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1 Introduction 

In symplectic geometry, lagrangian foliations or, more generally, lagrangian distributions 
(i.e., lagrangian subbundles of the tangent bundle, which may or may not be involutive) 
are an important tool. Although unfamiliar from riemannian or even lorentzian geometry, 
where the notion of a lagrangian subbundle does not arise (except in the rather uninter­
esting case of two-dimensional lorentzian manifolds), they also appear in the theory of 
certain pseudo-riemannian manifolds, namely those of zero signature. However, the inter­
play between lagrangian distributions and connections in symplectic geometry is quite 
different from, and considerably more interesting than, in pseudo-riemannian geometry. 
In what follows, we shall show that this interplay admits a completely natural extension 
to the context of poly- and multisymplectic fiber bundles, whose precise mathematical 
definition can be found in [12] and which appear naturally in the covariant hamiltonian 
formulation of classical field theory. 

The paper is divided into two parts. The first part (Sect. 2-5) discusses connections 
which are compatible with a given foliation, whereas the second part (Sect. 6-9) uses 
them to derive various structure theorems. More specifically, we begin by reviewing 
some standard issues from symplectic geometry: the construction of the Bott connection 
in Sect. 2 and the classification of symplectic connections in Sect. 3: here, we also prove an 
analogous classification theorem for symplectic connections preserving a given lagrangian 
foliation which - although of independent interest - docs not seem to have been explicitly 
formulated in the literature. Next, we show how to extend this classification to poly­
symplectic fiber bundles in Sect. 4 and to multisymplectic fiber bundles in Sect. 5. The 
second part starts, in Sect. 6, with an exposition of the program to be developed in the 
remainder of the paper, followed by a study, in Sect. 7, of manifolds equipped with a given 
foliation by flat affine manifolds (where "flat affine" refers to a given partial connection 
along the leaves), since this is the situation prevailing in all cases of interest here. The 
results are applied in Sect. 8 to symplectic manifolds with a lagrangian foliation, allowing 
us to give a simple proof, as well as a generalization, of Weinstein's tubular neighborhood 
theorem [26, 29]. Exactly the same technique leads to what we call the structure theo­
rem for polysymplcctic and multisymplcctic fiber bundles, presenter! in Sect. !J: it can be 
viewed as an analogue of the theorem from symplectic geometry that characterizes which 
symplectic manifolds are cotangent bundles (or "pieces" of cotangent bundles, possibly 
up to coverings). Finally, in Sect. 10, we present our conclusions. 

2 Lagrangian distributions and the Bott connection 

In this section, we briefly review the definition of the Bott connection for symplectic mani­
folds carrying a given lagrangian foliation, noting that a completely analogous concept 
also exists for pseudo-riemannian manifolds of zero signature (these are the only ones 
whose tangent spaces admit lagrangian subspaces). 
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As a preliminary step, we recall that given a manifold M, a vector bundle V over M 
and a distribution Lon M, a partial linear connection in V along Lis an IR-bilinear map 1 

V : r(L) X r(V) -+ r(V) 

(X, s) o--t V xs 

which is J(M)-linear in X and a derivation in s, i.e., satisfies the usual Leibniz rule 

for XE I'(L), f E J(M), s E f(V). (2) 

Of course, this gives back the usual definition of a "full" linear connection when L = TM 
and hence r(L) is the Lie algebra X(M) of all (smooth) vector fields on M. Clearly, the 
usual definitions of curvature and, in the special case when V = L, of torsion also work 
for partial linear connections if L is supposed to be involutive. 

Obviously, partial linear connections can be obtained from "full" ones by restriction, 
that is, by restricting the definition of the covariant derivative of a section from general 
vector fields on M to vector fields on M along a given vector subbundle L of TM, and 
conversely, one may ask whether a given partial linear connection admits an extension to 
a "full" one (from which it can be derived by restriction), and if so, how one can classify 
all possible extensions. 

A particularly nice example of a partial linear connection which is not evidently the 
restriction of a "full" one is the Bott connection associated with any involutive distribution 
on any manifold M: denoting by Ll. the annihilator of L, which by definition is the vector 
sub bundle of the cotangent bundle T• M of M consisting of 1-forms that vanish on L, this 
is a partial linear connection vn in Ll. along L defined by 

for XE r(L), O'. E r(Ll.) ' (3) 

where lLx denotes the Lie derivative (of 1-forms) along X, or more explicitly, 

(Vfo)(Y) = X· a(Y) - a([X, Y]) 

for XE r(L), a E f(Ll.), YE X(M) . 
(4) 

To show that this is really a partial linear connection in Ll. along L, suppose that X is a 
vector field on M along Land note that (a) for any section a of £l. and any vector field Y 
on M along L, the expression in eqn (4) vanishes because Lis supposed to be involutive, 
which means that the Lie derivative along X really docs map sections a of Ll. to sections 
lLxo of Ll., and (b) for any function f on M, any section a of Ll. and any vector field Y 
on M (not necessarily along L), we have 

(lL1xa)(Y) = (! X) · a(Y) - a([! X, Y]) 
= f(X · a(Y)) - f a([X, Y]) + (Y · f) a(X) 
= /(lLxo)(Y) + (Y · !) a(X) , 

1Given a manifold Mand a vector bundle IV over M, we denote by J(J\f) the algebra of (smooth) 
functions on M and by f(IV) the space (and J(J\1)-module) of (smooth) sections of IV. If IV is a 
distribution on M, i.e., a vector subbundle of the tangent bundle TM of M, we shall use the intuitively 
more appealing expression "vector field on M along IV" for a section of IV. 
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and the last term vanishes because a annihilates X, so Vf is really J(M)-linear in X. 

Of course, the Bott connection is fiat: its curvature vanishes trivially, due to the definition 

of the Lie bracket of vector fields by means of the formula [ILx, !Ly]= ILrx,YJ. 

Now assume that M is a manifold of even dimension 2n and L is an involutive dis­
tribution on M which is lagrangian with respect to a given almost symplectic form (i.e., 
non-degenerate 2-form) w. Then the "musical isomorphism" [1, p. 166] 

with inverse (5) 

restricts to an isomorphism 

wb: L --+ L.L with inverse (6) 

which can be used to transfer the Bott connection as defined previously to a partial linear 
connection in L along L: by abuse of language, it will simply be called the Bott connection 
in L. Explicitly, it is determined by the formula 

w(VfY, Z) = X · w(Y, Z) - w(Y, [X, Z]) for X, YE f(L), Z E X(M) . (7) 

This connection has an intuitively appealing interpretation: it is nothing else than a 

canonical family of ordinary linear connections in the leaves of the foliation generated 

by L. Moreover, the Bott connection in L.L being flat, so is the Bott connection in L. 
But regarding the latter, we can ask for more: we can ask whether it also has vanishing 

torsion, since if so, we may conclude that the leaves of the foliation generated by L are 

flat affine manifolds. Regarding this question, we have the following simple answer. 

Theorem 1 Let M be a man if old equipped with an almost symplectic form w and let L 
be any involutive Lagrangian distribution on M. Then if w is closed, the Bott connection 
VB in L has zero torsion. More generally, the torsion tensor TB of VB is related to the 
exterior derivative of w by the formula 

dw(X, Y, Z) = w(TB(X, Y), Z) for X, YE r(L), Z E X(M) . 

Proof: Writing out the Cartan formula for the exterior derivative of w, 

dw(X,Y,Z) = X·w(Y,Z) - Y·w(X,Z) + Z·w(X,Y) 

- w([X, Y], Z) + w([X, Z], Y) - w([Y, Z], X]) . 

(8) 

and assuming X and Y to be along L, we see that the third of the six terms on the rhs of 

this equation vanishes since L is supposed to be isotropic, so using the definition of the 

torsion tensor combined with eqn (7) to give 

w(TB(X, Y), Z) = w(VfY - v:x - [X, Y], Z) 

= X · w(Y, Z) - w(Y, [X, Z]) - Y· w(X, Z) + w(X, [Y, Z]) - w([X, Y], Z) , 

we arrive at eqn (8), which proves the remaining statements. □ 
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Of course, this result has been known for a long time; sec, e.g., Theorem 7.7 of Ref. [29]. 
The only difference is that we propose a more systematical and ample use of the term 

"Bott connection" .2 

3 Symplectic connections 

Given a manifold M equipped with a symplectic form w and an involutive distribution L 
on M, we can ask the following question: is the Bott connection V 8 in L the restriction 

of some torsion-free symplectic connection V on M, and if so, what is the set of such 

torsion-free symplectic connections? 

To gain a better understanding of this question and of its importance for quantization 
(geometric quantization as well as deformation quantization), let us briefly explain a few 
well-known facts about symplectic connections. We begin with their definition which -
even though it is standard - will be stated explicitly in order to clarify the terminology. 

Definition 1 Let M be a manifold equipped with an almost symplectic form w. A linear 

connection V on M is said to be a symplectic connection if it preserves w, i.e., 
satisfies Vw = 0, or explicitly, 

X · w(Y, Z) = w(VxY, Z) + w(Y, "ilxZ) for X,Y,Z E X(M). (9) 

The same terminology is used for partial linear connections. 

In particular, we do not adhere to the convention adopted by some authors who incorpo­
rate the condition of being torsion-free into the definition of a symplcctic connection. 

Regarding the question of whether there exist any torsion-free symplectic connections 
at all, we begin by noting the following elementary and well known proposition, which 

can be viewed as an analogue of Theorem 1 for "full" linear connections. 

Proposition 1 Let M be a manifold equipped with an almost symplectic form w. Then 

if there exists a torsion-free symplectic connection V on M, w must be closed. More 

generally, the torsion tensor T of a symplectic connection V on M is related to the 
exterior derivative of w by the formula 

dw(X, Y, Z) = w(T(X, Y), Z) + w(T(Y, Z), X) + w(T(Z, X), Y) (10) 

Proof: This is a special case of Lemma 6 (cqn (65)) in Appendix A. D 

21n the case of a lagrangian distribution which is involutive with respect to a pseudo-riemannian 
metric g of zero signature, the construction is completely analogous, and it can be shown that the Bott 
connection "ilD coincides with the restriction of the Lcvi-Civita connection 'il if and only if the former has 
zero torsion; more generally, the <li!Tcrence between the two is proportional to the torsion tensor of 'iln. 
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Conversely, it is well known that on any symplectic manifold, there exist torsion-free 
symplectic connections [2, 28]. An explicit proof can be found in Sect. 2.1 of Ref. [3]: 

it is based on modifying a given torsion-free linear connection by adding a judiciously 
chosen tensor field in order to arrive at a torsion-free symplectic connection. However, 

the method can be easily generalized so as to start out from an arbitrary linear connection 
and get what one wants in a single stroke: 

Proposition 2 Let M be a manifold equipped with a symplectic form w and v0 a 

general linear connection on M with torsion tensor T 0
• Then the formula 

w('vxY, Z) = w('v'JY, Z) + ½ ('v'Jw)(Y, Z) + ½ (v'$w)(X, Z) 

- ½ w(T0(X, Y), Z) + ¼ w(T0 (z, X), Y) + ¼ w(T°(Z, Y), X) 
(11) 

or equivalently 

w(v'xY, Z) = ¼ w('v,Z,Y, Z) + ¼ w('v$X, Z) + ¼ w(v'1X,Y) + ¼ w('v~Y, X) 

+ ¼ w('v,Z,Z,Y) + ¼ w('v$Z,X) + ½ X· w(Y, Z) + ½ Y-w(X, Z) (12) 

+ ½ w([X, Y], Z) - ¼ w([Z, X], Y) - ¼ w([Z, Y], X) 

defines a torsion-free symplectic connection v' on M. 

