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Higher-order corrections to electron-nucleus bremsstrahlung cross sections above a few MeV
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Despite the fact that the first calculations of nuclear bremsstrahlung cross sections were performed for
relativistic electrons more than 80 years ago by Sauter, Bethe and Heitler, and Racah, a fully satisfactory
solution to this problem is still missing up to the present day. Numerical approaches are impractical for electrons
with energies above a few MeV because they require a prohibitively large number of partial waves. Analytic
formulae need to describe simultaneously and accurately the interaction with the Coulomb field of the nucleus
and the screening effect of the atomic electrons. In the present paper, a state-of-the-art analytic calculation will be
discussed. In particular, higher-order corrections to the interaction with the Coulomb field of the nucleus, a subject
seldom tackled in the past, are included and compared extensively with published data. The emerged difficulties
will be highlighted, but unfortunately they can be overcome only with future large coordinated theoretical and

experimental efforts.
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I. INTRODUCTION

The theory of bremsstrahlung emission has been developed
since about 100 years ago starting with the first semiclassical
attempts by Sommerfeld shortly after the introduction of
the Bohr atomic model. The first nonrelativistic quantum
calculation was published by Sommerfeld in 1931 [1]. A
relativistic treatment was first given in 1934, independently,
by Sauter [2], Bethe and Heitler [3,4], and Racah [5]. Since
then, a large number of calculations has been reported. But
even nowadays, as we will show in the present paper, a fully
satisfactory solution for nuclear bremsstrahlung by few-MeV
electrons is not available. The various theories can be divided in
two large classes: analytic formulae and numerical approaches.
The present paper focuses just on the former.

We have found 28 analytic formulae for nuclear brem-
sstrahlung only, valid under different approximations. This is
not the place for a complete discussion (a review will be pub-
lished shortly elsewhere [6]). Here it is important to stress the
main difficulty at the base of such a large proliferation of theo-
retical works. Because radiative corrections to bremsstrahlung
(i.e., genuine quantum electrodynamics effects) are small [7],
Fermi’s “golden rule” is fully adequate to calculate accurately
the triple differential cross section. However, the initial and
final electron wave functions are difficult to obtain because
it is necessary to consider that the Coulomb field of the
nucleus is screened by the atomic electrons. Even for a pure
Coulomb field (which is an inadequate approximation for the
bremsstrahlung emission especially of low-energy photons)
the eigenfunctions of the Dirac equation for the continuous part
of the energy spectrum cannot be obtained in closed form. For
high-Z atoms, where the bremsstrahlung emission is stronger,
the effect of screening can only be described appropriately with
an atomic form factor obtained from a Dirac-Hartree-Fock
numerical approach. Here we will show the results for a
state-of-the art analytic calculation for bremsstrahlung in the
Coulomb field of the nucleus modified by the presence of the
electronic cloud of the atom. We will include second-order
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corrections to the interaction with the Coulomb field of the
nucleus, following a recent work by Haug [8], and analyze
thoroughly the consequences for double and single differential
cross sections, especially in comparison with the available
experimental data, which are scarce and old. Unfortunately,
however, only partial conclusions are possible without future
large coordinated theoretical and experimental efforts.

The main objection to the present work, especially when
confronted with the difficulties that will become apparent in
the comparison to experimental data for high-Z elements,
is the existence of numerical methods that are virtually
exact, because they employ initial and final electron wave
functions obtained from the solution of the Dirac equation in a
realistic central potential including the screening effect of the
atomic electrons. These approaches are based on partial wave
expansions and are indeed considered the best calculations
available. They have been refined over the years by Tseng and
Pratt [9]. However, because the number of components needed
to obtain an accurate cross section for few-MeV electrons is
rather high, the reference tabulations by Tseng and Pratt [10]
stopped at electron kinetic energies of T,; = 2 MeV. Pratt
et al. have later introduced a sampling procedure that avoids
the direct calculation of all the partial wave components [11],
but only exploratory calculations have been published for
Al and U at T,; =5 and 10 MeV. Recently, Yerokhin and
Surzhykov [12] have developed a completely independent
computer code and introduced an important improvement in
the evaluation of the strongly oscillating integrals appearing
in the coefficients of the partial wave expansion. Their results
confirm the ones by Tseng and Pratt [10], being typically
lower by at most 1% because they use an improved central
potential; still Yerokhin and Surzhykov [12] stopped at 3 MeV.
It is important to remember that the bremsstrahlung matrix
element depends on both the initial and final electron wave
functions and hence the number of contributions that have to
be included scales with the square of the number of partial
wave components. For this reason, the number of terms in
the matrix element increases exponentially with energy [13].
Jakubassa-Amundsen [14,15] has proposed a mixed approach
valid only for the cross section at the high-energy end of
the bremsstrahlung photon spectrum (called the “tip” in the
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literature) by coupling an analytic wave function for the initial
state to a partial wave expansion for the final one (where
the electron has a very low kinetic energy and feels strongly
the effect of the screened Coulomb field). Since here we are
interested in the full radiated spectrum and we want to reach
higher electron energies, in particular to study the high-energy
limit of the Coulomb correction, we cannot rely on these exact
numerical methods.

As a last warning, we remind the reader that electron-
electron bremsstrahlung exists as well, but it is important
for very low-Z elements, which fall outside the scope of the
present work.

The paper is structured as follows. The analytic formulae
are developed in Sec. II, their numerical implementation is
described in Sec. I1I, and some general features are discussed in
Sec. IV. A comparison with the experimental data is performed
for double differential cross sections at a few MeV and for
single differential cross sections at hundreds of MeV in Secs. V
and VI, respectively. Finally, the conclusions are drawn in
Sec. VIIL

Throughout the text, the abbreviations adopted are the triple
differential cross section (TDCS), double differential cross
section (DDCS), single differential cross section (SDCS),
partial differential equation (PDE), atomic form factor (AFF),
leading order (LO), and next-to-leading order (NLO).

