class of all families of nonempty subsets D̂ = {D(t) : t ∈

R, D(t) ⊂M2
L2(It) and D(t) 6= ∅} such that, for all t ∈ R

lim
τ→−∞

eηtτ sup
(v,φ)∈D(τ)

‖(v, φ)‖2M2
L2 (Iτ )

= 0.

Given η : R → (0,+∞) let us denote by I2,η∗ the set of all functions f ∈
L2
loc(R;H−1(It)) such that∫ t

−∞
eηts‖f(s)‖2−1,sds < +∞ ∀t ∈ R.

Theorem 2.10. (cf. [5, Theorem 5.12, Remark 5.14]) Let p > 2 and sup-
pose that conditions (H1)-(H4) hold. Assume that there exists a non-increasing
bounded function η : R → (0,+∞) such that f ∈ I2,η∗ . Then, the families
B̂η,M2

L2
= {BM2

L2 (It)[0,R(t)] : t ∈ R} and B̂η,CL2 = {BCL2 (It)[0,R(t)] : t ∈ R}
are pullback Dη(M2

L2)-absorbing and pullback Dη(CL2)-absorbing, for the pro-
cesses S(·, ·) and U(·, ·) respectively, where

R2(t) = 1 + (1 + h)eηth
∫ t

−∞
e−ηt(t−θ)

[
Ĥp(t) + c−10 ‖f(θ)‖2−1,θ

]
dθ, (2.9)
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where Ĥp : R → (0,+∞) is a non-decreasing positive function. Moreover,
B̂η,M2

L2
∈ Dη(M2

L2) and B̂η,CL2 ∈ Dη(CL2).

Then, there exist the minimal pullback Dη(CL2)-attractor ADη(CL2 ) ∈ Dη(CL2)

and the minimal pullback Dη(M2
L2)-attractor ADη(M2

L2 )
∈ Dη(M2

L2) for the pro-
cesses U(·, ·) and S(·, ·) respectively, and the following relationships hold

ADη(M2
L2 )

(t) ⊂ BM2
L2 (It)[0,R(t)] and ADη(CL2 )(t) ⊂ BCL2 (It)[0,R(t)],

for all t ∈ R. Moreover, the following relationship between ADη(M2
L2 )

and ADη(CL2 )

which is:

Jt(ADη(CL2 )(t)) = ADη(M2
L2 )

(t), for all t ∈ R, (2.10)

where Jt : CL2(It) → M2
L2(It), defined by Jt(φ) = (φ(0), φ), is the canonical

injection map.

3 Continuous dependence with initial data on the
pullback attractor.

In this section we study the continuous dependence on the chosen initial data
in the sections of the pullback attractor ADη(M2

L2 )
. For this, in the same way as

[4], we are going to consider f ∈ L2
loc(R;L2(It)) satisfying

Mf (t) := sup
s≤t

∫ s

s−1
‖f(r)‖2−1,rdr < +∞, for all t ∈ R. (3.1)

Note that, if f satisfies (3.1) then f ∈ I2,η∗ and the existence of a pullback
Dη(M2

L2)-attractor is still guaranteed by Theorem 2.10. Note that we take f ∈
L2
loc(R;L2(It)) to guarantee the regularity on the solutions of (DHE), given in

Theorem 2.7.
On the other hand, it follows from Theorem 2.10 that

ADη(M2
L2 )

(t) ⊂ BM2
L2 (It)[0,R(t)],

for all t ∈ R, i.e.