Obviously, when v0 is itself torsion-free and symplcctic, then v' = v'0 • In passing, we 

also note that if v0 is torsion-free but not symplectic, then eqn (12) simplifies to 

w(VxY,Z) = ~w('v,Z,Y,Z) - ½w(v'$X,Z) + }w('v,Z,Z,Y) + ¼w('v$Z,X) 

+ } X · w(Y, Z) + } Y · w(X, Z) . 

whereas if v0 is symplcctic but not torsion-free, then cqn (12) simplifies to 

w(VxY, z) = ½ w(V1Y, Z) + ½ w(v'~X, z) + ¼ w(v'~X, Y) + ¼ w(V1Y, X) 

(13) 

- ¼ w(v'1 Z, Y) - ¼ w('v~Z, X) (14) 

+ ½ w([X, Y], Z) - ¼ w([Z, X], Y) - ¼ w([Z, Y], X) . 

Note the similarity, but also the differences, between these formulas for symplectic mani­

folds and the definition of the Lcvi-Civita connection for pscudo-ricmannian manifolds. 

In both cases, existence of torsion-free compatible connections is guaranteed, but in sharp 

contrast with the pscudo-riemannian case, torsion-free symplectic connections arc far from 

unique: rather, one can show that the set of all such connections constitutes an affine 

space whose difference vector space can be identified with the space of all totally symmetric 

tensor fields of rank 3; see, e.g., Refs (2, 28] and, for an explicit proof, Sect. 2.1 of Ref. (3]. 

This ambiguity has important implications in mathematical physics, being closely related 

to the famous factor ordering problem of quantum mechanics. More specifically, there is 

a famous construction of star products in deformation quantization (11], now commonly 
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known ns the Fedosov construction, which uses as one of its essential ingredients a torsion­
free symplectic connection on classical phase space, and different choices lead to different 
factor ordering rules. This ground-breaking contribution to the quantization problem has 
even Jed some authors to refer to symplectic manifolds equipped with a fixed torsion-free 
symplcctic connection ns Fedosov manifolds [14], and it provides compelling motivation for 
geometers to study the question ns to what further restrictions on the choice of torsion­
free symplcctic connections are implied by introducing additional covariantly constant 
geometric structures ideally to the point of singling out a unique representative. 

Of course, there are many possible such structures, among which we may mention, as 
particularly important and interesting exnmples, Kahler manifolds and hamiltonian G­
spaccs; an overview can be found in Ilcf. [3). Herc, we shall study a specific type, given by 
the choice of a lagrangian distribution. This is the kind of additional structure one meets 
in geometric quantization (30], and the question of how to construct torsion-free symplcctic 
connections compatible with it has first been investigated by Hell [20,21). (Somewhat more 
generally, geometric qum1tization uses lagrnngian vector subbundl1~9 of the complexificcl 
tangent bundle, called polarizations, but we shall in this paper restrict ourselves to real 
polarizations, for the sake of simplicity.) The main theorem of Hell regarding this ques­
tion, stated in Ilef. [20] and proved in detail in R.cf. [211, states that given two involutivc 
lagrangian distributions Li and L2 which arc transversal, there is a unique syrnplectic con­
nection preserving both of them: it has come to be known as the bilagrangian connection.3 

Another way of looking at this result is in terms of pseudo-riemannian geometry, since in 
this case the bilagrangian connection, being torsion-free, is simply the Levi-Civita con­
nection associated with the pseudo-riemannian metric g of zero signature that can be 
constructed naturally from w together with Li and L2 [9, 10) by setting 

g(X, Y) = w((pr 1 - pr2}X, Y) , 
where pr1 and pr2 is the projection onto Li along L2 and onto L:i along Li, respectively. 

However, in order to generalize the construction of adequate syrnplectic connections 
to the poly- and multisymplectic framework, we must focus on the situation where we are 
given a single involutive lagrangian distribution Lon M, rather than two transversal ones. 
The question is whether there always exists a torsion-free symplectic connection on M that 
preserves L and, if so, what is the affine space of all such connections. This is a problem 
of independent interest even within the traditional context of symplcctic geometry, and 
one that seems to have received little attention so far. 

As a first step in this direction, we note the following extension of Proposition L 

Proposition 3 Let M be a manifold equipped with an almost symplectic form w and 
let L be a lagrangian distribution on M. Then if there exists a torsion-free symplectic 
connection "il on M preserving L, w must be closed and L must be involutive. In this 
case, the restriction of any such connection to L coincides with the Bott connection in L. 

3 Actunlly, the theorem of HcO is significantly more general because it applies even when the lagrangian 
distributions are not involutive or the form w is not closed, but we shall not go into this here. 

6 



Remark 1 The last statement is valid under much less restrictive assumptions on the 

torsion tensor T of V than stated above: it suffices that T(X, Y) should be along L 

whenever at least one of its arguments is along L. 

Proof: The first statement has been proved in Proposition 1. The second statement 

follows directly from Lemma 5 in Appendix A. For the third statement, let us assume 

that V is any symplectic connection on M preserving L with torsion tensor T such that 

T(X, Y) is along L as soon as X or Y is along L. Then the claim is equivalent to the 

condition that for all X, YE f(L) and Z E X(M), 

w(VfY, Z) = w('ilxY, Z) , 

which can be derived by comparing eqn (7) with cqn (9) taking into account that 

w(Y, [X, Z]) = w(Y, V x Z) 

since L being isotropic and stable under V, the expressions w(Y, 'vzX) and w(Y, T(X, Z)) 

vanish under these assumptions. □ 

Conversely, we can use a partition of unity argument to prove that the conditions stated in 

Proposition 3 (w is closed and Lis involutive) are not only necessary but also sufficient to 

guarantee existence of torsion-free symplectic connections preserving the distribution L. 

Theorem 2 Let M be a man if old equipped with a symplectic farm w and let L be an 

involutive lagmngian distribution on M. Then there exist torsion-free symplectic connec­

tions V on M preserving L, and the set of all such connections constitutes an affine 

space whose difference vector space can be identified with the space of all tensor fields of 

mnk 3 on M which {a) are totally symmetric and {b} vanish whenever at least two of 

their arguments are along L. 

Proof: Concerning existence, we can under the hypotheses of the theorem apply the 

Darboux theorem to guarantee that locally (i.e., on a sufficiently small open neighbor­

hood of each point of M), there exists a torsion-free flat symplectic connection on M 

preserving L: it is simply the linear connection on M whose Christoffel symbols vanish 

identically in these coordinates. (Here, we use a strengthened version of the Darboux 

theorem which guarantees the existence of a system of local coordinates (q\p;) around 

each point such that not only w takes the standard form dq'" dP; but also L is generated 

by the 8/BP;, say; a detailed proof can be found, for example, in [27, Theorem 1.1].) 

Now using a covering of M by such Darboux coordinate neighborhoods, passing to a 

locally finite refinement (U0 ) 0 eA, denoting the corresponding family of linear connections 

by (V0 )aeA and choosing a partition of unity (xa)aeA subordinate to the open covering 

(Ua)aeA, we can define 
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Then it is clear that 'iJ preserves w as well as L and is torsion-free, since this is true for 

each '70 
and since the conditions of preserving a given differential form, of preserving a 

given vector subbundle and of being torsion-free are all local (i.e., behave naturally under 

restriction to open subsets) as well as affine.4 Regarding uniqueness, or rather the amount 

of non-uniqueness, we can write the difference between any linear connection 'il' on !vi 

and a fixed torsion-free symplectic connection 'iJ on M preserving L in the form 

Moreover, we introduce a (covariant) tensor field w5 of rank 3 on M which, due to non­

degeneracy of w, carries exactly the same information as S itself, given by 

w8 (X, Y, Z) = w(S(X, Y), Z) . 

Then it is clear that 'il' will be torsion-free if and only if S is symmetric, or equivalently, 

w8 is symmetric in its first two arguments, that 'il' will be symplectic if and only if S 

satisfies the identity 
w(S(X, Y), Z) + w(Y, S(X, Z)) = 0 , 

or equivalently, w8 is symmetric in its last two arguments, and that 'il' will preserve L if 

and only if S(X, Y) is along L whenever X or Y is along L, or equivalently, w8 vanishes 

whenever at least two of its arguments are along L. □ 

These considerations show that there arc ( at least) three rat.her different methods for 

proving existence of torsion-free symplectic connections: (a) by modifying a given linear 

connection through arlclition of an appropriately chosen tensor field (sec Proposition 2), 

(b) by employing the construction of the bilagrangian connection due to HeB and (c) by 

a partition of unity argument. For our purposes, however, the first two are not fully 

adequate since the first provides connections that may not preserve any lagrangian dis­

tribution (this is not enough), whereas the second provides connections preserving two 

transversal lagrangian distributions (this is too much). The problem with the second con­

struction is that the bilagrangian connection associated with two lagrangian distributions 

is torsion-free if and only if both of them are involutive. Therefore, it must be modified 

when one wants to deal with situations where one is given a naturally defined involutive 

lagrangian distribution L which has no distinguished lagrangian complement and which 

may not even admit any involutive lagrangian complement at all: an important example 

is provided by cotangent bundles where the lagrangian foliation given by the structure 

as a vector bundle admits tranversal lagrangian submanifolds (such as the zero section 

or, more generally, the graph of any closed 1-form) but no natural transversal lagrangian 

foliation. Such a modification can always be performed by applying the construction of 

4The situation with respect to curvature is different because the condition of being flat , although still 

local, is not affine, so although each 'vn is flat, this will in general no longer be true for V. However, the 

curvature of V docs vanish when evaluated on two vector fields along L, since there V coincides with the 

Bott connection, which is flat. 
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Proposition 2 to the bilagrangian connection associated with an arbitrarily chosen la­
grangian complement L' of L, which preserves L' but has non-vanishing torsion (except 
when L' is involutive), trading it for what we might call a lagrangian connection, which 
no longer preserves L' (except when L' is involutive) but has vanishing torsion. However, 
this procedure is somewhat artificial, and as it turns out, it cannot be extended to the 
poly- and multisymplectic setting to be discussed in the next two sections - in contrast 
to the method based on a partition of unity argument, which extends in a completely 
straightforward manner. 

4 Polysymplectic connections 

We begin by stating the definition of a polysymplectic structure, as given in Ref. [12]. To 
this end, we recall first of all that given a fiber bundle P over a manifold M with bundle 
projection 1r : P -t M and corresponding vertical bundle VP (the kernel of the tangent 
map T1r : T P -t TM of 1r), a vertical vector field on P is a section of VP whereas a ver­
tical r-form on Pis a section of the r-th exterior power of the dual bundle v• P of VP and 
more generally, a ( totally covariant) vertical tensor field of rank r on P is a section of the r~ 
th tensor power of the dual bundle v• P of VP. Similarly, given an additional auxiliary vec­
tor bundle T over M, a vertical r-form on P an4, more generally, a (totally covariant) verti­
cal }ensor field of rank r on P taking values in T- or more precisely, in the pull-back 1r• (T) 
of T to P - is a ~ection of the tensor product of the aforementioned exterior power/ tensor 
power with 1r*(T). In what follows, we shall denote the Lie algebra of vertical vector fields 
on P by Xv(P) and the space of vertical r-forms on P taking values in T by !1v(P; n*T).5 

For such forms, there is a complete Cartan calculus, strictly analogous to the Cartan calcu­
lus for (vector-valued) differential forms; in particular, there is a naturally defined notion 
of vertical exterior derivative, 

dv: !1v(P; 1r*T) - W~ 1(P; 1r*T) 
t-+ 

and of vertical Lie derivative along a vertical vector field X, 

lLx : !1v(P; 1r*T) - Ov(P; 1r*T) 
t-+ 

which are defined by exactly the same formulas as in the standard case, namely 

(15) 

(16) 

5Note that speaking of vertical forms or (totally covariant) tensor fields constitutes a certain abuse of 
language because these are really equivalence classes of ordinary difTerential forms or ( totally covariant) 
tensor fields. 
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r 

(ll..xa)(X1, ... ,X,) = X·(a(X1, ... ,X,))-I:a(X1, ... ,[X,X;], ... ,X,), (18) 
i=l 

where X, X1, •.• , X, E Xv(P): this makes sense since VP is an involutive distribution 

on P. Here and throughout the remainder of this section, the symbol · stands for the 

directional derivative of sections of 1r• (T) along vertical vector fields: this makes sense 

since upon restriction to each fiber, a vertical VL'Ctor field is simply an ordinary vector 

field on the fiber and a section of a vector bundle obtained as the pull-back of a vector 

bundle over M becomes a function on the fiber taking values in a fixed vector space. 