II. HIGHER-ORDER CORRECTIONS
TO ANALYTIC FORMULAE

As mentioned above, the main limitation of all analytic
formulae is the difficulty to find an accurate expression

J

d2 o screened d2 o no screening
<dkd$2k) - (dkd9k> +

exact exact

The first term on the right-hand side of Eq. (1) is the exact
cross section in a pure Coulomb field, while the second
contains the correction due to screening evaluated from the
Born approximation. A more detailed discussion of Eq. (1)
can be found in Refs. [20-22]. Here we will call this property
the Olsen-Maximon-Wergeland additivity rule.

In the present work, we will use Eq. (1) and improve as
far as possible each term. As suggested by Haug [8], the
exact cross section in a pure Coulomb field is approximated
with the Elwert-Haug expression [23], obtained with the
Furry-Sommerfeld-Maue wave functions [16,17], corrected
to the next-to-leading order with the formula by Roche,
Ducos, and Proriol [24]. We refine the work by Haug [8]
by using the TDCS from the Born approximation obtained
by Maximon, de Miniac, Aniel, and Ganz [25] with the best
non-relativistic Hartree-Fock AFFs available, compiled by
Hubbell and collaborators [26]. We discuss briefly each term
with the intent of clarifying the limitations involved.

B. The Born approximation

In the Born approximation, the electron wave function is
expanded as

U =¢o+@Z)p+(@Z) ¢+ - )
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of the eigenfunctions of the Dirac equation for scattering from
the Coulomb field of the nucleus. Moreover, the screening
effect of the atomic electrons also needs to be handled. For
a pure Coulomb field, the best analytic wave functions have
been found independently by Furry [16] and Sommerfeld and
Maue [17] (they will be called the Furry-Sommerfeld-Maue
wave functions here, but in most of the literature they are
identified simply as the Sommerfeld-Maue wave functions).
On the other hand, the effect of screening cannot be included
easily in the Furry-Sommerfeld-Maue wave functions, but can
be easily accounted for in the Born approximation (which does
not describe accurately the interaction with the Coulomb field
of the nucleus).

A. The general Olsen-Maximon-Wergeland additivity rule

As mentioned, Fermi’s “golden rule” is fully adequate for
treating nuclear bremsstrahlung. The matrix element to be
evaluated contains an integral of the initial- and final-state
wave functions over the whole space. However, as noted by
Bethe and Maximon [18], close to the nucleus an accurate
description of the interaction with a pure Coulomb field is most
important, while far from the nucleus the effect of screening is
most relevant so that the Coulomb field is strongly reduced and
hence amenable to a Born-approximation approach: thus, over
all space, it is never necessary to deal with both difficulties
simultaneously. This observation was exploited in detail by
Olsen, Maximon, and Wergeland [19], who could prove, within
the Wentzel-Kramers-Brillouin (WKB) approximation, that,
at high energies (compared with the rest mass of the electron)
and for cross sections that are integrated over the final electron
solid angle, the screening correction is additive:

d2 o screened d2 o no screening
— . 1
[(dkdgk)Born (dk ko)Born :| ( )

(

where the expansion parameter is & Z (with « the fine-structure
constant) and the expansion point ¢, is a plane wave, i.e.,
representing a particle that is free. The other terms in Eq. (2)
can be obtained iteratively by solving the Dirac equation by
means of the Green’s-function method. However, only the
term of order o Z is practically usable for calculating the
bremsstrahlung TDCS because of divergences. When Eq. (2)
is stopped after the term of order « Z, it is called the first
Born approximation. The plane wave does not contribute to
the TDCS because a free electron cannot radiate a photon due
to energy-momentum conservation. It is rather obvious that
the first Born approximation can be reasonably accurate only
if the interaction of the electron with the nucleus is weak. In
general, a particle is never free from a Coulomb field; but,
because of the screening, the notion of a weak interaction can
be applied far from the nucleus.

The first Born approximation was the method originally em-
ployed, independently, by Sauter [2], Bethe and Heitler [3,4],
and Racah [5]. Only the work by Bethe and Heitler [3,4] dealt
with screening and because their result was more general
became the most widely cited: it is commonly referred as
the Bethe-Heitler formula. However, we do not use their
expression for the TDCS because it is affected by the
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cancellation between different terms to such a high degree
that its evaluation is numerically challenging above tens of
MeV [25]. Maximon, de Miniac, Aniel, and Ganz [25] were
able to find a mathematically equivalent expression that is not
affected by this cancellation between different terms:
d*c
dkd2 dS2),
_eZrg pp - F@P
Q) kpi gt
+16e2e2(Eu—nv)Y’ —4qg* (€@ Eu—env)?]l (3)

[8k% €1 €& n(u —v)*

where
§ L L (4a)
= . = . a
261 dl 7 262 d2
di =€ — p1cosOy, dy=e — pycosb, (4b)
q=p —pr—k (4c)

and the symbols have the following meaning: €; (e;) is the
initial (final) electron energy, p; (p») is the initial (final)
electron momentum vector, and k is the radiated photon
momentum vector, all expressed in units of m, ¢? or of m,c,
according to the correct physical dimensions, and 6;, 65, u,
v, F(q), and ry are the angle between p; and k, the angle
between p, and k, the component of p; perpendicular to k, the
component of p, perpendicular to k, the AFF, and the classical
electron radius, respectively. The vector ¢ is the momentum
transferred to the nucleus that recoils after the emission of the
photon (in units of m, c). Its modulus is indicated by ¢ and
called the momentum transfer.