‖(u, φ)‖2M2
L2 (It)

≤ 1 + (1 + h)eηth
∫ t

−∞
e−ηt(t−s)

[
Ĥp(t) + 2‖f(r)‖2−1,r

]
ds, (3.2)
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for all (u, φ) ∈ ADη(M2
L2 )

(t), t ∈ R. Then, note that using (3.1), we have

e−ηtt
∫ t

−∞
eηtr

[
Ĥp(t) + 2‖f(r)‖2−1,r

]
dr =

= e−ηtt
∞∑
n=0

∫ t−n

t−(n+1)

eηtr
[
Ĥp(t) + 2‖f(r)‖2−1,r

]
dr

≤ e−ηtt
∞∑
n=0

eηt(t−n)
∫ t−n

t−(n+1)

[
Ĥp(t) + 2‖f(r)‖2−1,r

]
dr

≤ (1− e−ηt)−1
[
Ĥp(t) + 2Mf (t)

]
≤ (1 + η−1t )

[
Ĥp(t) + 2Mf (t)

]
.

Therefore, making η = supt∈R ηt, we deduce from (3.2) that

‖(u, φ)‖M2
L2 (It) ≤ Rp(t) for all (u, φ) ∈ ADη(M2

L2 )
(t), t ∈ R, (3.3)

where Rp : R→ (0,+∞) is a non-decreasing positive function, given as

R2
p(t) = 1 + (1 + h)eηh(1 + η−1t )

[
Ĥp(t) + 2Mf (t)

]
.

On the other hand, we are going to show an estimative on the delay term of
(DHE), u(r̃s, s−δ(s)), that will be used in this work. Observe that, by hypotheses
(H1) and (H3) and applying the change of variable with respect to the spatial
variable, we have∫ t

τ

|u(r̃s, s− δ(s))|2sds =
∫ t

τ

∫ β(s)

α(s)

|u(r−1s−δ(s) ◦ rs(x), s− δ(s))|
2dxds

=

∫ t

τ

∫ 1

0

|u(r−1s−δ(s)(y), s− δ(s))|
2γ(s)dyds

=

∫ t

τ

∫ β(s−δ(s))

α(s−δ(s))
|u(x, s− δ(s))|2 γ(s)

γ(s− δ(s))
dxds (3.4)

≤ γ1
γ0(1− δ∗)

∫ t−δ(t)

τ−δ(τ)

∫ β(s)

α(s)

|u(x, s)|2dxds

≤ c2δ
∫ t

τ−h
|u(s)|2sds,

for all τ ≤ t, where c2δ =
γ1

γ0(1−δ∗) .

Proposition 3.1. Let p > 2 and suppose that conditions (H1)-(H4) hold. As-
sume that there exists a non-increasing bounded function η : R → (0,+∞) such
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that f ∈ L2
loc(R;L2(It)) satisfying (3.1).Then there exists a non-decreasing func-

tion % : R→ (0,+∞), such that

‖u(s)‖L∞(Is) ≤ %(t) ∀ u(s) ∈ ProjL2(Is)
[
ADη(M2

L2 )
(s)
]
, s ≤ t,

where ProjL2(It) :M
2
L2(It)→ L2(It) is a projection defined as ProjL2(It)(u, φ) =

u, for all (u, φ) ∈M2
L2(It). Note that, in particular, we have

ProjL2(It)
[
ADη(M2

L2 )
(t)
]
⊂ L∞(It) for all t ∈ R. (3.5)

Proof. It follows from (3.3) that

|u(s)|s ≤ Rp(t) for all u(s) ∈ ProjL2(Is)
[
ADη(M2

L2 )
(s)
]
, s ≤ t. (3.6)

Now, let u(·) be a trajectory of (DHE) such that u(t) ∈ ADη(M2
L2 )

(t) for all
t ∈ R. Then, using the inequalities given in [5, Lemma 5.3] and (3.4), we have
that