Definition 2 A polypresymplectic fiber bundle is a fiber bundle P over an n­

dimensional manifold M equipped with a vertical (k + 1)-form 

w E n\t1(P;1r·(i')) 

of constant rank on the total space P taking values in {the pull-back to P of) a fixed n­
dimensional vector bundle T over the same manifold M, called the polypresymplectic 

farm along the fibers of P, or simply the polypresymplectic form, and said to be 

of rank N, such that w is vertically closed,6 

{19) 

and such that at every point p of P, wP is a polypresymplectic form of rank N on the 

vertical space V,,P: this means that there exists a subspace LP of V,,P of codimension N, 

called the polylagrangian subspace,7 such that the "musical map" 

w; : V,,P ~ N v; P 0 i',,(v) 

given by contraction of wP in its first argument, when restricted to LP, yields a linear 

isomorphism 
Lp/ kerwp ~ NL;© T,r(p) 

where L; is the annihilator of LP in v; P. Moreover, it is assumed that the kernels ker wP 
as well as the polylagrangian subspaces LP at the different points of P fit together 

smoothly into distributions ker w and L on P: the latter is called the polylagrangian 

distribution of w. If w is non-degenerate, we say that P is a polysymplectic 

fiber bundle and w is a polysymplectic form along the fibers of P, or simply 

a polysymplectic form. If M reduces to a point, we speak of a poly{pre)symplectic 

manifold. The case of main interest is when w is a 2-form, i.e., k = 1. 

6 As in the symplectic case, the possible absence of the integrability condition dvw = 0 will be 

indicated by adding the term "almost". 
7The terminology, as well as the justification for using the definite article, stems from the fact that 

this subspace, if it exists, is more than just lagrangian (i.e., maximal isotropic) and that, as soon as either 

;, > 1 or else n = 1 but then N > k > 1, or in other words, except when w is an ordinary two-form or 

a volume form, it is necessarily unique. 
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Thus the characteristic feature of a polysymplectic fiber bundle P with a polysymplectic 
form w is the existence of a special sub bundle L of its vertical bundle VP which is not only 
lagrangian (in particular, isotropic) but has the even stronger P!operty that the "musical 
vector bundle homomorphism" w' : VP ----+ I\ k v• P 0 1r• (T) , when restricted to L, 
provides a vector bundle isomorphism 

(20) 

As has been proved in Ref. [12], as soon as ii > 2, L is necessarily involutivc. 

The following example provides what may be considered the "standard model" of a 
polysymplectic fiber bundle: 

Example 1 Let E be an arbitrary fiber bundle over an n-dimensional manifold M, 
with projection 7rE : E----+ M, and let T be a fixed ii-dimensional vector bundle over the 
same manifold M. Consider the bundle 

P = Nv'E ® 1ri;;(T) (21) 

of vertical k-forms on E taking values in the pull-back of T to E, with projections 
1rk : P ----+ E and 1r = 7rE o 1rk : P ----+ M. Using the tangent map T1rk : T P ----+ TE 
of 1rk and its restriction V 1rk : VP ----+ VE to the vertical bundles, we define the 
canonical k-form on P, which is a vertical k-form 6 on P taking values in 1r'(T), by 

Oo(V1, ... , Vk) = a(V0 1rk ·Vi, ... , V0 1rk · vk) 
for a E P and V1, ... , Vk E V0 P . 

(22) 

Then w = -dvO is a polysymplectic (k + 1)-form, with polylagrangian distribution 
L = ker(T1rk) (the vertical bundle for the projection to E), contained in VP= ker(T1r) 
(the vertical bundle for the projection to M). 

When k = 1 and ii = 1 (with the understanding that the auxiliary vector bundle T is 
the trivial real line bundle M x IR), we have the "standard model" of a symplectic fiber 
bundle. In particular, when, in addition, n = 0 (i.e., the base manifold M is reduced to 
a single point), we recover the cotangent bundle of the single fiber, which is an arbitrary 
manifold, as the "standard model" of a symplectic manifold. On the other hand, when 
k = 1 and ii= n - 1 (with the understanding that the auxiliary vector bundle T is the 
bundle A n-l T' M of (n -1)-forms on M), P can be identified with the twisted dual f®E 
of the linearized jet bundle JE of E (which is the difference vector bundle of the usual 
jet bundle J E of E), because 

JE ~ 1re(T* M) 0 VE 

implying 
J*E ~ v• E ® 1re(T M) 
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for the common dual J..., E and 

for the twisted dual f®E == J• E ® 1re(l\n T' M), so we get a canonical isomorphism 

(23) 

of vector bundles over E. This lmndle plays an important role in the covariant hamiltonian 
formalism of classical field theory [4, 13, 16, 17]. 

As a first application of the isomorphism {20) beyond those discussed in Ref. [12], 
we show that, just as in the symplcctic case, it allows us to construct a polysymplectic 
version of the Datt connection. The idea is simple: start with the Datt connection in £1. 
as defined in cqns (3) and {4) (with X(M) replaced by Xv(l'), ft1(M) replaced by OMP) 
and the common Lie derivative replaced by the vertical Lie derivative introduced at the 
beginning of this section) and take the tensor product of its k-th exterior power with the 
trivial partial linear connection in 1r' (T) along L, to obtain a partial linear connection 
VD in /\ k £1. 0 1r' (T) along L, which we call the Bott connection in /\ k £1. 0 1r'(T): 
it is still given by a suitable restriction of the (vertical) Lie derivative of (vertical) forms; 
explicitly, 

k 

(V,{!ac)(Yi, ... ,Yk) = X• (a(Yi, .. -,Yk)) - L ac(Y1, ... ,[X,Y;], ... ,Yk) 
i=l (24) 

Now using the isomorphism (20), we can transfer it to a partial linear connection vn in L 
along L and arri vc at 

Definition 3 Let P be an almost polysymplectic fiber bundle over a manifold M with 
almost polysymplectic form w and involutive polylagmngian distribution L. Then there 
exists a naturally defined partial linear connection vn in L along L which we call the 
polysymplectic Bott connection; explicitly, it is determined by the formula 

As in the syrnplcctic case, the polysymplcctic Dott connection is flat, and for its torsion 
we have the following analogue of Theorem 1 : 

Proposition 4 Let P be an almost polysymplectic fiber bundle over a man if old M with 
almost polysymplectic form w and involutive polylagrongian distribution L. Then if w is 
vertically closed, the polysymplectic Bott connection vn has zero torsion. More gencrolly, 
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the torsion tensor TB of '7 8 is related to the vertical exterior derivative of w by the 

formula 

(26) 

In particular, this implies that in a polysymplectic fiber bundle, the leaves of the poly­
lagrangian foliation are flat affine manifolds. 

Proof: The only property that remains to be checked is eqn (26): this is a simple 

calculation using the fact that w(X, Y, .. . ) = 0 when X, YE r(L) since Lis isotropic: 

w(V~Y - v{lx - [X, Y], Z1,. ·., Zk) 

= X · (w(Y, Z1, ... , Zk)) - Y · (w(X, Z1,.,., Zk)) 
k 

- I: (-1/ zi · (w(X, Y, Z1, ... , Z;, ... , zk) 
i=l 

k 

- I::(-1);w([X,Z;l,Y,Z1, ... ,z;,••·,zk) 
i::;:;} 

k 

+ L (-l)i w([Y, Z;l, x, Z1, ... , Z;, ... , zk) 
i=l 

+ L (-1/+j w([Z;, Zj],X, Y,Z1, ... ,Z;, ... ,zj, ... ,Zk) 
l(i<j(k 

□ 

Now we turn to polysymplectic connections. By analogy with the symplectic case, the 

definition of the concept is more or less obvious, except that we cannot expect to obtain 

anything beyond partial linear connections along the vertical bundle. 

Definition 4 A poly{pre)symplectic connection on an almost poly(pre)symplectic 

fiber bundle P over a manifold M with almost poly{pre)symplectic form w and poly­

lagrangian distribution L is a partial linear connection V in the vertical bundle VP of P 

along VP itself which preserves both w and L; in particular, it satisfies Vw = 0, or 

explicitly, 
k 

X. (w(Xo, ... , Xk)) = L w(Xo, ... '"ilxX;, ... ,Xk) 
i=O 

(27) 
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Note that as soon as the polylagrangian distribution Lis unique, the invariance of w under 
parallel transport with respect to V already implies that of L. As mentioned before,7 the 

only exceptions to this situation can occur when w is an ordinary two-form or a volume 
form: in these cases, invariance of L becomes a separate condition. 

As in the symplcctic case, the existence of torsion-free poly(pre)symplectic connections 
imposes certain constraints. 

Proposition 5 Let P be an almost poly{pre)symplectic fiber bundle over a manifold M 
with almost poly{pre)symplectic form w and polylagrangian distribution L. Then if there 
exists a torsion-free poly{pre)symplectic connection V on P, w must be vertically closed 
and L must be involutive. More generally, the torsion tensor T of a poly{pre)symplectic 
connection V over P is related to the exterior derivative of w by the formula 

dvw(Xo, ... , Xr) = - L (-l)i+j w(T(X;, Xj), Xo, ... , xi, ... , xj, ... , Xr) . (28) 
O(i<j~r 

Finally, if w is non-degenerate, the restriction of any torsion-free polysymplectic connec­

tion to L coincides with the polysymplectic Bott connection in L. 

Remark 2 As in the symplectic case, the last statement is valid under the same less 
restrictive assumptions on the torsion tensor T of V as before: it suffices that T(X, Y) 
should be along L as soon as X or Y is along L. 

Proof: The first two statements follow directly from Lemma 6 (eqn (66)) and Lemma 5 

in Appendix A. For the third statement, let us assume that w is non-degenerate and V is 
any polysymplectic connection on P with torsion tensor T such that T(X, Y) is along L 
as soon as X or Y is along L. Then the claim is equivalent to the condition that for all 

X, YE f(L) and Z1, ••. , Zk E Xv(P), 

w(V§Y,Z1, •.• ,zk) = w(VxY,Z1, ••• ,Zk) 

which can be derived by comparing eqn (25) with the corresponding expression from 
eqn (27) taking into account that, for 1 :::; i :::; k, 

w(Y, Z1 1 ••• 1 [X, Zi], ... 1 Zk) = w(Y, Z1, ... 1 \I xZi, ... , Zk) 

since L being isotropic and stable under V, the expressions w(Y, Z1, ... , V2,X, ... , Zk) 
and w(Y, Z1, ..• , T(X, Zi), ... , Zk) vanish under these assumptions. □ 

Conversely, we can use a partition of unity argument to prove that the conditions stated 

in Proposition 5 (w is vertically closed and Lis involutivc) arc not only necessary but also 
sufficient to guarantee existence of torsion-free polysymplectic connections. 