As shown already by Bethe and Heitler [3], two necessary
conditions for the first Born approximation, used to derive
Eq. (3), to be accurate are

21, L« 5)

Bi B
involving both the initial and final electron velocities, §; and
B, respectively. Equations (5) imply that Eq. (3) will fail (i)
if the initial electron kinetic energy is too low and (ii) if the
final electron kinetic energy is too low. Both (i) and (ii) must
hold simultaneously. Here this is not a big concern because
we consider electron kinetic energies above 1 MeV and use
Eq. (3) only to determine the screening correction, which goes
to zero close to the tip (i.e., k — €; — Ll ore; — 1).

C. The Furry-Sommerfeld-Maue wave functions

The Furry-Sommerfeld-Maue wave functions are not exact
solutions of the Dirac equation in a pure Coulomb field, but
only approximations. The basic idea is to transform the Dirac
equation, a first-order PDE, into a second-order PDE, which

J

d3O'L0 o Zz Vg kp2
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has a dominant term plus other terms that are suppressed by
a Z and (¢ Z)%. The dominant term of the second-order PDE
has the same structure as the nonrelativistic Schrodinger PDE
and can be solved in closed form arriving at a wave function
Yo, which is taken as the expansion point:

V=vo+ @)y +@ZP Yo+ (6)

The next correction term y; is added to Eq. (6) so that
W satisfies the second-order PDE (equivalent to the Dirac
equation) including, beyond the dominant term, the next one
of order o Z. Furry [16] and, independently, Sommerfeld and
Maue [17] were able to obtain a closed form for 1/, and found
the solution

WEsM = ¥ + Yo @)

where ¥, = ¥ and ¥, = (a Z) ;. The expression found by
Sommerfeld and Maue, although mathematically equivalent,
was actually simpler. It is generally accepted that this feat
cannot be repeated and a closed form cannot be found for ;.
When Wggy is substituted back into the full Dirac equation,
the latter is satisfied up to terms of order

2
(@ rZ) sin (g) (8)

where 6 is the angle between p and k. It is clear that the
Furry-Sommerfeld-Maue wave functions are accurate for low-
Z elements at all angles and all energies; while for high-Z
elements they can be used only at small angles. The latter is
generally not a severe problem at high energies because the
cross section is dominated by small angles 6 ~ 1/e.

Bethe and Maximon [18,27] were the first to employ
the Furry-Sommerfeld-Maue wave functions to calculate the
bremsstrahlung TDCS with the matrix element

Mpm = Mg 1a + Maog 1o + Map 1a )

where the subscripts indicate whether v, or v, are used for
the initial, subscript (1), or the final, subscript (2), states. It
is important to note that, once the integrals are performed, all
three contributions to the matrix element Mgy turn out to be
of order « Z: hence the use of v, = 1y alone would lead to
an inconsistent result. Contrarily to the Born approximation,
here v contributes to the matrix element, but, consistently
with the Born approximation, the lowest-order contribution
is of order « Z. So, being the error on Wggy of order (o Z)?
when compared to the exact result, it does not make sense to
include My, 1, in Mpp because other contributions of the same
order would be missing. The cross section corresponding to
the matrix element of Eq. (9) is obviously of order (« Z)?.

Elwert and Haug [23] were the first to complete the
calculation of the TDCS starting from Eq. (9) without any
further approximation, arriving to the expression

([el &—1—(p1-k)(pr- NI +lerea+ 1+ (p1-k)(p2- DI + T3

+2Re{(J3—J2) - [p1(J2-k)(p2-k)— pr(J3- k) (p1 - B)] — (&2 + 1+ p1 - p2) (J2- k) (T3 - )
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+ (T2 p) TS p) — (T2 p) (TS -p) + e Jf 15 pr— (J2- k) (p2 - k)]

+e i Jr-pi—Us-k)(pr- B+ 2

where k = k /k and the other auxiliary quantities are defined
next. The subscript LO in Eq. (10) indicates that this is
the leading-order result for the TDCS obtained using the
Furry-Sommerfeld-Maue wave functions without any other
approximation, in particular without the high-energy (i.e.,
€1 > 1, > 1, and k> 1) and small-angle assumptions
adopted by Bethe and Maximon [18].

Elwert and Haug [23] were able to investigate analytically
several properties of Eq. (10); the most relevant, in the present
context, is that, for low-Z atoms, the high-energy limit (i.e.,
€1 > 1 and €; > 1) of Eq. (10) is the Bethe-Heitler formula
without screening (i.e., F' = 0). Because Eq. (10) is, under
such conditions, equivalent to the Bethe-Heitler formula, this
justifies, at least for low-Z atoms and at high energies, the
use of Eq. (1) to include the effect of screening in Eq. (10),
as we will do here. The analytic properties demonstrated by
Elwert and Haug were employed to implement a series of
numerical tests (to be described elsewhere [6,28]) to ensure
that no typographic errors are present in Eq. (10) and that our
implementation is correct.

Higher-order corrections within the Born approximation
were considered by several authors, but the calculations are
difficult because of the presence of divergences and in the end
they do not improve the agreement with data [24]. They will
be discussed in more detail elsewhere [6]. Moreover, none
of the available results include the effect of screening and are
hence not particularly useful for the present scope: to calculate
the DDCS at all photon energies and angles, screening must
be taken into account. For this reason, here we prefer to use
the formula by Roche, Ducos, and Proriol [24], who included
higher-order corrections within the more accurate framework
of the Furry-Sommerfeld-Maue wave functions, but neces-
sarily neglected screening. Their result is still nowadays the
best available for higher-order corrections within such an
approach. Screening is then taken into account according to
Eq. (1), as suggested by Haug [8]: this is not a fully consistent
procedure because, in doing so, the higher-order corrections
are considered for the interaction of the electron with the
Coulomb field of the nucleus but not for the screening effect
of the atomic electrons. A detailed comparison with data is
hence needed to validate the present procedure.

