

2023 GLASS & OPTICAL MATERIALS DIVISION ANNUAL MEETING (GOMD 2023)

June 4–8, 2023

| Hotel Monteleone | New Orleans, LA USA

The
American
Ceramic
Society
www.ceramics.org

www.ceramics.org/gomd2023

BiF₃ incorporation in RE doped fluoride-phosphate glasses for high energy radiation detectors

[View Session Detail](#)

Presentation Number: GOMD-S3-016-2023

*Gustavo Galleani¹, Anuraagg Gaddam¹, Elisabeth Yoshimura², Neilo Trindade², Hellmut Eckert¹, Andrea de Camargo*¹*

¹Physics Institute of São Carlos, University of São Paulo, São Carlos, São Paulo, Brazil; ²University of São Paulo, São Paulo, Brazil

Abstract Body: A wide range of rare-earth (RE) doped fluoride-phosphate (FP) glasses have been investigated for lasers and other photonic devices. They combine the desirable optical properties of fluoride glasses with the improved glass forming ability of phosphates, and the rich energy level structure of the RE ions allows efficient frequency conversion. The resulting FP glasses have low refractive indexes, long-term resistance to high-energy radiation and a wide intrinsic transmission range. Of special interest is the application of FP glasses for detection and sensing of UV and ionizing radiation (e.g. x-ray). In this work, the effect of the incorporation of BiF₃ in the structural and optical properties of FP glasses with nominal composition 10In(PO₃)₃-30InF₃-[(60-x)BaF₂-SrF₂-ZnF₂]-xBiF₃, 0 ≤ x ≤ 40 mol%, has been studied. Solid-state NMR and Raman spectroscopies were employed to analyze the effect of Bi in the glassy network. Results indicate a progressive depolymerization of the Q¹ backbone with breakage of P-O-P bridges and formation of clustered regions of alkali-earth metals and Bi interacting with fluorine. The T_g values range from 297 to 316 °C. Luminescent properties of Tb³⁺ doped (0–6 mol%) glasses were also studied. Under UV and X-ray excitation, the glasses show intense emission, compatible with the spectral region of highest sensitivity of radiation sensor detectors.