Theorem 3 Let P be a poly{pre)symplectic fiber bundle over a manifold M with 

poly(pre)symplectic form w and involutive polylagrangian distribution L. Then there exist 
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torsion-free poly(pre)symplectic connections "il on P, and the set of all such connections 
constitutes an affine space whose difference vector space can, for non-degenerate w, be 
identified with the space of all vertical tensor fields of rank k + 2 on P taking values in the 
auxiliary vector bundle 1r*(T) which (a} have symmetry corresponding to the irreducible 
representation of the permutation group Sk+2 given by the Young pattern 

□ 
(with k boxes in the first column} and {b) vanish whenever at least two of their arguments 
are along L. 

Proof: Concerning existence, we can under the hypotheses of the theorem apply the 
polysymplectic Darboux theorem (see [12, Theorem 10]) to guarantee that locally (i.e., on 
a sufficiently small open neighborhood of each point of P), there exists a torsion-free flat 
polysymplectic connection on P: it is simply the partial linear connection in VP along VP 
whose Christoffel symbols vanish identically in these coordinates. Now using a covering 
of P by such Darboux coordinate neighborhoods, passing to a locally finite refinement 
{U0 )0EA, denoting the corresponding family of partial linear connections by {"il0 ) 0 EA and 
choosing a partition of unity (Xa)aEA subordinate to the open covering (Ua)aEA, we can 
define 

"il = L Xa"ila · 
oEA 

Then it is clear that "il is a partial linear connection in VP along VP, preserves w as 
well as L and is torsion-free, since this is true for each "il0 and since the conditions of 
preserving a given differential form, of preserving a given vector subbundle and of being 
torsion-free are all local (i.e., behave naturally under restriction to open subsets) as well as 
affine.8 Regarding uniqueness, or rather the amount of non-uniqueness, we can write the 
difference between any partial linear connection "v' in VP along VP and a fixed torsion-free 
polysymplectic connection "il on P in the form 

Moreover, we introduce a (totally covariant) vertical tensor field w5 of rank k + 2 on P 
taking values in 1' which, for non-degenerate w, carries exactly the same information as S 
itself, given by 

Ws(X, Y, Z1, ... , Zk) = w(S(X, Y), Z1, ... , Zk) . 
Obviously, w5 is totally antisymmetric in its last k arguments and it is clear that "il' will 
be torsion-free if and only if S is symmetric, or equivalently, w5 is symmetric in its first 

8With respect to curvature, the same comment as in Footnote 4 applies. 
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two arguments, that V' will preserve w if and only if S satisfies the identity 

k 

w(S(X, Y), z1, ... , zk) + I: w(Y,Z1,· .. ,z,-1,S(X,Z;),zi+1, ... ,zk) o, 
i:;1 

or equivalently, w8 satisfies the cyclic identity 

k 

Ws(X,Y,Z1,···•Zk) - I::ws(X,Z,,Z1,···,Z,_1,Y,Zi+l•···•Zk) = 0, 
•=I 

and that V' will preserve L if and only if S(X, Y) is along L whenever X or Y arc along L, 
or equivalently, w8 vanishes whenever at least two of its arguments arc along L. Finally, it 
is well known that, together with symmetry in the first two arguments and antisymmetry 
in the last k arguments, this cyclic identity identifies the tensor w8 as belonging to the 
irreducible representation of the permutation group Sk+2 given by the Young pattern 
stated in the theorem; see, e.g., [19, p. 249]. □ 

5 Multisymplectic connections 

We begin by stating the definition of a multisymplectic structure, as given in Ref. [12]. 
To this end, we recall first of all that given a fiber bundle P over a manifold M with 
bundle projection 1r : P ~ M, an r-form on Pis said to be (r - s)-horizontal, where 
0 ~ s ~ r, if its contraction with more than s vertical vectors vanishes; we shall in what 
follows denote the bundle of such forms by /\: T* P. 

Definition 5 A multipresymplectic fiber bundle is a fiber bundle P over an 
n-dimensional manifold M equipped with a (k + 1 - r)-horizontal (k + 1)-form 

w E r(N!1 r· P) 

of constant rank on the total space P, where 1 ~ r ~ k + 1 and k + 1 - r ~ n, called 
the multipresymplectic form and said to be of mnk N and horizontality degree 
k + 1 - r, such that w is closed, 9 

dw = 0. (29) 

and such that at evenJ point p of P, wP is a multipresymplectic form of rank N and hori­
zontality degree k + 1- r on the tangent space J;,P: this means that there exists a subspace 
LP of J;,P contained in V,,P and of codimension N there, called the multilagmngian 

9Once again, the possible absence of the integrability condition dw = 0 will be indicated by adding 
the term "almost". 

16 



subspace,10 such that the "musical map" 

wt: T,,P -t N r;P 

or 

given by contraction of wP in its first argument, when restricted to Lp, yields a linear 
isomorphism 

Moreover, it is assumed that the kernels ker wP as well as the multilagrangian subspaces LP 
at the different points of P fit together smoothly into distributions ker w and L on P: 
the latter is called the multilagrangian distribution of w. If w is non-degenerate, we 
say that P is a multisymplectic fiber bundle and w is a multisymplectic form. 
If M reduces to a point, we speak of a multi{pre)symplectic manifold. The case of 
main interest is when w is an (n - !)-horizontal (n + l)-form, i.e., k = n, r = 2. 

Again, the characteristic feature of a multisymplectic fiber bundle P with a multi­
symplectic form w is the existence of a special subbundlc L of its tangent bundle T P, 
contained in its vertical bundle VP, which is not only lagrangian (in particular, isotropic) 
but has the even stronger property that the "musical vector bundle homomorphism" w' : T P -t /\ k T* P or w' : VP -t /\,~1 T' P, when restricted to L, provides a vector 
bundle isomorphism 

(30) 
As has been proved in Ref. [12], as soon as (k+~-,) > 2, L is necessarily involutive. 

Again, the following example provides a "standard model" of a multisymplectic fiber 
bundle: 

Example 2 Let E be an arbitrary fiber bundle over an n-dimensional manifold M, 
with projection 7rE : E -t M. Consider the bundle 

(31) 

of (k + 1 - r)-horizontal k-forms on E, where 1 :,;; r ,,;; k + l and k + l - r ,,;; n, 
with projections rr,~ 1 : P -t E and 1r = 7rE o rr,~ 1 : P -t M. Using the tangent 
map Trr,~1 : TP -t TE of rr,~ 1, we define the canonical k-form on P, which is a 
(k + 1 - r)-horizontal k-form 0 on P, by 

Ba(v1,···,vk) = a(Ta1rr~1 ·V1, .. ,,Ta1rr~1 •Vk) 
for a E P and v1, .•• , vk E T

0 P . 
(32) 

10The terminology, as well as the justification for using the definite article, stems from the fact that 
this subspace, if it exists, is more than just lagrangian (in particular, isotropic) and, as soon as either 
r<k+I or else r=k+I and then n=O,N>k> I and also either k+I-r<n or else k+I-r=n 
and then N + n > k > n + 1, is necessarily unique. 
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Then w = -dO is a multisymplectic (k + 1)-form, with multilagrangian distribution 
L = ker(Tn,~1) (the vertical bundle for the projection to E), contained in VP= ker(Tn) 
(the vertical bundle for the projection to M). 

When k = n and r = 2, we have the "standard model" of a multisymplectic fiber bundle 
since in this case, as is explicitly demonstrated in the literature [4, 16, 17], P can be 
identified with the twisted dual J®E of the jet bundle J E of E, i.e., we have a canonical 
isomorphism 

(33) 

of vector bundles over E. This bundle plays a central role in the covariant hamiltonian 
formalism of classical field theory [4, 13, 16, 17]. 

Again, as a first application of the isomorphism (30) beyond those discussed in 
Ref. [12], we show that it allows us to construct a multisymplcctic version of the Bott 
connection. Namely, consider the k-th exterior power of the Bott connection in L1., as 
defined in cqns (3) and (4) (with X(M) replaced by X(P)), which is a partial linear con­
nection V 8 in /\ k Ll. along L: it is still given by a suitable restriction of the Lie derivative 
of forms; explicitly, 

k 

X · (a(Y1, •.• , Yk)) - L a(Y1, .•• , [X, Y;], ... , Yk) 
i=l 

(34) 

Now noting that it preserves /\k Ll. n /\,~1 T* P (the expression in eqn (34) vanishes if at 
least r of the vector fields Yi, ... , Yk are vertical, since LC VP and VP is involutive), 
we can use the isomorphism (30) to transfer it to a partial linear connection V 8 in L 
along L and arrive at 

Definition 6 Let P be an almost multisymplectic fiber bundle over a man if old M with 
almost multisymplectic form w and involutive multilagrangian distribution L. Then there 
exists a naturally defined partial linear connection V 8 in L along L which we call the 
multisymplectic Bott connection; explicitly, it is determined by the formula 

As in the symplcctic case, the multisymplectic Bott connection is flat, and for its torsion 
we have the following analogue of Theorem 1. 

Proposition 6 Let P be an almost multisymplectic fiber bundle over a manifold M 
with almost multisymplcclic form w and involutive multilagrangian distribution L. Then 
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if w is closed, the multisymplectic Bott connection VB has zero torsion. More generally, 
the torsion tensor TB of VB is related to the exterior derivative of w by the formula 

dw (X, Y, Z1, ... , Zk) = w(TB(X, Y), Z1, ... , Zk) 

for X, YE r(L), Z1 , •.. , Zk E X(P) . 
(36) 

In particular, this implies that in a multisymplectic fiber bundle, the leaves of the multi­
Lagrangian foliation arc flat affine man if olds. 