c0

∫ s

s−1
‖u(θ)‖2θdθ + 2α0

∫ s

s−1
|u(θ)|pp,θdθ ≤ |u(s− 1)|2s−1 + 2β0γ1

+
1

c0

∫ s

s−1
‖f(θ)‖2−1,θdθ +

∫ s

s−1
|u(r̃θ, θ − δ(θ))|2θdθ +

∫ s

s−1
|u(θ)|2θdθ

≤ 2R2
p(t) + 2β0γ1 +

1

c0
Mf (t) +

∫ s

s−1
|u(r̃θ, θ − δ(θ))|2θdθ

≤ 2R2
p(t) + 2β0γ1 +

1

c0
Mf (t) + c2δ

∫ s−1

s−1−h
|u(θ)|2θdθ

≤
(
2 + hc2δ

)
R2
p(t) + 2β0γ1 +

1

c0
Mf (t),

for all s ≤ t. Then, we deduce that∫ s

s−1
‖u(θ)‖2θdθ +

∫ s

s−1
|u(θ)|pp,θdθ ≤ R̂p(t) for all s ≤ t, (3.7)

where R̂p : R→ (0,+∞) is a non-decreasing positive function defined as

R̂p(t) :=
(
2 + hc2δ

)
R2
p(t) + 2β0γ1 + c−10 Mf (t)

min{c0, 2α0}
for all t ∈ R.

On the other hand, by [5, Lemma 5.5] we know that u(·) satisfies

‖u(s)‖2s ≤
∫ s

s−1
‖u(θ)‖2θdθ +

2α̃1

c0

∫ s

s−1
|u(θ)|pp,θdθ +

4β̃0γ1
c0

+
1

c0

∫ s

s−1
|u(r̃θ, θ − δ(θ))|2θdθ +

1

c0

∫ s

s−1
|f(θ)|2θdθ,
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for all s ≤ t. Thus, it follows from (3.4), (3.6) and (3.7) that

‖u(s)‖2s ≤
4β̃0γ1
c0

+
[
1 +

2α̃1

c0

]
R̂p(t) +

hc2δ
c0
R2
p(t) +

1

c0
Mf (t) for all s ≤ t.

Now, we know that, by hypothesis (H3) and H1
0 (Is) ↪→ L∞(Is), there exists

κt > 0 such that ‖u(s)‖L∞(Is) ≤ kt‖u(s)‖s for all s ≤ t. Then, we obtain

‖u(s)‖2L∞(Is) ≤ κ
2
t

{4β̃0γ1
c0

+
[
1 +

2α̃1

c0

]
R̂p(t) +

hc2δ
c0
R2
p(t) +

1

c0
Mf (t)

}
,

for all s ≤ t, and for any u(s) ∈ ProjL2(Is)
[
ADη(M2

L2 )
(s)
]
.

Theorem 3.2. Under the conditions (H1)-(H4), let p > 2, τ ∈ R, and f ∈
L2
loc

(
R;L2(It)

)
that satisfies (3.1), and (uτ , φ1), (v

τ , φ2) ∈ ADη(M2
L2 )

(τ). Let us
denote by u(t) = u(t;uτ , φ1) and v(t) = v(t; vτ , φ2) the weak solutions of (DHE)
corresponding to initial values (uτ , φ1) and (vτ , φ2), respectively. Then, for all
t ≥ τ , the following inequalities hold

|u(t)− v(t)|2t ≤ κ1,teκ2,t(t−τ)‖(uτ , φ1)− (vτ , φ2)‖2ML2 (Iτ ), (3.8)∫ t

τ

‖u(s)− v(s)‖2sds ≤ κ3,t,t−τ‖(uτ , φ1)− (vτ , φ2)‖2ML2 (Iτ ). (3.9)

where κ1,t, κ2,t are non-decreasing positive functions and κ3,t,t−τ := 1
c0

[
k1,t
(
1 +

k2,te
k2,t(t−τ)(t− τ)

)]
. Moreover, if τ + 3h ≤ t, we deduce that

‖us − vs‖2C
H1

0
(Is) ≤ κ5,t,t−τ‖(u

τ , φ1)− (vτ , φ2)‖2ML2 (Iτ ), (3.10)

for all s ∈ [t− h, t], and∫ t

t−h
‖u′s − v′s‖2L2

L2 (Is)
ds ≤ κ6,t,t−τ‖(uτ , φ1)− (vτ , φ2)‖2ML2 (Iτ ). (3.11)

where κ5,t,t−τ , and κ6,t,t−τ are positive functions and non-decreasing respect to
the first and second variables.

