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Introduction 

The present work is·concerned with global properties of a 

class of smooth' ccmplex vector fields over the plane. One of the 

main questions we discuss here is the existence of globalsolutions 

• • to the probleu 

. . (0.1) 2 -IR ; 

where L is a vector field with no singularities.Even when L has 

real-valued coefficients it was known for a lo~g tme ,[W] that 

problem (0.1) does not admit~ in general, solutions.On the other · 

-~hand it is relatively easy to ~how, by means of the Poincari -
·-

Bendixson theorem, that the corresponding semi-global problem 

. ( 0. Z) Given UcclR 2 find a eo.Zutlon of Lu•O, du#O over· U 
,I 

has always solutions when L is real (see, [Kl for the original 

proof of this result). 

When L has complex-valued coefficients the situation is 

· much more complicated. We say that L is ZocaZZy int!grabZe if · 

it is possible t_o cover th-, plane by open subsets V over each 

of which we can solve Lu•O with du~O. Obvious examples of lo­

cally integrable vector fields are the real·ones and those · with 

real-analytic -coefficients; it is also important to mention that. -~ 
there are examples due to Nirenberg of vector fields that are ~ot 

locally integrable [Ni). 
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· A natural question that appears is whether local integrability 

implies the solvability of (0.2). The answer is again ~egative as it 

can be seen if one takes the vector field with polynomialc~fficients 

(0.3) L•-Cy2-x2~1~2ixy) ax=+ (2xy+iCx2-y2+1)~3y 

01

It is easy to see that L is el~iptic on x2+y2<1 and that ·given 

u defined in a connected open neighborhood of x2~y2,1 it neces-

sarily·must be constant on X2+~2•1 and thus everywhere by the max 

imu_m principle. 

In this work .we restrict our study to operators I.; which are 

locally integrable and satisfy the foll~wing . properties: 

-(0.4) L and tar• ~lnearlH dependent i• non-

•mpty and connect•d 

(0.5) L and (L,L) are linearly independent on · t; 

.. .. : ·. . :-(in thi~. ;c;o,n~~-tion see [Sj J, [Tl].) 

These operators define our class f (see s~ction 1) and in section 1 . -
we prove that for operators in this class it is always possible to 

solv~ the equation -LuaO, du#O in a full neighborhood of · Ii we 

also prove th~t there are operators in L for which problem . (0.2) 
. 

fails to have a solution. We do not know if it is possible to solve 

•proble_m (0.2) for an operator Lil. with real,-analytic coefficients 

[notice that th~ operator L given in (O.]) does not belong toL 

for condition (0.5) fails to hold at the points (l,0),(-1,0),(0,l), 
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(0,-1)) r--

In section Z we studr the solvability of (0.1) for operators 

in J_ as well as the related question of global reduction ( via a 

global _diffeomorphism of lR 2) of them . ~o the standard form at-ita,j_c 

; when · l:1.!lR 1 or M6 [see(~ .12}] wh~n · · I=S1• The key · argument in 

'• 

our proofs is the use of the conformal structure defined by the o~ 

erator L restricted to m. 2,t. As an additional illustration of 

this technique we show, in the appendix to section Z, that · ·for a 

. . .. 
hypoelliptic vector field in the plane we can al~ays find a solu-

. . 
. 

tion to problem (0.1) that is injective. 

Fin_ally in section 3 we give descriptions of the •ranges 

Mg'9(_JR 2), Mg'°(JR·2.~nC~ClR .2), M6~•cm 2) a~d M6~•cm 2)"e:cm 2)~here 

M• at~itax is the.so called Mizohata· operator and M6 is its 

modification given in (2.12). One interesting .feature is that, as 

a consequence of our results ,we can prove that Mtr(lR 2)ne•cm ~Jis 
. C 

.a closed subs_pace of e ~(lR. 2) whereas M6~•(IR. 2)"~(lR 2) is not 

(see theorems 3.3,3.8 and corollary 3.6). 

, . 
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11. The -Clase of Operator, under Study 

In this section we introduce the class£ of complex vector 

fields globally defined in m. 2 which we are going to study in 

this work. 

• First of all we assume t~at · every . L has no singularities, 

that is, L (p) •O, p E m. 2• Let t be the subset of the plane con­

sis ti~g of all points p ·such that L(p) and L(p) are linearly 

depcndent • . Our next assumption is that 

(1. 1) 

... 
This condition implies that t is a closed, smooth(embedded) 

submanifold of dimension 1. We will also requiTe that I is con­

nected i thus · t i~ diffeomorphic either to lR 1 or to the unit. 