Proof: The proof is identical to the proof of the Proposition 4 and will therefore not 
~~~~- D 

Now we turn to multisymplectic connections, whose definition is analogous to the ones 
given previously, the main difference being that these are full connections and not just 
partial ones. 

Definition 7 A multi(pre)symplectic connection on an almost multi(pre}­
symplcctic fiber bundle P over a manifold M with almost multi(pre)symplectic form w 
and mullilagrangian distribution L is a linear connection V in P which preserves both 
w and L, as well as the vertical bundle VP of P; in particular, it satisfies Vw = 0, or 
explicitly, 

k 

X · (w(X0 , ••• , Xk)) = I: w(X0 , ..• , VxX;, ... , Xk) 
i;:::::Q 

(37) 

From the point of view of fiber bundle theory, the requirement that the vertical bundle 
should be invariant under parallel transport with respect to V is a natural consistency 
condition: it is necessary in order that parallel transport maps points in the same fiber 
to points in the same fiber. Concerning invariance of the multilagrangian distribution, we 
note as before that as soon as L is unique, the invariance of w under parallel transport 
with respect to V already implies that of L. In the few exceptional cases where this 
uniqueness docs not prevail, 10 invariance of L becomes a separate condition. 

Finally, we note that the existence of torsion-free multisymplectic connections imposes 
the same kind of constraints as before and that when these constraints arc satisfied, such 
connections can be completely classified. We just give the statements and omit the proofs 
since these arc obtained by almost literally repeating those of Proposition 5 and Theorem 3 
above. 

Proposition 7 Let P be an almost multi(pre)symplectic fiber bundle over a manifold M 
with almost multi(pre)symplectic form w and multilagrangian distribution L. Then if 
there exists a torsion-free multi(pre)symplectic connection V on P, w must be closed and 
L must be involutive. More generally, the torsion tensor T of a multi(pre)symplectic 
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connection 'v on P is related to the exterior derivative of w by the formula 

{38) 

for Xo, ... 'xk E X(P) . 

Finally, if w is non-degenerate, the restriction of any torsion-free multisymplectic con­

nection to L coincides with the multisymplectic Bott connection in L. 

Proof: Analogous to that of Proposition 5. D 

Theorem 4 Let P be a multi{pre)symplectic fiber bundle over a manifold M with 

mulli(pre)symplectic form w and involutive multilagrangian distribution L. Then there 

exist torsion-free mulli(pre)symplectic connections 'v on P, and the set of all such connec­

tions constitutes an affine space whose difference vector space can, for non-degenerate w, 

be identified with the space of all tensor fields of rank k+2 on P which (a) have symmetnJ 

corresponding to the irreducible representation of the permutation group Sk+2 given by the 

Young pattern 

EfD 
□ 

{with k boxes in the first column) and (b} vanish whenever at least r+ 1 of their arguments 

are vertical or at least two of their arguments are along L. 

Proof: Analogous to that of Theorem 3. D 

6 Structure Theorems 

In the previous two sections, we have presented " standard models" for polysymplectic 

and multisymplcctic fiber bundles: they arc certain bundles of forms built over a given 

fiber bundle, much in the same way as the cotangent bundle of a given manifold is the 

"standard model" of a symplcctic manifold. Out of course we may wonder whether there 

are other interesting examples, based on other methods. In particular, a natural question 

to ask is whether there exists a polysymplectic or multisymplectic analogue not only of the 

cotangent bundle construction, but also of the coadjoint orbit construction of symplectic 

geometry. 

An alternative approach consists in looking at the converse question, which in the con­

text of symplectic geometry can be stated as follows: How can we characterize, among all 
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symplcctic manifolds, those which (up to a symplcctomorphism) are cotangent bundles? 

As it turns out, this issue is solved by Weinstein's tubular neighborhood theorem. 

As an initial step, we mention two conditions that arc obviously necessary: for a 

symplectic manifold P to be symplectomorphic to the cotangent bundle T'Q of some 

other manifold Q, it must be exact (the de Rham cohomology class of its symplectic 

form must vanish), and it must admit a lagrangian foliation, whose leaves are of course 

the cotangent spaces. Note that each of these conditions already excludes most of the 

interesting coadjoint orbits, such as Souriau's 2-sphcrc and, more generally, all (co)adjoint 

orbits of compact semisimple Lie groups, which are also Kahler manifolds. But there arc 

at least two other aspects that turn out to be important. 

The first aspect is that P admits not only a lagrangian foliation but also lots of sub-­

manifolds complementary to it: these submanifolds, which may or may not be lagrangian, 

are the graphs of l-forms.11 (As is well known, such a graph is a lagrangian submanifold if 

and only if the corresponding I-form is closed.) Note, however, that even though there arc 

many such complementary submanifolds (there are even many of them passing through 

each point of P), they are isolated, i.e., there is no canonical way to make them come in 

families that would form a second foliation complementary to the first one. But at any 

rate, they are natural candidates for a manifold Q satisfying P ~ T'Q. 

The second aspect is that the lagrangian foliation is not arbitrary but is simple, i.e., 

the quotient space of leaves can be given the structure of a manifold such that the canon­

ical projection becomes a surjective submersion. Again, this quotient space is a natural 

candidate for a manifold Q satisfying P ~ T'Q. 

Weinstein's tubular neighborhood theorem deals with the converse question: Suppose 

that Pis a symplectic manifold, with symplectic form w, which admits a simple lagrangian 

foliation F (i.e., a lagrangian foliation whose leaves are the connected components of the 

level sets of a surjective submersion from P onto some other manifold), and let Q be 

any submanifold of P complementary to F.12 In its original version [29], the theorem 

states that if Q is lagrangian, then there is a tubular neighborhood of Q in P which is 

symplectomorphic to a neighborhood of the zero section of the cotangent bundle T"Q 

of Q. This result is easily generalized to the case when Q is not lagrangian: it is enough 

to substitute the standard symplectic form -dO on T'Q by a modified symplcctic form 

-dO + r'wQ where r is the canonical projection of T'Q to Q and WQ is the restriction 

of w to Q; see [8]. A global version of this result was given by Thompson [26], under 

the hypothesis that the leaves of F arc simply connected and geodcsically complete: in 

llWe use the term "complementary" as a stronger version of the term "transversal": given two sub­

manifolds X1 and X2 of a manifold X and a point x in their intersection, we say that they are transversal 

at x if TzX = TzX1 + TzX2 and are complementary at x if TzXl (I) TzX2 = TzX. In the literature, a 

submanifold complementary to the leaves of a foliation is often called a "cross section" of that foliation -

a term inspired by fiber bundle theory when the submanifold is the graph of some map. 
12Note that the condition that Q should be complementary to :F is only local: it does not guarantee 

that the intersection of Q with every leaf of :F reduces to a single point. All it implies is that this 

intersection must be discrete and hence at most countable, but it can contain many distinct points or, at 

the other extreme, even be empty. 
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this case, the manifold P becomes an affine fiber bundle over the quotient manifold P/F 

whose difference vector bundle is its cotangent bundle T'(P/ F), and therefore there exist 

submanifolds Q of P complementary to F which satisfy Q ~ P/F, i.e., which meet every 

leaf of Fin precisely one point. 13 Furthermore, when we choose one such submanifold Q, 

we get a global symplectomorphism from P onto T'Q that takes w to -dO or, more 

generally, to -dO + r'wQ, as before. The problem with the approach of [2G] is that it is 

not intrinsic, since the structure of P as an affine bundle over P / F and the meaning of 

geodesic completeness of the leaves seem to depend on the choice of additional ingredients 

(the author uses an auxiliary riemannian metric, or rather its Levi-Civita connection). 

In the remainder of the paper, we shall not only give a much more transparent proof of 

all these theorems, but we shall also show that this allows us to generalize them, without 

any additional effort, to the setting of polysymplectic and multisymplectic geometry, 

where they become natural structure theorems since these geometrics come with an in­

built lagrangian foliation, right from the start. The main natural ingredients used in our 

proofs, whose importance in this context seems to have been underestimated in the past, 

arc (a) the I3ott. connection and (b) the concept of Euler vector field. 

7 Simple foliations by flat affine manifolds 

The main technical tool, which in what follows will be employed in various different con­

texts and which therefore deserves to be treated separately, in order to avoid unnecessary 

repetitions, is the notion of a simple foliation of a manifold by flat affine submanifolds. 

Initially, suppose that P is any manifold. According to the Frobenius theorem, a 

foliation F of P corresponds to an involutive distribution L on P, such that for every 

point pin P, 
(39) 

where Fv is the leaf of F passing through p. Such a foliation is called simple if its leaves 

are the connected components of the level sets of a surjcctive submersion 1r : P --t P, 
that is, for p E P and p E P with p = 1r(p), we have 

Fp = connected component of 1r-1(p) containing p . (40) 

In particular, a fiber bundle with connected fibers is a simple foliation. It is also obvious 

that the leaves of a simple foliation arc closed embedded ( and _not just immersed) submani­

folds. Finally, given any surjectivc submersion 1r : P --t P, we can always decompose 

the projection 1r into the composition of two projections, 

P --t P/F --t P, (41) 

13This follows from the fact that an affine fiber bundle always admits global sections (which is easy to 

prove using partitions of unity). 
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where the first is a surjcctive submersion with connected fibers and the second is a local 
diffeomorphism. 

Given an arbitrary surjective submersion 1r : P ~ P, there are two special types 
of vector fields on the manifold P: vertical vector fields and, more generally, projectable 
vector fields: 

Definition 8 Let P and P be manifolds and 1r : P ~ P be a surjective submersion. 
A vector field X on P is said to be vertical (with respect to 1r) if for any p E P, 
Tp1r · X(p) = 0, and is said to be projectable (with respect to 1r} if for any p1,P2 E P 
with 1r(p1) = 1r(p2), TP, 1r · X(p1) = Tp

2
1r · X(p2). 

If X is a projectable vector field on P, then it is clear that for any p E P, there exists a 
unique vector X(p) E TfiP such that Tp1r • X(p) = .X(p) for all p E P with 1r(p) = p, 
and using local charts for P and Pin which the submersion 1r is represented by a constant 
projection, we can check that since X is smooth, so is .X. Thus we can characterize a 
projectable vector field as a vector field X on P which can be pushed forward by 7r to 
a (unique) vector field .X on P, to which it is 1r-rclated, 14 and a vertical vector field as 
a projectable vector field which, when pushed forward by 1r, gives zero. This implies 
immediately that in the Lie algebra X(P) of vector fields on P, the projcctablc vector 
fields form a Lie subalgebra Xp(P) and the vertical vector fields form an ideal Xv(P) 
within this Lie subalgebra, i.e. 

Y, Z projectablc ==} [Y, Z] projcctable , 

X vertical, Y projectable ==} [X, Y] vertical . 
Finally, we have 

(42) 

(43) 

Lemma 1 Let P and P be manifolds and 1r : P ~ P be a surjective submersion. 
Then every vector field X on P is the push-/ orward of some projcctable vector field X 
on P by 1r. 

Proof: Using local charts of P and P where the submersion 1r is represented by a 
constant projection, we see that every point p of P has an open neighborhood Up on 
which we can construct a vector field Xp that projects to Xl"(u,r Choosing a locally 
finite refinement (U;);eJ of the open covering (Up)peP of Panda subordinate partition of 
unity (x;);e1, we can define a vector field X on P by 

and verify that its projects to .X. 