Roche, Ducos, and Proriol [24] considered initial and final
electron wave functions of the form

W = Wgsm + Ye = Y + Y + Ve (11)

where Y. = (o Z)> ¥,. As mentioned, no closed expression
is known for ,, but Roche, Ducos, and Proriol neglected all
terms of order higher than (o Z )? in the PDE for 1, and found
a solution [see Eq. (2.10) of Ref. [24]] valid at high energies
(i.e., € > 1). Because their result is from the beginning only
valid for € > 1, it does not make sense to invest any effort
in including contributions to the matrix element that are not
important under such a condition. Bethe and Maximon [18]
have shown that (a) May, 1 is of order € 2Ine; (b) M>, 1 and

J3)[pi-p2—(p1-k)(pa- ic)]}) (10)

(

M. 1, are of order €~'; and (c) all other contributions beyond

those included in Eq. (9) and those mentioned in (a) and (b)
above lead to terms of higher orders in « Z. For this reason,
Roche, Ducos, and Proriol [24] limited their calculations to

Mgpp = Mpm + M., (12a)
Mc = MZa,lc + MZC.lav (12b)
|Mrop|* = |Mpm|* + 2Re(Mpy Mo) + IMc* (12¢)

where now Mgpp contains all terms up to order (« Z)? relevant
for € > 1. Roche, Ducos, and Proriol evaluated the TDCS
from Eq. (12c) without any further approximations; however,
this is not a fully consistent procedure because now Mpgpp
contains contributions of different orders in « Z (contrary to
Mgy that is restricted to those of order « Z). In fact, while the
second term in Eq. (12c) contains all the contributions of order
(o Z)? relevant at high energies, the third term in Eq. (12c)
only contains some contributions of order (o Z)*. This is true
for the TDCS, as well: the expression proposed by Roche,
Ducos, and Proriol contains all contributions of order (« Z)?
relevant for € >> 1. However, to improve the agreement with
measurements [24], these authors included also the evaluation
of some contributions of order (« Z)*: those originated from
|M.|? in Eq. (12c¢) and the full form of J;, J», and J 3 [note that
the expansion parameter o Z appears inside Ji, J, and J 3, see
Egs. (14d)—(14f), through a; and a», see Eqs. (14b) and (14¢)]
and proposed to evaluate the correction to the TDCS as

_dono a3 r kp(q -k N [ = Re({[e; e
dkdQ dS,, prgDiDy  \m

—1=(p1-b)(p2- 1)
e Js-pr—(Jz-k)(p2- b))
+eallr-pr—Us-k)(pr -]} e®)

+aZ

[e1e2— 1
q D1 Dy

—(pi -ic><p2.ic)]> : (13)

The auxiliary quantities present in Eqgs. (10) and (13) are
given by

_ 472 ay ap (142)
(e2na1 -Da- e—2na2)’

ay=(er/p)aZ, (14b)

a, = (e/pr)a Z, (14c)

€ €1 V+ia2xW ,(l—x)W
= . +2i
q Dy D,

x |:61a2 (D% - 1) —ea (Dil + 1>] (14d)
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V4+iaxWw
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W=Fl—iaj,l+ia;2;x), (14h)
D, D
x=1-—2 (14i)
nq
Dy =2k (e — p; cosby), (14j)
D2 = 2]((62 — P2 COS 92), (141()
uw=2(e+p p—1), (141)
P = py p>+ p2py, (14m)
2
q 2
=g Inl—)—a,In{ — 14
ay n<D2> a n<D2> (14n)

where F'(a,b;c; z) is the hypergeometric function of complex
arguments [29,30].

Although, Eq. (13) has the subscript NLO, the discussion
about its mixed order should be kept in mind. Moreover, the
expression of . and the selection of the matrix elements
included is meaningful only at high energies both for the initial
and final electrons: Eq. (13) cannot be expected to be accurate
close to the tip. It is also important to note that, while Eq. (10)
and the sum of Egs. (10) and (13) represent TDCSs and must
be positive, Eq. (13) is a correction term and, as such, it is not
a cross section and does not have to be positive.

D. Summary of the approximations involved

To summarize, in the present work, following Eq. (1), we
will calculate the DDCS for bremsstrahlung by correcting
the sum of Egs. (10) and (13) with the difference between
Eq. (3) with and without screening, all integrated over
the final electron solid angle. This includes the following
approximations.

(i) The interaction with the Coulomb field of the nucleus
has been described with the Furry-Sommerfeld-Maue wave
functions, which are accurate for low-Z elements at all
energies and angles. For high-Z elements, they are a good
approximation only at sufficiently small angles. Within these
limitations, the formula by Elwert and Haug for the TDCS,
Eq. (10), is exact.

(ii) The higher-order corrections to the interaction with the
Coulomb field of the nucleus have been included with the result
obtained by Roche, Ducos, and Proriol [24], Eq. (13). This
should improve the limitations mentioned in the previous item
for high-Z elements, but their expression is valid only when the
initial and final electrons are ultrarelativistic. Moreover, their
calculation is consistent up to order (« Z)3, but they include
some terms of order (« Z)*.

PHYSICAL REVIEW A 94, 022708 (2016)

(iii) The screening by the atomic electrons has been
included with the Olsen-Maximon-Wergeland additivity rule,
Eq. (1), which has been proven only for high energies within
the WKB approximation.

(iv) The expression obtained within the first Born approxi-
mation by Maximon, de Miniac, Aniel, and Ganz [25], Eq. (3),
has been used for calculating the screening correction. Thus,
higher orders are not included for the screening by the atomic
electrons.