Proof. It follows from the weak formulation (2.4) and using w(·) := u(·)− v(·) as
a test function, that

d

dt
|w|2t + 2c0‖w‖2t + 2(g(u)− g(v), w)t = 2

(
w(r̃t, t− δ(t)), w(t)

)
t
.

Thus, by Hölder’s inequality and Condition (1.1), we have

d

dt
|w|2t + c0‖w‖2t ≤ 2l|w|2t +

1

c0λ1,t
|w(r̃t, t− δ(t))|2t .
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Now, integrating from τ to t, we obtain

|w(t)|2t+c0
∫ t

τ

‖w‖2sds ≤ |w(τ)|2τ+2l

∫ t

τ

|w(s)|2sds+
1

c0λ1,t

∫ t

τ

|w(r̃s, s−δ(s))|2sds.

(3.12)
Note that, in the same way as (3.4), we conclude

∫ t

τ

|w(r̃s, s− δ(s))|2sds ≤ c2δ
∫ t

τ−h
|w(s)|2sds. (3.13)

Therefore, from (3.12) and (3.13), we deduce that

|w(t)|2t ≤ κ1,t‖(uτ , φ1)− (vτ , φ2)‖2ML2 (Iτ ) + κ2,t

∫ t

τ

|w(s)|2sds, (3.14)

for all t ≥ τ , where κ1,t = max
{
1,

c2δ
c0λ1,t

}
and κ2,t =

(
2l +

c2δ
c0λ1,t

)
. Then,

applying Gronwall’s inequality, we conclude the first part of the proof.

Regarding the second part this theorem, let us consider t ≥ τ+3h, θ ∈ (−h, 0),
and s ∈ (t − 2h, t). Now, using w′ as a test function in the weak formulation
(2.4), we obtain

|w′(s+ θ)|2s+θ+
c0
2

d

ds
‖w(s+ θ)‖2s+θ = −

(
g(u)− g(v), w′

)
s+θ

+
(
w(r̃s+θ, s+ θ − δ(s+ θ)), w′(s+ θ)

)
s+θ

≤ |g′(ξ)||w|s+θ|w′|s+θ + |w(r̃s+θ, s+ θ − δ(s+ θ))|s+θ|w′|s+θ,

where ξ ∈ [u(x, θ + s), v(x, θ + s)]. Now, by Proposition 3.1 we know that

ProjL2(Ir)

[
ADη(M2

L2 )
(r)
]
⊂ [−%(t), %(t)] for all r ≤ t.

Then, taking κt,g := sup
r∈[−%(t),%(t)]

g′(r) and applying the Hölder inequality, we

deduce that

|w′(s+ θ)|2s+θ + c0
d

ds
‖w(s+ θ)‖2s+θ ≤ κ2t,g|w|2s+θ + |w(r̃s+θ, s+ θ − δ(s+ θ))|2s+θ.

(3.15)
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Now, integrating from r to s, with [r, s] ⊂ [t− 2h, t] we derive

c0‖w(s+ θ)‖2s+θ ≤ c0‖w(r + θ)‖2s+θ + κ2t,g

∫ s

r

|w|2`+θd`

+

∫ s

r

|w(r̃`+θ, `+ θ − δ(`+ θ))|2`+θd`

= c0‖w(r + θ)‖2s+θ + κ2t,g

∫ s+θ

r+θ

|w|2`d`+
∫ s+θ

r+θ

|w(r̃`, `− δ(`))|2`d`

≤ c0‖w(r + θ)‖2s+θ + κ2t,g

∫ t

τ

|w|2`d`+
∫ t

τ

|w(r̃`, `− δ(`))|2`d`,

since τ ≤ t− 3h. Using (3.8) and (3.13), we obtain

c0‖w(s+ θ)‖2s+θ ≤ c0‖w(r + θ)‖2s+θ + κ2t,g

∫ t

τ

|w(`)|2`d`+ c2δ

∫ t

τ−h
|w(`)|2`d`

≤ c0‖w(r + θ)‖2s+θ + κ4,t,t−τ‖(uτ , φ1)− (vτ , φ2)‖2ML2 (Iτ ),

for all [r, s] ⊂ [t− 2h, t], where κ4,t,t−τ :=
[
c2δ + (c2δ + κ2t,g)κ1,te

κ2,t(t−τ)(t− τ)
]
.