X = LX;Xp(i) 
iE/ 

D 

14Recall that given any smooth map / : M --+ N between manifolds ]ff and N, two vector fields X 
on Mand Yon N are said to be /-related if for every point m of M, wc have Tmf · X(m) = Y(f(m)). 
An elementary but important theorem, used constantly, states that if X1 on l\f and Yi on Narc /-related 
and X2 on Mand Y2 on Narc also /-related, then their Lie brackets, [X1,X2] on Mand [Y,, Y2] on N, 
are /-related. 
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Thus we obtain the following exact sequence of Lie algebras: 

0 -+ Xv(P) -+ Xp(P) -+ X(P) -+ 0 . (44) 

For later use, we note the following corollary: 

Lemma 2 Let P and f> be manifolds and 7f : P -+ P be a surjective submersion. 

Then for evenJ tangent vector u E TpP, there is a projectable vector field X on P such 

that X(p) = u. 

Now we turn to the main subject of this section: the study of manifolds P equipped 
with a simple foliation :F whose leaves arc fiat affine submanifolds of P. This means 
that the involutivc distribution L tangent to :F, according to cqn (39), is endowed with 
a partial linear connection V with vanishing curvature and torsion. In this case, we can 
define two special types of fields on P, both of which arc vertical (i.e., along :F, or L) that 
play an important role: the covariant constant vector fields and the Euler vector fields: 

Definition 9 Let P be a manifold equipped with a simple foliation :F with involutive 
tangent distribution L, and let 'v be a partial linear connection in L along L with van­
ishing curvature and torsion. We say that a vector field X tangent to :F is covariantly 
constant along the leaves of :F, or simply co-variantly constant, if for any vector field Z 

tangent to :F, we have 
(45) 

We also say that a vector field I: tangent to :F is an Euler vector field if for any vector 

field Z tangent to :F, we have 
(46) 

The standard situation where these types of vector fields can be defined naturally is on 
the total space of a vector bundle: in this case, there is a preferred Euler vector field, 
namely, the one that vanishes on the zero section. However, the same construction also 
works for affine bundles - although in this case, we lose uniqueness of the Euler vector 
field, since the notion of the zero section has disappeared. In general, Definition 9 implies 
immediately that the sum of a covariantly constant vector field and an Euler vector field 
is an Euler vector field, and conversely, the difference between two Euler vector fields is 
a covariantly constant vector field, so the Euler vector fields constitute an affine space 
whose difference vector space is the space of covariantly constant vector fields. It is also 
clear that both types of vector fields are uniquely determined by their value at a single 
point of each leaf, and using local coordinate systems adapted to the surjective submersion 
P-+ P/:F in which the Christoffel symbols of the connection V vanish identically, we 
can prove that both always exist, at least locally. 

Completing the "menu" of ingredients, suppose now that Q is a submanifold of p 
complementary to :F, i.e., for every point q of Q, we have 

(47) 
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Note that this condition of complementarity does not necessarily imply that Q must 
intersect all leaves. However, considering again the surjective submersion 1r : P ---, P / F, 
it docs imply that every point of Q has an open neighborhood in P whose intersection 
with Q is a local section of 7r and, hence, that n(Q) is open in P/F. Moreover, it also 
implies that the inclusion of Q in P, followed by the projection n, as a map 

Q ---, P/F (48) 

is a local diffeomorphism onto its image, which is an open submanifold of P/F. Thus, 
replacing P by its open submanifold 1r- 1(1r(Q)) and F by restriction to this submanifold, 
we can assume without loss of generality that Q intersects all leaves, i.e., that the map (48) 
is surjective. 

With these preliminaries out of the way, we want to show how to build, using the 
geodesic flow with respect to the connection V that radially emanates from Q, a canonical 
local diffeomorphism, denoted by expQ and adequately called the exponential, between 
the vector bundle LjQ and the manifold P. More precisely, if for q E Q and Uq E Lq, the 
geodesic in Fq with initial position q and initial velocity uq is (momentarily) denoted by 
F(.; uq), the map 

with domain given by 

is defined by 

Dom(expQ) == LJ {uq E Lq I F(l;uq) exists} 
qEQ 

(49) 

(50) 

(51) 
This allows us to immediately get rid of the symbol F for the geodesic flow, which is 
anything but self-explanatory, since the geodesic in Fq with initial position q and initial 
velocity Uq is the curve given by s i-+ expQ(suq), i.e., we have 

(52) 

D d 
ds ds expQ(suq) == 0 (53) 

Obviously, the domain Dom(expQ) of the exponential is a tubular neighborhood of Q 
in L/Q' and by the fundamental theorem about the dependence of solutions of differential 
equations on the initial conditions and on parameters, the map expQ is differentiable (i.e., 
smooth) and induces the identity on Q. 

Lemma 3 Under the hypotheses stated above, the exponential (49) is a local di}Jco­
morphism onto its image, which is an open submanifold of P. 
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Proof: As LjQ and P have the same dimension, it suflices to prove that for all vectors 

Uq in the domain of the exponential, its tangent map 

T,,, expQ: T,,,(LjQ) --7 TcxpQ(u,)P 

is injective. When uq is the zero vector, this is obvious, since for all q E Q, we have 

natural direct decompositions of the tangent spaces to LjQ and to Pat q in a "vertical 

part" and a " horizontal part", 

with respect to which the tangent map 

is simply the identity. Thus let us consider the general case where uq E Lq is any vector 

in the domain of expQ and v,,, E T,,, (LjQ) is a tangent vector to the total space of the 

vector bundle L j Q over Q. Suppose that T,,, expQ · vu, == 0. Then applying the tangent 

functor to the commutative diagram 

where the lower horizontal arrow is the local diffeomorphism (48), we conclude that Vu 

must be vertical and, as V,,,(LjQ) ~ Lq, can be identified with a vector vq E Lq; mor; 

explicitly, Vu, E V,,,(LIQ) is the tangent vector 

Vu, == ~ (uq + tvq) lt=O ' 

and hence T,,, expQ • vu, is the tangent vector 

T,,. expQ . v,,. == _dd expQ ( Uq + tvq) I . 
t t=O 

This shows that T,,, expQ • v,,, is the value, at s == 1, of a Jacobi field along the geodesic 

s t-t expQ(suq), defined as the variation of the following one-parameter family of geodesics: 

(s, t) t-t expQ ( s( uq + tvq)) , 

where t is the family parameter and s is the geodesic parameter (for fixed t). Explicitly, 

the value of this Jacobi field at the point expQ(suq) is 
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showing that if Tu, expQ · Vu, = 0, it must vanish at s = 0 and at s = 1, i.e., q and 
p = expQ(uq) would be conjugate points along the geodesic s >-t expQ(suq)- But the 
condition that the connection V has vanishing curvature and torsion excludes the existence 
of conjugate points along any geodesic, because the differential equation for a Jacobi 
field, written in components for an autoparallel frame along that geodesic, reduces to an 
equation of the form d 2 Xi /ds2 = 0, whose solutions have exactly one zero - no more, no 
~ D 

In particular, it follows that the exponential (49) provides a diffeomorphism 

(54) 

of a convex neighborhood Uo of Q in the vector bundle LIQ with a tubular neighborhood 

U of Q in P.15 By construction, this diffeomorphism is affine. 

In the case of geodesic completeness, we can prove an even stronger claim: 

Lemma 4 Under the hypotheses stated above, and if P is geodesically complete with 
respect to 'v, the exponential {49} defines a covering 

(55) 

which, for every point q of Q, induces a universal covering 

(56) 

of the leaf Fq by the fiber Lq. In particular, if all leaves Fq are simply connected, the 
exponential provides a global affine diffeomorphism between LIQ and P. 

Proof: Under the hypothesis of geodesic completeness, the domain of the exponential 
expQ is the entire vector bundle LIQ• Moreover, the hypothesis that the connection 

V should have vanishing curvature and torsion implies that for every point q of Q, the 
restriction expq of expQ to the fiber Lq is an affine map from the vector space Lq, equipped 
with the trivial linear connection, to the leaf Fq, equipped with the linear connection 
'v q = 'v 1.r,- (For a much more general statement, see, for example, [23, Chapter 6, 

Theorem 7.1, p. 257].) So, the lemma follows from a general theorem, stated in more detail 
and proved in Appendix B, according to which every affine map from a connected, simply 
connected and geodesically complete affine manifold M to a connected affine manifold 
M', if it is a local diffeomorphism, it is even a covering; in particular, it is automatically 
surjective (and M' is automatically geodesically complete). D 

Another result which we shall need in what follows concerns differential forms on 
foliated manifolds: 

16 A neighborhood of the zero section of a vector bundle is called convex if its intersection with each 
fiber is a convex neighborhood of the origin in that fiber. 
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Proposition 8 Let P be a manifold equipped with a simple foliation F with involutive 

tangent distribution L, and let a be a k-form on P. Then a is the pull-back of a k-form 

a 0 on the quotient manifold Q = P/F by the projection 1r : P -t Q, a = 1r*a0 , if 

and only if, for all vector fields X along F, X E r(L), we have ixa = 0 (horizontality 

condition) and ILxa = 0 (condition of constancy along the leaves). 

Proof: First, observe that for a to be the pull-back of a k-form °'Q on the quotient 

manifold Q, we must have 

a(p)(u1, ... ,uk) = ao(1r(p))(Tv1r•u1, ... ,Tv1r•uk) 

for pEP,u1, ... ,ukETvP 
(57) 

Thus if any of the vectors u1, •.. , Uk belongs to Lv, this expression vanishes, so for any 

XE f(L), we must have ixa = 0 and therefore also 

ILxa = (dix + ixd) 1r*a0 = ix1r*(da0 ) = 0. 

Conversely, it is clear that if we use cqn (57) to define °'Q in terms of a, we must ensure 

(i) that for fixed p E P, the expression on the lhs of this equation does not depend 

on the representatives u; E TvP of the vectors Tv1r · u; E T~(v)Q, which is guaranteed 

by the condition of horizontality (ixa = 0 for X E f(L)), and (ii) that the expression 

on the lhs of this equation does not depend on the representative p E P of the point 

7l'(p) E Q: this can be derived from the condition of constancy along the leaves (ILxa = O 

for X E f(L)), as follows: Let p and p' be two points of P such that 7l'(p) = 1r(p'): 

this means that they belong to the same leaf F, and therefore there is a curve "I entirely 

contained in the leaf F with -y(O) = p and -y(l) = rf; in particular, we have 1(s) E L1 (,) 

for O :s;; s :s;; 1, and we can further assume that 1(s) > 0 for O :s;; s ~ 1. Using a partition 

(s0 )a=!, ... ,r of the interval [O, 1] (0 = so < s1 < ... < Sr < Sr+I = 1) and a finite family 

(Ua)a=O, ... ,r of chart domains U0 for P where 7l' is represented by a constant projection 

onto some subspace, together with some smooth cutoff function of compact support on p 

that is 1 on an open neighborhood of the image of the curve"/, it becomes evident that 

we can find a vector field X on P along F, X E f(L), which extends "/, i.e., such that 

1(s) = X("l(s)) for O :s;; s ~ 1. But this means that "I is an integral curve of X and, 

more than this, that close to p = -y(O), the flow Fx of Xis defined at least up to s = 1, 

so that there exist open neighborhoods Uo of p = -y(O) and U1 of rf = -y(l) such that 

the flow for time 1 establishes a diffeomorphism Fx(l, .) : Uo ~ U1 which preserves the 

leaves of F, since X is tangent to F, i.e., we have 11'\u, = Fx(l, .) 01l'\u
0

• Now, ILxa = O 

implies Fx(l, .)*(a\u.) = a\uo, so using p' = Fx(l,p) and setting u; = TvFx(l, .) . u; 

(1 :s;; i :s;; k), we obtain Tp'7l' • u; = Tv1l' • u; (1 ~ i ~ k) and 

ap'(u;, ... ,uD = °'Fx(I,v)(TvFx(l,.)·u1, ••• ,TPFx(l,.)·uk) 

= (Fx(l, .)*(a\u))/u1, ••• , uk) 

= 0v(u1, · · ·, uk) · 
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8 Foliated symplectic manifolds 

In this section, we consider the geometry of a foliated symplectic manifold, or more 
precisely, of a symplectic manifold P, with symplectic form w, that comes equipped with 
a simple lagrangian foliation F. Of course, lagrangian foliations may exist or not, and they 
can be simple or not: a classical example of a symplectic manifold which does not admit 
any lagrangian foliation is the sphere S2 ("no-hair theorem"), while a classical example of 
a lagrangian foliation which is regular but not simple is the irrational flow on the torus 1['2 