III. NUMERICAL IMPLEMENTATION

Equations (3), (10), and (13) have been implemented into a
dedicated FORTRAN program. The heaviest computational cost
is the evaluation of the hypergeometric function: since the
first two arguments are complex, we could not use a simpler
routine and had to resort to a more general one published by
Press, Flannery, Teukolsky, and Vetterling [31]. To prevent the
calculation time from growing prohibitively when the argu-
ment x in Eqgs. (14g) and (14h) is close to 1, a transformation
was used relating F(a,b;c;z)to F(a,b;a+b —c+ 1;1 — 2),
F(c—a,c—b;c—a—b+1;1—z), and seven evaluations
of the Gamma function of complex argument, as suggested by
Roche, Ducos, and Proriol [24] [see Eq. (9.131.2) in Ref. [30]].

To obtain a DDCS or a SDCS, a numerical integration
is performed with the multidimensional adaptive Gaussian
quadrature routine DADMUL [32] included in the CERN
Program Library. For all the results presented here, the
requested relative accuracy is & = 1073,

An extensive set of tests has been performed to check the
correctness of the implementation of the analytic formulae
as well as the accuracy of the error estimate employed by
the adaptive Gaussian quadrature routine. A comparison of
the SDCSs obtained from Eq. (10) with benchmark values
published by Bernhardi er al. [33] has also been done. They
will be described in detail elsewhere [6,28].

IV. SOME GENERAL FEATURES
OF THE CALCULATIONS

Before attempting a comparison with the experimental data,
it is useful, for streamlining the discussion, to illustrate a
few general features of the calculations. To give an intuitive
picture, the semiclassical Weizsacker-Williams approach can
be adopted (see, e.g., the textbook by Jackson [34]). In this
description, the electron emits the photon at a characteristic
impact parameter b given by b ~ Xxc/q where Aic is the reduced
Compton wavelength of the electron. Equivalently, one can say
that the matrix element given by Fermi’s “golden rule” contains
an integral over the whole space the argument of which
oscillates strongly away from the region where b ~ i¢/q,
that ends up giving most of the contribution. Combining this
with the considerations given at the beginning of Sec. II, it
is possible to understand that the interaction with the nuclear
Coulomb field has to be described accurately close to the
nucleus (i.e., ¢ > 1) while the effect of screening by the
atomic electrons is important far from the nucleus (i.e.,qg < 1).
Consequently, higher-order corrections are also expected to be
more important for high-Z elements and for g > 1.
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An explicit link with the characteristics to be observed in the
comparisons with data requires one to express the conditions
on ¢ in a different way: for low radiated photon energies and
small emission angles typically ¢ < 1, while close to the tip
and at large emission angles ¢ >> 1. Intermediate situations
are less clean cut. Let us analyze the case where €, ~ 3.33,
the lowest energy considered here, and 6; = 0: the momentum
transfer ¢ increases with k and reaches the maximum value of
q ~ 0.883 at k = €¢; — 1 (i.e., the tip of the spectrum). This
means that b &~ 1.13 X, that is relatively close to the nucleus
(~1.13« times the Bohr radius) resulting in a negligible
screening correction at the tip. The same conclusion is valid
for all the other cases that will be analyzed in Sec. V, because
€; is higher or 6; larger.

Concerning the DDCS, one more feature is important: the
first Born approximation, like for example Eq. (3), always
gives a zero value at the tip: only the use of Egs. (10)
and (13), derived with the Furry-Sommerfeld-Maue wave
functions, leads to a finite result. This is also the region of
the spectrum where a direct test of the improvement brought
by the use of the Furry-Sommerfeld-Maue wave functions is
the most direct because of the absence of screening, according
to the discussion in the previous paragraph. The expression
for the higher-order corrections found by Roche, Ducos, and
Proriol [24] is, unfortunately, not valid close to the tip (see
Sec. II).

Finally, one more general comment of interest for the
following discussion can be made about Eq. (1). The second
term on the right-hand side is, as mentioned, the correction due
to the screening by the atomic electrons evaluated with the first
Born approximation. The difference of the exact cross section
for a pure Coulomb field, the first term on the right-hand side,
from the cross section given by the first Born approximation
without screening [i.e., the integral of Eq. (3) with F = 0 over
the final electron solid angle] is commonly referred to in the
literature as the Coulomb correction.

V. COMPARISON WITH DATA FOR DDCSS AT A FEW MeV

The angular distribution of the bremsstrahlung photons
emitted by few-MeV electrons is rather broad so that DDCSs
can be measured. There are three datasets available in the
literature for electrons with kinetic energies of 1 MeV or above
and thin targets: those by Motz [35], Starfelt and Koch [36],
and Rester and Dance [37]. There are other papers where
thick targets were employed, but they cannot be used to
compare directly with theory. The mentioned authors did a
rather thorough work, even by current standards, where they
applied (i) a correction for the pulse pileup, (ii) a correction
for the background, (iii) a correction for the detector response
function, and (iv) a correction for the detector efficiency and
acceptance. A more detailed discussion of the procedures
employed can be found in the original papers.

As a matter of fact, there are measurements by Motz [35]
and by Rester and Dance [37] that can be compared directly
and, unfortunately, in some cases, do not agree. This somewhat
weakens the strength of the experimental results, but there is
no way to improve the situation at the moment of writing. The
data by Rester and Dance are in better overall agreement with
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theory and for this reason we will not examine those by Motz
here (a comparison will be shown elsewhere [6]). Moreover,
both Starfelt and Koch [36] and Rester and Dance [37]
covered several target-electron energy-photon emission angle
combinations, but to save space only a few representative
cases are shown here in Figs. 1 and 2: we have selected
one low-Z element (Al), one intermediate-Z element (Sn is
present only in the data by Rester and Dance), and one high-Z
element (Au). Starfelt and Koch considered also Be, but in
this case the contribution of electron-electron bremsstrahlung
is too high for the present calculations (including only nuclear
bremsstrahlung) to be accurate. We have also chosen two
representative angles: one small (shown on the left panels)
and one large (shown on the right panels). A full comparison
with the complete datasets will be included in a review to be
published shortly elsewhere [6]. As a last warning, we stress
that the experimental values presented here have been read by
us from the original figures (that employ logarithmic scales)
by a special program. The statistical and systematic errors,
represented, respectively, with error bars and a contour in the
figures, have been calculated, respectively, as the quadratic
and linear sums of the individual contributions listed in the
original publications.