Now, for s ∈ [t− h, t], again integrating in r, from t− 2h to s with , we have

c0‖w(s+ θ)‖2s+θ ≤
c0

s− t+ 2h

∫ s+θ

t−2h+θ
‖w(r)‖2rdr

+ 2hκ4,t,t−τ‖(uτ , φ1)− (vτ , φ2)‖2ML2 (Iτ )

≤ c0
h

∫ t

τ

‖w(r)‖2rdr + 2hκ4,t,t−τ‖(uτ , φ1)− (vτ , φ2)‖2ML2 (Iτ ),

for all s ∈ [t− h, t]. Thus, using (3.9) we deduce that

‖w(s+ θ)‖2s+θ ≤ κ5,t,t−τ‖(uτ , φ1)− (vτ , φ2)‖2M2
L2 (Iτ )

(3.16)

for all s ∈ [t−h, t], where κ5,t,t−τ :=
(
κ3,t,t−τ +

hκ4,t,t−τ
c0

)
. Taking the maximum

in θ ∈ [−h, 0], we have

‖ws‖2C
H1

0
(Is) ≤ κ5,h,t−τ‖(u

τ , φ1)− (vτ , φ2)‖2M2
L2 (Iτ )

for all s ∈ [t− h, t].

Moreover, it follows from (3.15) and (3.16), that∫ t

t−h
‖w′s‖2L2

L2 (Is)
ds ≤ κ6,t,t−τ‖(uτ , φ1)− (vτ , φ2)‖2M2

L2 (Iτ )
,

for all t ≥ τ + 3h.
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Remark 3.3. (Smoothness property associated with a sequence of points) By
regularity, if we consider f ∈ W 1,2

loc (R;L2(It)), it is possible to prove that u′′ ∈
L2
loc(R;H−1(It)) and u′ ∈ L2

loc(R;H1
0 (It)), then u′ has continuous representa-

tion. Therefore, it follows from (3.11) and the mean value theorem that there
exists t̂ ∈ [t− h, t] such that

h‖u′
t̂
− v′

t̂
‖2L2

L2 (It̂)
≤ κ6,h,t−τ‖(uτ , φ1)− (vτ , φ2)‖2M2

L2 (Iτ )
, (3.17)

for all τ ≤ t− 3h.
First step: Let us consider t0 = 0, then exists t̂0 ∈ [t0 − h, t0] such that

h‖u′
t̂0
− v′

t̂0
‖2CL2 (It̂0 )

≤ κ6,t0,t0−τ‖(uτ , φ1)− (vτ , φ2)‖2M2
L2 (Iτ )

, (3.18)

for all τ ≤ t0 − 3h.
Second step: Now, let us consider t1 = t0−3h, then there exists t̂1 ∈ [t1−h, t1]
such that

h‖u′
t̂1
− v′

t̂1
‖2L2

L2 (It̂1 )
≤ κ6,t1,t1−τ‖(uτ , φ1)− (vτ , φ2)‖2M2

L2 (Iτ )
, (3.19)

for all τ ≤ t1 − 3h. Thus, taking τ = t̂1 in (3.18) we obtain

h‖u′
t̂0
− v′

t̂0
‖2L2

L2 (It̂0 )
≤ κ6,t0,t0−t̂1‖(u

t̂1 , φ1)− (vt̂1 , φ2)‖2M2
L2 (It̂1 )