(in both cases, the symplectic form is the standard volume form). But in the case of 
a simple lagrangian foliation, the quotient space Q = P / F admits a unique manifold 
structure such that the canonical projection -rr from P to Q is a surjective submersion. 
Note that with this convention, Q is a quotient manifold of P, but nothing guarantees 
"a priori" that it can be realized as a submanifold of P, so the existence of an embedding 
of Q into P as a closed submanifold is an additional condition that must be imposed 
separately or deduced from other additional assumptions. 16 In any case, the hypothesis 
that the foliation F is lagrangian provides a canonical partial linear connection in L 
along L with vanishing curvature and torsion, namely the Bott connection 'i/ 8 introduced 
earlier: it implies that the leaves of Fare flat affine manifolds and is the crucial ingredient 
in the proof of the following statement: 

Theorem 5 Let P be a symplectic manifold, with symplectic form w, equipped with 
an involutive lagrangian distribution L. Suppose that the corresponding foliation F is 
simple, writing its leaves as the level sets of a surjective submersion -rrp : P ~ Q, 
and suppose finally that the quotient man if old Q = P / F can be realized as a closed em­
bedded submanifold of P. Under these circumstances, consider the musical isomorphism 
w1 : LI~ ~ LIQ (see eqn {6}}, together with the isomorphism LI~ ~ T*Q {which arises 
from the direct decomposition {47}}, and combined with the exponential expQ as defined 
in Sect. 7. Then we have the fallowing: 

• The composition of these isomorphisms provides a dijfeomorphism </> : V ~ U 
of a tubular neighborhood U of Q in P with a convex neighborhood V of the zero 
section of the cotangent bundle T*Q of Q. 

• If the leaves of F are geodesically complete with respect to the Bott connection, the 
composition of these isomorphisms provides a covering of P by the cotangent bundle 
of Q, </>: T*Q ~ P. 

16In general, there may be topological obstructions to the existence of an embedding of Q into P. Such 
obstructions are of global nature, since the submersion theorem (or local slice theorem) states that locally, 
there is always such an embedding. As an example of a set of additional conditions that guarantees its 
global existence, we mention the hypotheses in the third item of Theorem 5 below - namely that the 
leaves are gcodesically complete with respect to the Ilott connection and simply connected, as these 
ensure that Pis an affine bundle over Q, and affine bundles always admit global sections. 
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• If the leaves of F are geodesically complete with respect to the Bott connection and 

simply connected, the composition of these isomorphisms provides a dif]eomorphism 

of P with the cotangent bundle of Q, </>: T'Q -t P. 

Furthermore, ¢ preserves fibers, mapping r;Q onto Fq (or, in the first case, V n T;Q 
onto Un Fq), and defining 

0 = -ir;¢'w, (58) 

we have that <f;'w + dO is the pull-back of a closed 2-form wQ on Q by the projection T 

of T'Q to Q: 
</>'w + dO = r'wQ . (59) 

Finally, the cohomology class [ wQ] E l/2( Q) of wQ does not depend on the embedding 

employed and thus is an invariant of the foliation F. 

Remark 3 The last statement ensures that ¢ is "almost" a symplectomorphism: </>'w 
differs from the standard symplectic form of the cotangent bundle only by the pull-back 

of a closed 2-form on the base. If Q is a lagrangian submanifold of P, then wQ = 0 
and ¢ will be a symplcctomorphism. In this special case, the first statement of the above 

theorem, which is of local nature (with respect to the structure of P along the leaves 

of the foliation F), is known as Weinstein's symplectic tubular neighborhood theorem, 

established in [29]. The third statement has first been proved in [26]. Herc, besides 

establishing also the second statement, we give a more direct proof for all three of them, 
avoiding the use of additional and artificial ingredients (such as the auxiliary riemannian 

metric employed in [26]): this will also allow us to formulate and prove an extension of 

this theorem to the case of polysymplectic and multisymplectic geometry, treated in the 

next section. 

Proof: In view of Lemmas 3 and 4, we just need to prove the final part, contained in 

eqns (58) and (59). To simplify the presentation, we consider only the first and third 

statement, where ¢ is a diffeomorphism and hence can be used to identify V with U and 

T'Q with P, respectively. (The second statement, where¢ is just a local diffeomorphism, 

can be treated similarly, taking into account that in this case, the Euler vector field I: 

may fail to be globally defined on P, but it can be replaced by a family of Euler vector 

fields locally defined on P, which leads to a family of local formulas of the same type as 

cqns (58) and (59).) Therefore, we suppress the reference to the pull-back by </>. The 

argument will be based on Proposition 8, according to which it is sufficient to show that 

for every vertical vector field X, we have ix(w + d0) = 0 (horizontality condition) and 

lLx(w + dO) = 0 (condition of constancy along the leaves). Since w is closed, the second 

of these conditions follows directly from the first: 

ix(w + d0) = 0 =} lLx(w + dO) = (dix + ixd)(w + d0) = d(ix(w + dO)) = 0. 

To prove the first, we must show that for every vector field X along F and every vector 

field Y, we have (w + dO)(X, Y) = 0, and due to Lemma 2, we may do so assuming, 

30 



without loss of generality, that Y is projectable. Now using the definitions of the Bott 
connection and of the Euler vector field, we have 

w(X,Y) = w(v'~E,Y) = X·w(E,Y) - w(E,[X,Y]). 

Since Xis vertical and Y is projectable, [X, Y] is also vertical (see eqn (43)), and since 
L is lagrangian, the second term vanishes, so we get 

w(X, Y) = X· w(E, Y). 

Using the definition of 0, eqn (58), together with the fact that this implies that O vanishes 
on vertical vector fields, we have 

(w + d0)(X, Y) = w(X, Y) + X• 0(Y) - y. 0(X) - 0([X, Y]) 
= X· w(E, Y) + X· 0(Y) - Y· 0(X) - 0([X, Y]) 

- X· 0(Y) +X· 0(Y) - Y· 0(X) - 0([X, Y]) 
= D. 

Finally, we must address the issue of uniqueness, or rather the amount of non-uniqueness, 
of the decomposition (59), generated by the fact that there arc different Euler vector fields, 
corresponding to different choices of the embedding of the quotient manifold P /Finto P. 
Thus let E1 and E2 be two Euler vector fields, and define 01 = -iE,w and 02 = -iE2w. 
Then for every vertical vector field X, 

since Lis lagrangian, while for every projectable vector field Y, 

ILx(01 - 02) (Y) = X · ((01 - 02)(Y)) - (01 - 02)([X, Y]) 
= X · w(E2 - E1, Y) - w(E2 - E1, [X, Y]) 
= w(v'~(E2 - E1), Y) 

= D' 

where we have used the definition of the Bott connection and the fact that E2 - E1 is 
covariantly constant. According to Proposition 8, it follows that there is a I-form 0q on Q 
such that 01 - 02 = 1r*0q, implying 

w + d01 = 1r•wg) , w + d02 = 1r•wg) , 

with 
01 - 02 = 1r*0Q , wgi - wg> = d0Q . 

In particular, the cohomology class of wq docs not depend on the choice of embedding. □ 
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9 Structure of polysymplectic and 
multisymplectic fiber bundles 

In analogy with the symplectic case, we can now formulate our main theorem about the 
structure of polysymplcctic and multisymplcctic fiber bundles. The additional ingredient, 
as compared to the symplectic case, comes from the fact that the underlying manifold P 
is now the total space of a fiber bundle over some other manifold M,17 with bundle 
projection denoted by 71" : P -t M, and that the distribution Lis vertical with respect 
to this projection. Roughly speaking, this implies that the submanifold of P representing 
the quotient space P / F, which is now denoted by E, should be the total space of a fiber 
bundle on M, whose projection will be denoted by 'll"E : E -t M, as in the examples in 
Sects 4 and 5. Thus, the condition that E is a submanifold of P complementary to F 
and, at the same time, to the fibers of the projection n, leads us to replace eqn (47) by 
the condition that for every point e of E, we have 

TeP = TeE EB Le and VeP = V.E El) Le ' (60) 

where V,,P denotes the vertical space with respect to the projection 71" and VeE denotes 
the vertical space with respect to the projection 'll"E. 

In the case of polysymplectic fiber bundles, we have 

Theorem 6 Let P be a polysymplectic fiber bundle over a man if old M, with projection 
n : P -t M, polysymplectic form w and involutive polylagmngian distribution L. 
Suppose that the corresponding foliation F is simple, writing its leaves as the level 
sets of a surjective submersion 'll"p : P -t E, that n induces a surjective submersion 
'll"E : E -t M so that n = 'll"Eo'll"p, and finally that the quotient manifold E = P/F 
{a} can be realized as a closed embedded submanifold of P and {b} is the total space of a 
fiber bundle over M with respect to the projection 'll"E- Under these circumstances, con­
sider the musical isomorphism w1 : N LI~ 0 ne(T) -t LIE {see eqn {20)), together 

with the isomorphism LI~ ~ v• E (which arises from the direct decomposition (60)), 
and combined with the exponential expE as defined in Sect. 7. Then we have the following: 

• The composition of these isomorphisms provides a diffeomorphism <f, : V -t U 
of a tubular neighborhood U of E in P with a convex neighborhood V of the zero 
section of the model vector bundle N v• E 0 ni,(T) of Example 1. 

• If the leaves of F are geodesically complete with respect to the Bott connection, the 
composition of these isomorphisms provides a covering of P by the model vector 
bundle, <f, : N v• E ® ni;;(T) -t P. 

17In applications to physics, the base manifold M is space-time. In classical mechanics, this reduces 
to a copy of the real line (time axis) which is usually suppressed, but it reappears immediately when one 
considers non-autonomous systems, passing from symplectic manifolds to contact manifolds and then, 
using Carta.n's trick of adding yet another copy of the real line (energy axis), back to symplectic manifolds. 
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• If the leaves of F are geodesically complete with respect to the Bott connection and 
simply connected, the composition of these isomorphisms provides a dif]eomorphism 
of P with the model vector bundle, </J : /\ k v• E ® 7rs{T) ---t P. 

Furthermore, </J preserves fibers, mapping I\ kV,; E@T"E(e) onto F, ( or, in the first case, 

V n /\ k v,· E ISi T,cE(e) onto u n Fe), and defining 

(61) 

we have that q;•w + dvO is the pull-back of a vertically closed k-form wE on E by the 
projection 'll"k of /\kV* £@7r*(T) to E: 

q;*w + dvO = (7rk)•wE . (62) 

Finally, the cohomology class [ wE] E Hk(E) of wE does not depend on the embedding 
employed and thus is an invariant of the foliation F. 

Proof: The proof is completely analogous to the proof of Theorem 5 for foliated syrn­
plectic manifolds, and the calculations to verify the formula (61) arc carried out with a 
vector field X along F and k projectable vector fields Yi, ... , Yk, all of them vertical with 
respect to the projection 7l" to M. □ 

Turning to the case of multisymplectic fiber bundles, we have 

Theorem 7 Let P be a multisymplectic fiber bundle over a manifold M, with projection 
7l" : P ---+ M, multisymplectic form w and involutive multilagrangian distribution L. 
Suppose that the corresponding foliation F is simple, writing its leaves as the level 
sets of a surjective submersion 'll"p : P ---+ E, that 7r induces a surjective submersion 
'll"E : E ---+ M so that 7r = 'll"Eo'll"p, and finally that the quotient manifold E = P/F 
(a) can be realized as a closed embedded submanifold of P and (b) is the total space of 
a fiber bundle over M with respect to the projection 'll"E, Under these circumstances, 

consider the musical isomorphism w1 : /\,~1 LI; ---+ LIE (see eqn (30)), together with 

the isomorphism LI; ~ T* E (which arises from the direct decomposition (60}}, and 
combined with the exponential expE as defined in Sect. 7. Then we have the following: 

• The composition of these isomorphisms provides a dij]eomorphism </J : V ---+ U 
of a tubular neighborhood U of E in P with a convex neighborhood V of the zero 
section of the model vector bundle /\,~1 T' E of Example 2. 

• If the leaves of F are geodesically complete with respect to the Bott connection, the 
composition of these isomorphisms provides a covering of P by the model vector 
bundle, ¢ : /\ ,~1 T* E ---+ P. 

• If the leaves of F are geodesically complete with respect to the Bott connection and 
simply connected, the composition of these isomorphisms provides a dif]eomorphism 