The more familiar physical units have been used in the
figures, introducing the initial electron kinetic energy T.; =
mec? (€) — 1) and the radiated photon energy Eyp, = mec*k
and angle 6, = 6 180°/7.

The main conclusions that can be drawn from Figs. 1 and 2
(and are fully consistent with the other cases not shown here)
are the following.

(i) The agreement for low-Z elements (Al) is good over all
energies, T¢i, and all angles, 6, for the complete spectrum:
the calculations pass within the statistical error bars in most
cases and within the systematic error contours in all others
(see Figs. 1 and 2).

(i1) The situation is rather different for high-Z elements.
The accuracy of the description of the interaction with the
Coulomb field of the nucleus can be directly evaluated by
looking at the region of the spectrum close to the tip, where the
screening correction does not affect the calculations because
it is absent (see Sec. IV). The reader should also remember
that the first Born approximation gives always a zero DDCS
at the tip (see Sec. IV): the finite values visible in the figures
are a result of the use of the Furry-Sommerfeld-Maue wave
functions. While for Cu (not shown) and Sn the agreement is
still within the uncertainties, for Au the predicted values are
at the lower border of the claimed uncertainty margin, if not
below [see Fig. 1: the effect discussed here is actually mixed
with the tendency to underestimate the DDCS at large angles
to be discussed in item (iii)]. The data by Starfelt and Koch
extend beyond the beam kinetic energy because of detector
resolution (see Fig. 2), indicating that their deconvolution of
the response function was not accurate enough in this region.
So it is not clear how reliable are their values for the DDCS
close to the tip.

(iii) The most striking aspect of the calculations is a sig-
nificant underestimation of the data for high-Z elements (Au)
at large angles, well beyond the experimental uncertainties
(see Figs. 1 and 2). The beginning of this tendency already
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FIG. 1. Comparison of the analytic formulae including the effect of the screening and the Coulomb correction at the LO and NLO with
the data by Rester and Dance [37] (open circles). The error bars and the contour represent the quadratic and linear sums of the statistical and

systematic errors quoted in Ref. [37], respectively.

appears for Cu (not shown) and Sn (see Fig. 1) in the data
by Rester and Dance. A small effect is present also for Al
in the same set of data (see again Fig. 1). Because such a
feature is present along the complete spectrum, it is harder
to disentangle the contribution of the screening and Coulomb

corrections. However, the fully consistent behavior up to the
tip offers a hint that the main origin is a limitation of the latter
[see item (ii)]. Although other explanations are possible, as we
will show in our review [6], none is quantitatively consistent.
In particular, we have performed accurate calculations of
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FIG. 2. Comparison of the analytic formulae including the effect of the screening and the Coulomb correction at the LO and NLO with
the data by Starfelt and Koch [36] (open circles). The error bars and the contour represent the quadratic and linear sums of the statistical and

systematic errors quoted in Ref. [36], respectively.

multiple scattering for the actual target thicknesses employed
in the measurements and evaluated the convolution with the
bremsstrahlung DDCS of Figs. 1 and 2 to take into account
that the emission and observation angles of the photons can
be different: we did not find any appreciable distortion for
Figs. 1 and 2. As a matter of fact, the effect of multiple
scattering is largest when 0, is very close to zero and for
this reason we did not select 6, = 0° as the smallest angle
in Figs. 1 and 2. So the most plausible conclusion is indeed
that the underestimation is due to the approximations resulting
from the use of the Furry-Sommerfeld-Maue wave functions.
Although Eq. (8) indicates that these wave functions are less
accurate for high-Z elements and large angles, the link with
the DDCS is not immediate because it involves an integral
over the final electron solid angle.

(iv) A tendency of the calculations to underestimate the data
by Starfelt and Koch at low photon energies, Epy, is visible
in Fig. 2 for both Al and Au. As a matter of fact, this is the
region of the spectrum that is most sensitive to the screening
correction (see Sec. IV), that could then be too large. However,
it is important to notice that because there are no radioactive

sources that produce y rays with energies close to 4.54 MeV
Starfelt and Koch had to rely on Monte Carlo simulations to
determine the detector response function to be deconvoluted
from the measurements [36]. This renders their results more
uncertain and a new experiment would be necessary to clarify
this issue.

(v) Some general tendencies of the NLO correction can be
observed in Figs. 1 and 2: (a) the NLO correction is small
for low-Z elements (Al), as expected; (b) for fixed T¢;, 6pn,
and Ejp, the NLO correction increases with Z, as expected;
(c) for fixed Z, Te1, and Ep,, the NLO correction increases
with angle: this is less intuitive but can be understood in the
framework of the mentioned Weizsacker-Williams approach,
because increasing momentum transfers correspond to photons
emitted closer to the nucleus (see Sec. IV); and (d) finally,
for fixed Z, T, and 6y, the NLO correction is approximately
constant with Eyp,, eventually displaying a tendency to decrease
close to the tip [where Eq. (13) at any rate cannot be expected
to be accurate]. This constancy is a general feature that remains
true even at higher energies and for SDCSs: it will be discussed
in more detail in Sec. VI.
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Concerning the comparison with the data by Rester and
Dance, for low-Z and intermediate-Z elements (Al, see Fig. 1;
Cu, not shown; and Sn, see Fig. 1), the NLO correction im-
proves the agreement at large angles. Its magnitude increases
from Al to Sn and becomes approximately comparable to the
experimental uncertainties for Sn: new measurements with
improved accuracy would help to establish the correctness
of the calculations. In the data by Starfelt and Koch for low
Z (Al), no effect of the NLO correction is visible, possibly
because the angle is not large enough (see Fig. 2). For high-Z
elements (Au, see Figs. 1 and 2), the NLO correction goes in
the right direction reducing the underestimation at large angles,
but its magnitude is too small to significantly improve the
situation and the disagreement remains even when considering
the experimental uncertainties. At least for the data by Rester
and Dance, the inaccuracy of Eq. (13) for electrons that are
not relativistic can be a problem.