, (3.20)

and taking into account that κ6,t0,(·) is a non-decreasing function, and t0−t̂1 ≤ 4h,
we have

h‖u′
t̂0
− v′

t̂0
‖2L2

L2 (It̂0 )
≤ κ6,t0,4h‖(ut̂1 , φ1)− (vt̂1 , φ2)‖2ML2 (It̂1 )

. (3.21)

Third step: Again, let t2 = t1 − 3h, then there exists t̂2 ∈ [t2 − h, t2] such that

h‖u′
t̂2
− v′

t̂2
‖2L2

L2 (It̂2 )
≤ κ6,t2,t2−τ‖(uτ , φ1)− (vτ , φ2)‖2M2

L2 (Iτ )
, (3.22)

for all τ ≤ t2 − 3h. Thus, in the same way as (3.21), making τ = t̂2 in (3.19) we
have

h‖u′
t̂1
− v′

t̂1
‖2L2

L2 (It̂1 )
≤ κ6,t0,4h‖(ut̂2 , φ1)− (vt̂2 , φ2)‖2M2

L2 (It̂2 )
. (3.23)

Therefore, repeating the previous steps, there exists a family of point {t̂m}∞m=0

such that t̂m → −∞ as m→∞, and

‖u′
t̂m
− v′

t̂m
‖2L2

L2 (It̂m ) ≤ κ̂h‖(u
t̂m+1 , φ1)− (vt̂m+1 , φ2)‖2M2

L2 (It̂m+1
),

for all m ≥ 0, where κ̂h := κ6,t0,4h/h.
Finally, it should be noted that the regularity obtained regarding the history

of the solution, i.e., ut, is when the final time t ∈ R is located at a minimum
distance of size h > 0 with respect to the initial time τ , that is, t ≥ τ + h.
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4 Finite fractal dimension of the pullback attrac-
tor

In this section, we will focus on showing that the pullback attractorsADη(M2
L2 )

and ADη(CL2 ), given in Theorem 2.10, have finite fractal dimension. When the
non-increasing function η : R → (0,+∞) is bounded and the external force
f ∈W 1,2

loc (R;L2(It)) satisfies the condition (3.1).
Given t ∈ R let us consider the following Banach space

YL2;H1
0
(It) =

{
φ ∈ L2

H1
0
(It) : φ′ ∈ L2

L2(It)
}
,

with norm ‖φ‖2Y
L2;H1

0
(It) := ‖φ‖

2
L2

H1
0

(It) + ‖φ
′‖2
L2
L2 (It)

.

Now, let us define WL2;H1
0
(It) = H1

0 (It) × YL2;H1
0
(It). Then, it follows from

Lemma of Aubin-Lions-Simon, e.g. [6, Theorem 4,15, Lemma 4.16], that

WL2;H1
0
(It) ↪→↪→M2

L2(It) for all t ∈ R. (4.1)

Corollary 4.1. Under the hypothesis (H4), given ε > 0 we have

sup
s≤t

NM2
L2 (Is)

(
BW

L2;H1
0
(Is)(0, 1), ε

)
≤ NM2

L2 (It)

(
BW

L2;H1
0
(It)(0, 1), ε

)
. (4.2)

Proof. Given f : Is → R and ϕ : Qs−h,s → R, consider the extensions

Es,t(f) : It −→ R

x 7−→ Es,t(f)(x) =

f(x), if x ∈ Is,

0, if x /∈ Is,

and

Ês,t(ϕ) : It × (−h, 0) −→ R

(x, θ) 7−→ Ês,t(ϕ)(x, θ) =

ϕ(x, θ), if (x, θ) ∈ Qs−h,s,

0, if (x, θ) /∈ Qs−h,s.

If (f, ϕ) ∈M2
L2(Is) = L2(Is)×L2

L2(Is), then Es,t × Ês,t(f, ϕ) ∈M2
L2(It) and

‖(f, ϕ)‖M2
L2 (Is) = ‖Es,t × Ês,t(f, ϕ)‖M2

L2 (It)
.