of P with the model vector bundle, ¢: /\,~1 T' E---+ P. 
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Furthermore, <P preserves fibers, mapping I\ r~ 1 T; E onto F. ( or, ·in the first case, 

V n /\,~1 T; E onto Un F.), and defining 

(63) 

we have that ¢•w+d0 is the pull-back of a closed k-form wE on Eby the projection 1r,~1 

of /\,~ 1 T* E to E: 
(64) 

Finally, the cohomology class [ we] E JJk(E) of wE does not depend on the embedding 

employed and thus is an invariant of the foliation F. 

Proof: Analogous to that of Theorem 6, eliminating only the condition of verticality of 
the projectable vector fields relative to the projection over M. □ 

10 Conclusions 

The main new results reported in this paper are the theorems on existence of torsion­
free polysymplectic and multisymplectic connections and their complete classification 

(Theorems 3 and 4), together with the structure theorems on polysymplectic and multi­
symplectic fiber bundles (Theorems 6 and 7) which show that, under certain mild addi­
tional assumptions, these are exhausted by the well-known standard examples of bundles 
of forms (Examples 1 and 2). All these generalize corresponding theorems of sympleetie 

geometry which we have decided to include not only for the sake of completeness (given 
that most of them do not appear to have been stated explicitly in the existing literature, 
at least not in their full generality), but also because our proofs use different techniques. 
For example, we could not find an explicit statement of the theorem on the existence and 

classification of torsion-free symplectic connections that preserve a single lagrangian foli­
ation, included here as Theorem 2. (What one can find easily are classification theorems 

for torsion-free symplectic connections which either are subject to no further constraints 
or else are required to preserve two transversal lagrangian foliations: as is well known, 
the latter case leads to a unique answer, namely the bilagrangian connection first con­
structed by Hell. This situation is somewhat surprising since after all, the case of a single 

lagrangian foliation is very important: it is the situation one encounters when dealing 
with cotangent bundles! Indeed, a cotangent bundle is a symplectic manifold carrying a 

distinguished lagrangian foliation but no natural candidate for a second one that would 
be transversal to it: all one finds are single lagrangian submanifolds transversal to it, 

namely the zero section or, more generally, the graph of any closed 1-form on the base 

manifold.) Similarly, the global versions of Weinstein's tubular neighborhood theorem 

do not seem to have been formulated in their full generality, and the existing proofs use 
rather artificial additional ingredients which, as we show, are really unnecessary. 
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Regarding the extension from symplectic to polysymplectic and multisymplectic geo­

metry, one of the central concepts is the Datt connection: it is a partial linear connection 

in and along the corresponding polylagrangian or multilagrangian distribution L and is 

a natural geometric object at least when L is uniquely determined and involutive, which 

is the generic case [12]. Since this connection is both torsion-free and flat, it implies 

that, just as in symplectic geometry, the leaves of the corresponding foliation arc flat 

affine manifolds - a fact that imposes severe restrictions on the underlying geometry. 

The upshot is that polysymplectic and multisymplectic geometry is analogous not to the 

geometry of general symplectic manifolds but rather to that off oliated symplectic mani­

folds, and that is why there is no generic polysymplectic or multisymplectic analogue of the 

coadjoint orbit construction, since typically such orbits do not admit lagrangian foliations. 

Such observations, when applied to classical field theory, support a general picture 

concerning the role of position variables and momentum variables in physics. 

In the usual hamiltonian formulation of classical mechanics, these variables are essen­

tially treated on an equal footing: they can be thought of as ingredients of local coordinate 

systems in a symplcctic manifold, called phase space, and transformations between such 

local coordinate systems, called canonical transformations, arc symmetries of the theory -

a point of view that has been triumphant in the mathematical treatment of completely 

integrable systems, whose solution is achieved through a judiciously chosen canonical 

transformation to so-called action-angle variables. As a result, many have been led to 

believe that there is a general "democracy" between position and momentum variables. 

However, it is well known that this "democracy" is lost upon quantization: in contrast 

to what happens in classical mechanics, canonical transformations mixing position and 

momentum variables are no longer symmetries of quantum mechanics, since they cannot 

be implemented by unitary operators in the Hilbert space of states. 

What is much less known is that this loss of symmetry is by no means a specific feature 

of going to the quantum world, simply because the same thing happens in (relativistic) 

field theory: here too, this "democracy" just disappears! 

The central reason seems to be that, already at the classical level, relativity is built on 

fundamental new principles of physics that require a clear-cut distinction between the two 

types of variables. Perhaps the most important of them all is space-time locality, which 

postulates that events localized in space-like separated regions of space-time cannot exert 

any direct influence on each other: obviously, this principle refers to space-like separation 

in space-time and not in momentum space! Therefore, it is not a defect but rather a virtue 

of polysymplectic and multisymplectic geometry, whose proposal is to provide the correct 

mathematical framework for the hamiltonian formulation of (relativistic) classical field 

theory, that they incorporate, from the very beginning, a clear geometrical distinction 

between position and momentum variables, in terms of a given distribution describing 

the "collection of all momentum directions". This characterization is as it should be: 

coordinate and frame independent, /IS well as intrinsically defined and unique; its mere 

existence being in sharp contrast to the situation in symplectic geometry, where specifying 
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a lagrangian distribution is a matter of choice. Thus in (relativistic) field theory, the lack 
of "democracy" in the sense described before is not a quantum effect, but rather the result 

of physical principles which already prevail at the classical level. 

Appendix A: Auxiliary formulas 

In the course of this paper, we have repeatedly made use of the following two elementary 

facts. 

Lemma 5 Let M be a manifold and let L be a distribution on M. Then if there exists 

a torsion-free linear connection V on M preserving L, or more generally, if there exist an 

involutive distribution V on M containing L and a torsion-free partial linear connection 

V in V along V preserving L, L must be involutive. 

Proof: This follows simply by looking at the definition of the torsion tensor of V, 

T(X, Y) = 'ilxY - 'ilyX - [X, Y] 

which implies that if V is torsion-free and preserves L, then when X and Y are along L, 

so must be [X, Y]. D 

Lemma 6 Given a manifold M and a linear connection Von M with torsion tensorT, 

we have for any differential form a of degree r and any r + 1 vector fields X 0 , ... , Xr 
on M 

r 

L (-1); (Vx,a)(X0 , ... , X;, ... , Xr) 
i;Q (65) 

= da(Xo, ... ,X,) + L (-l)i+ia(T(X;,Xj),Xo, .. ,,X;,•">xj,·",xr). 
O~i<j(r 

Similarly, given a fiber bundle P over a manifold M, with vertical bundle VP, and a 

partial linear connection V in VP along VP with torsion tensor T, we have for any 

vertical differential form a of degree r and any r + 1 vertical vector fields X 0 , ... , Xr 
on P 

r 

L (-1); (Vx,a)(X0 , ••• , X;, ... , X,) 
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Proof: Both statements follow from the same elementary calculation: 

r 

L {-l)i (v'x,a)(X0 , ••• ,X;, ... ,X,) 
i=O 

r 

= I:(-l)i X; · a(X0 , •• ,,X;,•• .,X,) 
i=O 

r i-1 

- LL (-l)i a(X0 , ••• , v'x,Xi, ... ,X;, ... ,X,) 

r r 

- LL (-l)ia(X0 , .. ,,X;, .. ,,v'x,Xj,·"•X,) 

r 

= L (-1/ X; · a(Xo, .. , ,xi, ... ,X,) 
i=O 

+ L (-l)i+i n(v'x,Xj - v'x;Xi ,Xo, ... ,X;, ... ,xj, ... ,x,) 
O~i<j(r 

= da(X0 , ..• , X,) or dva(X0 , •.. , X,) 

+ L (-l)i+i a(v'x,Xj - v'x;Xi - [X;,XjJ.Xo, ... ,X;, ... ,xj, ... 'x,) 
O~i<j~r 

Appendix B: Affine manifolds and maps 

D 

We recall some concepts and facts about affine manifolds and affine maps between them, 
following [23]. 

Definition 10 An affine manifold is a manifold equipped with a linear connection v'. 
A (smooth} map f : M -* M' between affine manifolds is called an affine map if its 
tangent map Tf: TM-* TM' preserves pamllel transport, i.e., for any curve 'Y in M 
from x toy with image curve "(1 = f o"( in M' from f(x) to J(y), the following diagmm 
commutes: 

TxM ~ T/(x)M' 

UJ (x,y) ! ! U~' (f(x),J(y)) 

TyM 7';j T1(y)M' 
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Obviously, an affine map takes geodesics into geodesics and therefore commutes with the 

exponential, in the sense that 

for x E M, u E Dom(expx) C TxM 

(see [23, Chapter 6, Proposition 1.1, p. 225]). 

An important property of ricmannian manifolds that extends to affine manifolds is 

the existence of convex geodesic balls around each point. First, we say that an open 

neighborhood Ux of a point x in an affine manifold Mis a normal neighborhood of x if there 

is an open neighborhood U2 of the origin in TxM contained in the domain Dom(expx) of 

the exponential expx such that the latter restricts to a diffeomorphism expx : U2 ~ Ux. 

Second, a geodesic ball around a point x of M is a normal neighborhood Bx of x obtained 

as the inverse image of an open ball in TxM around the origin, of radius p, say, where pis 
sufficiently small, with respect to some (arbitrarily chosen) scalar product in TxM. Now 

it can be shown [23, Chapter 3, Theorem 8.7, p. 149] that geodesic balls Bx of sufficiently 
small radius p have two additional useful properties: (a) Bx is geodesically convex (i.e., 

any two points of Bx can be connected by a geodesic entirely contained in Bx) and (b) Bx 

is a normal neighborhood not only of x but of any of its points. Whenever this is the 

case, Bx will be called a convex geodesic ball. 

Theorem 8 Let M and M' be connected affine man if olds and let f : M ~ M' be an 

affine map. Suppose that M is simply connected and geodesically complete and that f is 

a local dif]eomorphism. Then f is a covering (in particular, it is surjective), establishing 

M as the universal covering man if old of M', and M' is also geodesically complete. 

Remark 4 The "riemannian version" of this theorem (which assumes that Mand M' 
are riemannian manifolds and f is isometric) is well known and can be found in many 

textbooks, but the proofs given usually make use of the Hopf-Rinow theorem and therefore 

do not extend to the present situation, where we do not have metrics (in the topological 

sense). An alternative approach can be found in [22, Chapter 10, Theorem 18, p. 167], 
and the proof presented below is an adaptation of that to the affine case. 

Proof: We begin by showing that f is onto. Considering that M' is connected and 

f is a local diffcomorphism, so that its image f (M) is necessarily an open submanifold 

of M', it suffices to show that f(M) is also closed. Thus let x' E M' be a point in the 

closure off (M) and let B' be a convex geodesic ball in M' around x'. Then there exist 

a point y' E B' n f(M) and, due to the fact that B' is a normal neighborhood of y' as 

well, a tangent vector u' E Tv,M' such that expy,(u') = x'. Choose y E M such that 

J(y) = y' and, using that f is local diffeomorphism, u E TyM such that Tyf • u = u'. 

Set x = expy ( u). Then since f is affine, we have f ( x) = x'. The argument also shows that 

M' is geodesically complete. Finally, to show that f is a covering, note that the inverse 

image 1-1(x') of a point x' E M' under the local diffcomorphism f is a discrete subset 

of M, and we can always choose a scalar product on Tx,M' and, for every x E J-1(x'), 

a scalar product on TxM such that T,J: TxM ~ Tx,M' is isometric; then the inverse 
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image under f of a convex geodesic ball around x', of sufficiently small radius, will be the 
disjoint union, parametrized by x E f- 1(x'), of the convex geodesic balls around x, of the 
same radius. □ 
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