VI. COMPARISON WITH DATA FOR SDCSS
AT HUNDREDS OF MeV

For electrons with kinetic energies above approximately
10 MeV, the angular distribution of the bremsstrahlung photons
is narrowly focused forward and DDCSs cannot be easily
measured. The preferred experimental procedure is rather to
deflect the electron beam after the target and intercept all
the emitted photons with a detector or to measure the energy
spectrum of the electrons after irradiation, so that SDCSs are
obtained. This has the consequence that even with thin targets
the emission of multiple photons has to be taken into account
to reproduce the data [38]. Moreover, because the energies are
well above threshold, photon absorption by pair production in
the target has also to be included [38].

One of the most striking features of nuclear bremsstrahlung
is that a more accurate treatment of the interaction with
the Coulomb field of the nucleus does not converge, for
intermediate- and high-Z elements, to the first Born ap-
proximation result even in the high-energy limit, as first
discovered by Bethe and Maximon [18] employing the Furry-
Sommerfeld-Maue wave functions. This is not particularly in-
tuitive especially when considering the presence of screening.
Figure 3 shows the Coulomb correction defined as the differ-
ence of the nuclear bremsstrahlung SDCS, (do /dk)S<reered ob-
tained by integrating numerically the TDCS given by Eq. (10)
or by Egs. (10) and (13), with screening included via Eq. (1),
from the first Born approximation result with screening,
(do/d k);f;fﬁ“ed, obtained by integrating numerically the TDCS
given by Eq. (3). The case considered is that of 100-MeV
electrons impinging on Au. The AFF employed is the one by
Hubbell and collaborators [26]. A special representation has
been adopted, as first proposed by Seltzer and Berger [39],

where this difference is normalized to (do/d k)5 jtself,

(d_a)screened . (da )screened

dk J exact dk /Born

CC = (dg )screened ’
dk J exact

(15)

and plotted as a function of the final electron kinetic energy
T., = mec? (€5 — 1). The main advantage of these variables is
that the curves shown in Fig. 3 do not depend on T.;, when
above ~100 MeV [39]. Moreover, the extension of Fig. 3
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FIG. 3. Contribution of the Coulomb correction to the nuclear
bremsstrahlung SDCS including the effect of the screening; see
Eq. (15).

towards higher values of T, is again particularly simple,
because the ratios, so expressed, remain constant [39]: i.e.,
at low Ep,, the Coulomb correction does not change the
shape of the radiated photon spectrum given by the first Born
approximation with screening, but only leads to a reduction
by a fraction that depends only on Z (for Au it is 9%, see
Fig. 3). For this reason, at high T, it is an approximation
valid over most of the spectrum to reabsorb the Coulomb
correction into a redefinition of the radiation length. Seltzer
and Berger limited their work to the LO [39]; here we show
that the inclusion of the NLO brings the calculated SDCS
back close to the first Born approximation result: the final
reduction for Au is diminished from ~9% to ~2%. In terms
of radiation length, this means that the NLO is closer to the
Bethe-Heitler value than the LO. It is important to remember
that Eq. (13) is not expected to be valid when T, approaches
zero (see Sec. II) so that neither is the dashed curve shown in
Fig. 3.

We scanned the literature for measurements of
bremsstrahlung by electrons with energies above ~100 MeV,
where the Coulomb correction is constant, and below ~1 GeV,
where the Landau-Pomeranchuk-Migdal [40—42] effect can be
neglected. We found four, all from the 1950s: one by Powell
et al. [43], one by DeWire and Beach [44], one by Fisher [45],
and one by Brown [46]. The works by Powell et al. [43] and
by DeWire and Beach [44] only give the spectral shape in
arbitrary units (for one element) and can hence not be used
to test the Coulomb correction at high energies accurately,
because, as shown in Fig. 3, over most of the spectrum a
rescaling of the Bethe-Heitler result by a constant is a good
approximation. The data by Fisher [45] suffer from some other
limitations: (i) the beam energy was not well defined (see Fig. 2
of Ref. [45]) and (ii) the energy of the radiated photons was
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deduced by measuring in a magnetic field the curvature of the
tracks of the electrons leaving the target (and assuming that the
missing primary energy is released in a single emission act).
Because (i) would require us to convolute the calculations
with the beam energy distribution (as indeed was done in
Ref. [45] with simpler formulae; in the present case it would
be quite laborious numerically) and because (ii) involves some
corrections, with large uncertainties (mostly connected to the
effect of the projection on the plane of the photographic
image, see Ref. [45]), we prefer to disregard this publication.
The work by Brown [46] was quite meticulous: the primary
beam from a linear accelerator with a well-defined energy of
T.1 = 500 MeV was used, the electrons after irradiation were
deflected with a magnet, and the emitted photons were detected
by pion photoproduction on a liquid hydrogen target. By
defining very well the momentum of the accepted pions with an
analyzing magnet, it was possible to select only photons with
an energy of Ep, = 234 £ 6 MeV. This value is comfortably
located close to the middle of the photon spectrum, where
the NLO correction given by Eq. (13) is valid. Brown did a
relative measurement of the yields from Ta and U, adopting
Cu as a reference, thus reducing the impact of experimental
uncertainties (including those on the pion acceptance and
photoproduction cross section). Moreover, because Brown
selected in all cases a target with a thickness in units of a
radiation length of 3%, the normalization to Cu minimized the
effect of the emission of multiple photons and the attenuation
by pair production (for exactly Bethe-Heitler bremsstrahlung
and pair production cross sections, the spectra from a target
with a constant thickness in units of radiation length would
be the same for all elements, irrespective of multiphoton
irradiation and of the attenuation by pair production [38]).
To show clearly the magnitude of the Coulomb correction,
Brown normalized the experimental SDCS (do/dk)*P to
the Bethe-Heitler formula with screening (do/dk)i™ " and
expressed his results with the ratio