Hence the map

Es,t × Ês,t :M2
L2(Is) −→M2

L2(It)

(f, ϕ) 7−→ Es,t × Ês,t(f, ϕ)
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is well-defined and it is an isometry. By hypothesis (H4) we know that It :=

∪s≤tIs is a bounded subset of R, then in the same way as (4.1), if we consider
WL2;H1

0
(It), we obtainWL2;H1

0
(It) ↪→↪→M2

L2(It). Therefore (4.2) follows directly
from Lemma 2.5.

Theorem 4.2. (Fractal Dimension) Suppose that conditions (H1)-(H4) hold,
and g ∈ C1(R) and p > 2. Assume that there exists a non-increasing bounded
function η : R → (0,+∞) such that f ∈ W 1,2

loc (R;L2(It)) satisfies (3.1). Then,
the pullback attractors ADη(M2

L2 )
and ADη(CL2 ) given in Theorem 2.10 have finite

fractal dimension i.e.

dimf

(
ADη(M2

L2 )
(t),M2

L2(It)
)
<∞ and dimf

(
ADη(CL2 )(t), CL2(It)

)
<∞

for all t ∈ R. Furthermore, the following relationship holds

sup
t∈R

dimf

(
ADη(CL2 )(t), CL2(It)

)
≤ sup

t∈R
dimf

(
ADη(M2

L2 )
(t),M2

L2(It)
)

≤
log
[
NM2

L2 (It̂0 )

(
BW

L2;H1
0
(It̂0 )

(0, 1), 1
4κ̃h

)]
log 2

.

Proof. For t = 0, by Theorem 3.2 and Remark 3.3, we have that there exists a
sequence of points {t̂−m}m≤0 such that t̂−m → −∞ and

‖u′
t̂−m
− v′

t̂−m
‖2L2

L2 (It̂−m ) ≤ κ̂h‖(u
t̂−m+1 , φ1)− (vt̂−m+1 , φ2)‖2M2

L2 (It̂−m+1
), (4.3)

Now, denoting Sm = S(t̂−m, t̂−m+1) for allm ≤ 0. Then, Sm :M2
L2(It̂−m+1

)→
M2
L2)(It̂−m) satisfies the smoothing property, i.e.,

‖Sm(u, φ)− Sm(v, ϕ)‖W
L2;H1

0
(It̂−m ) ≤ κ̃h‖(u, φ)− (v, ϕ)‖M2

L2 (It̂−m+1
), (4.4)

for all (u, φ) ∈ ADη(M2
L2 )

(t̂−m+1),m ≤ 0, where, by (3.10), κ̃h := max{κ5,t0,4h, κ̂h}.
On the other hand, for each s ∈ R and ε > 0 let us denote by

Ns
ε := NM2

L2 (Is)

(
BW

L2;H1
0
(Is)(0, 1), ε

)
.

Then, for ε = 1
4κ̃h

, it follows from Corollary 4.1 that

sup
s≤t

Ns
1

4κ̃h

≤ NM2
L2 (It)

(
BW

L2;H1
0
(It)(0, 1),

1

4κ̃h

)
. (4.5)

We also have by (3.3) that there exists a non-decreasing positive function Rp :

R→ (0,+∞) such that

ADη(M2
L2 )

(t) ⊂ BM2
L2 (It)

[
0,Rp(t)

]
, for all t ∈ R. (4.6)
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Then, it follows from (4.4), (4.5) and (4.6) that
{
Sm,ADη(M2

L2 )
(t̂m)

}
m≤0

satisfies

all conditions of Theorem 2.3, therefore

sup
m≤0

dimf

(
ADη(M2

L2 )
(t̂m),M2

L2(It̂m)
)
≤

log
[
NM2

L2 (It̂0 )

(
BW

L2;H1
0
(It̂0 )

(0, 1), 1
4κ̃h

)]
log 2

.

Since the pullback attractor is invariant and, by the continuous dependence, the
evolution process S(·, ·) is Lipschitz, it follows from Proposition 2.2 that

sup
t∈R

dimf

(
ADη(M2

L2 )
(t),M2

L2(It)
)
≤

log
[
NM2

L2 (It̂0 )

(
BW

L2;H1
0
(It̂0 )

(0, 1), 1
4κ̃h

)]
log 2

.

(4.7)
Now, from the estimate of the fractal dimension of each section of the pullback

attractor ADη(M2
L2 )

, we will be able to estimate the fractal dimension of each
section of the pullback attractor ADη(CL2 ). Indeed, for each t ∈ R, let us consider
the projection ProjL2

L2 (It) :M
2
L2(It)→ L2

L2(It) such that

ProjL2
L2 (It)(u, φ) = φ for all (u, φ) ∈M2

L2(It).

It follows from the identity (2.10), given in Theorem 2.10, that

ADη(CL2 )(t) = ProjL2
L2 (It)

(
ADη(M2

L2 )
(t)
)
, for all t ∈ R.

Then, since for each t ∈ R the projection ProjL2
L2 (It) is a continuous linear

map, it follows from Proposition 2.2 and the estimate of the fractal dimension of
ADη(M2

L2 )
given in (4.7), that

sup
t∈R

dimf

(
ADη(CL2 )(t), CL2(It)

)
≤

log
[
NM2

L2 (It̂0 )

(
BW

L2;H1
0
(It̂0 )

(0, 1), 1
4κ̃h

)]
log 2

.

Acknowledgements

The authors thank the anonymous referee for his/her helpful comments. A. N.
Carvalho was partially supported by grant #2020/14075-6, São Paulo Research
Foundation (FAPESP) and CNPq 306213/2019-2, Brazil. H. López-Lázaro was
partially supported by grant #2022/13001-4 and #2021/01931-4, São Paulo Re-
search Foundation (FAPESP).



162 A. N. Carvalho, H. López-Lázaro, J. Huaccha-Neyra

References

[1] A. N. Carvalho, J. A. Langa, J. C. Robinson, Attractors for Infinite-
dimensional Non-autonomous Dynamical Systems, Applied Mathematical
Sciences, Springer-Verlag, 182, 2012.

[2] P. E. Kloeden, P. Marín-Rubio, J. Real, Pullback attractors for a
semilinear heat equation in a non-cylindrical domain, Journal of Differential
Equations 244(2008), No. 8, 2062-2090.

[3] P. E. Kloeden, J. Real, C. Sun, Pullback attractors for a semilinear
heat equation on time-varying domains, Journal of Differential Equations
246(2009), No. 12, 4702-4730.

[4] J. A. Langa, A. Miranville, J. Real, Pullback exponential attractors
Discrete and Continuous Dynamical Systems, 26(2010), No. 4, 1329–1357.

[5] H. L. López-Lázaro, M. J. D. Nascimento, O. Rubio, Finite fractal
dimension of pullback attractors for semilinear heat equation with delay in
some domain with moving boundary, Nonlinear Analysis, 225(2022), 113–
107.

[6] H. L. López-Lázaro, M. J. D. Nascimento, C. Takaessu Junior, V. T.
Azevedo, Pullback attractors with finite fractal dimension for a semilin-
ear transfer equation with delay in some non-cylindrical domain, Journal of
Differential Equations 393 (2024), 58–101.

[7] J. C. Robinson, Infinite-Dimensional Dynamical Systems: An Introduc-
tion to Dissipative Parabolic PDEs and the Theory of Global Attractors.
Cambridge Texts in Applied Mathematics, 2001.


	Introduction
	Abstract Setting of the Problem and Known Results
	Functional spaces
	Fractal dimension
	Weak solutions to (DHE)
	Pullback attractor associated with (DHE)

	Continuous dependence with initial data on the pullback attractor.
	Finite fractal dimension of the pullback attractor