do \XP do \XP
e =( d(dk)d>/ ( dgdkszreened> . ae
( ) ( ) Cu

‘dk ) Born dk )Born

This variable has the disadvantage of mixing measured and
calculated quantities, which, in particular, depend on the
choice of an AFF. Although Brown does not supply any further
information, the sensitivity of the theoretical values to such
details is relatively modest [6]. The same quantity Rc has also
been calculated by replacing the measured SDCS with the best
theoretical estimates proposed in the present work at the LO
and NLO and is compared in Fig. 4 with the published data
by Brown. The AFFs adopted in the calculations are again
those by Hubbell and collaborators. The uncertainties quoted
by Brown are not discussed in detail and in particular are not
separated into statistical and systematic contributions: for this
reason they are represented with a single error bar in Fig. 4.
Figure 4, like Fig. 3, shows that the NLO reduces the
Coulomb correction at the LO and brings the SDCS closer to
the Bethe-Heitler value. Surprisingly, the data by Brown agree
better with the LO than with the NLO. This is apparently at
odds with Fig. 1, where, to get agreement with data for high
Z and large angles, the NLO should increase even more the
DDCS (as a matter of fact beyond the Bethe-Heitler value); the
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FIG. 4. Ratio of the nuclear bremsstrahlung SDCS to the first
Born approximation result including the screening correction nor-
malized to Cu; see Eq. (16). The experimental data with their error
bars are those by Brown [46].

possible inconsistency between the experimental data warns
against drawing definitive conclusions without collecting new
measurements with modern equipment and with a rigorous
quantification of the budget of uncertainties. This is even
more true for the SDCSs at high energies by Brown, where
discriminating the NLO from the LO is a matter of a few
percent (once more we recall that the shape of the photon
spectrum is not a useful observable in this context). It is also
quite unexpected, on general grounds, that, e.g., for U, where
o Z ~ 0.67, the data leave essentially no room for the NLO.
If the present experimental situation stands, there are only two
possible aspects where the calculations of the NLO can be
wrong.

(i) The Olsen-Maximon-Wergeland additivity rule [see the
approximation (iii) in Sec. Il D] may not work for higher-order
corrections.

(i1) Higher orders have to be included also for screening
and partially compensate those introduced for describing more
accurately the interaction with the Coulomb field of the nucleus
[see the approximation (iv) in Sec. II D].

It is important to remark that, on one hand, both issues
listed above are very difficult to be tackled analytically, while,
on the other hand, the number of partial waves needed at these
energies cannot be dealt with numerically, as mentioned in the
Introduction. Thus, it appears that reliable cross sections for
nuclear bremsstrahlung cannot be obtained in the near future
for electrons with energies above a few MeV impinging on
high-Z elements.

VII. CONCLUSIONS AND OUTLOOK

The present paper has compared in detail a state-of-the-art
analytic calculation for nuclear bremsstrahlung with the scarce
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and old published data for DDCSs at a few MeV and SDCSs at
higher energies. The interaction with the Coulomb field of the
nucleus has been described with the Furry-Sommerfeld-Maue
wave functions and the screening effect of the electronic cloud
of the atom has been included with the Olsen-Maximon-
Wergeland additivity rule. The distinctive feature of this work
is a thorough analysis of higher-order corrections to the
interaction with the Coulomb field of the nucleus employing
the expression by Roche, Ducos, and Proriol. We stress once
more that the energy range covered in the present paper
has only been met at the lower end by modern numerical
calculations employing partial wave expansions, so that no
reference theoretical cross sections are available. The main
conclusions are as follows:

(i) For few-MeV electrons and low-Z elements (Al), the
agreement with data is rather good (the calculations match all
the measurements within the quoted statistical and systematic
uncertainties) for all photon emission angles and energies. This
is not at all immediate: the correct finite value of the cross
section at the tip cannot be obtained within the first Born ap-
proximation and the Furry-Sommerfeld-Maue wave functions
are necessary, in particular the Elwert-Haug expression, which
has been obtained without the ultrarelativistic and small-angle
approximations. The higher-order corrections are small, but
have a positive effect at large angles.

(ii) For few-MeV electrons and intermediate- to high-Z
elements (Cu, Sn, and Au), a specific failure is present in the
form of an underestimation of the DDCSs at large photon
emission angles. It is most probably a consequence of the
limitations resulting from the use of the Furry-Sommerfeld-
Maue wave functions. The current procedure to treat higher-
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order corrections improves the situation for intermediate-Z
elements, but still falls well below data for high-Z targets.

(iii) For impinging electron energies of hundreds of MeV
and intermediate- to high-Z elements, the measured SDCSs
agree with calculations only when higher orders are not
included within the present approach. In fact, higher orders
increase the predicted values well above the estimated uncer-
tainty of the measurements. This situation appears to be in con-
tradiction with the mentioned underestimation of the DDCS
data for few-MeV electrons radiating photons at large angles.
If this situation is confirmed by more accurate experiments, it
would require a new way to include higher-order corrections.
In particular, the Olsen-Maximon-Wergeland additivity rule
may not be valid for higher orders, or a compensation could
be present between higher-order corrections to the interaction
with the Coulomb field of the nucleus and the screening effect
of the atomic electrons.
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