·circle s1 • .. 
Our last requeriment on L is that" local integrability 

·holds. This means the . following: Given any point p E lR 2 we can 

find• and open neighborho.od U of p and a smooth function Z : 

. . U+ CC satisfying · · 
.. . 

(1.2) LZ•O, dZi#O 011«iz- • U • 

At this point.we can recall a result' of F.Treves [Tl] which 

states . that local integrability is equivalent to the existence . . 

an ~pen ~ vering of · lR 2 by coordinate charts (",x, t) over .... 
.< 

r 
r 

-
of 

each 



-2- . 

· of which L is a multiple of the Mizohata operator 

Z.:n+Csatch that LZ•O, dZ~O pv~i- .· n.;rf L i ·s integrab-Z.. 

IR. 2 we wiit say that L is gtobatZy integrabte. 

OV'11' 

For instance, the Mizohata operator is globally integrable, 

for the function 

(1.4) W(x,t)• x+it2/2 

obviously satisfies Mw.o, dW.tO over IR 2 • 

We now show · that Treves 'result quoted before c:an be globalized 

to a ~ubular neighborhood of I: 

Theo:rem t.2:Let Ltl-. Then we can find a tubutar .neighborhood U of 
I and a coordinate system (x,t) over U such that: 

Ci) I is defined b11 t•O ; 

(ii) L.IU is a muttipl.e of _the Hizohata operator (1.3).In partia:! 
. I 

Zar L is integrable over U. 

Proof: First suppose that · t = IR 1 . - By [ll we can cover t by open 
I 

:neighborhoo~s Uj, -~ ~ 2'Z such that 

· ·. (i) U. n U. 
2

• ~ ·, .. J J+ 
· CH) ·uj n Uj+l is connec ted, 

(iii) There are co·ordi~Cl.te functions (xj,tj): Uj+J-1,l [ x J-1,1 1 
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such that 

L Uj• &j(at -itjax) 
. j . 

\ . 

With g. IC 
J 

0 on uj • 

We let 

u- ·v uj 
; e TL 

and de.fipe an involution ~ : U + U as fo~low_5..!J£ p E uj_ we set 

- ~Cp) in such w~y that xj(p)• xj(4(p)),tj(p)•-~j(~p)). In order to 

verify .that is well defined ·we need the following le111J11a: 

Lemma 1.!: Let Q c)-a,a[x]-b,b[ DB conn•at•d and euppo•• that 

f: n+ a: la a aonHnuoue funatlon eati.•f11lng Mf•O (see(l .3)) · • 

Then thsre eziste a hotomorphia function F on l9 •{x+it2/2:(x,t) 

· n, t•O} which i• aontinuoue on"" { (x,O) € n} and euch that f(x,t) 

• F( x+it2 /2), 

Proof: For x+iy E (!) we set 

. F(x+iy). f(x,/zy). 

By the chain rule it follows easily that F i.s ho~omorphic in 

• (!)and continu_ous in l!>u {(x,O) £ ~). Furtherm.ore . x+iy·+ f(x, . -/iy) 

is also holomorphic in\!), continuous in ~u {(x,O)(n} and agrees 

with p · in {(x,O) £ n}. Thus it . coincicfes with F evet)"olhen and 

the lemma is proved. 

We continue with the proof of theorem 1.2 By lemma 1.3 we 
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have 
:. 

p E Uj n Uj+l' where F is .a holomorphic function on 

\!) j. {xj (p) +i tj (p) 
2 /2: p £ Uj n Uj +l' tj (p) i,O} and continuous on 

wju {(xj(p),0): pe ujn uj,._1> •. Hence __ p,qE ujn uj+l~ p.-q, xj(p)• 

xj(q), tj(p)• -tj(q) ~mply xj+l(p). xj+l(q), tj+l_(p)• -tj+l(q). 

This proves that . f is well, ··defined. 

It follows from the definition o; ♦ that ,.L is a multiple 
-· 

of· L. Furthermore t divides U in two components u1 and u2 in 

·such a way that ,: interchanges · u1 a_nd . u2 and is the identity , ,on 

:& • •.. 

We now make the assumption that 

(iv) · u1 is ll'lmp1.11 oonn•cted • . 

Since L is elliptic on u1 it defines· a structure of 

Riemann surface over the latter and then, by unifor~ization,1there 

·. · is a biholomorphism z1 : u1 .; H • here H is the half-plane in c· 

defined by Im t>0 with the canonical complex1structure and u1 

has the complex ·structure -just introduced. Obviously 
... -

and standard argumen~s about the ·regularity up ~o the boundary of 

the Riemann mappi~g (see, for instance,[N]) show that z1 extends, 
p . 1 

in a ~ • manner, as a map u1 U t-,. H u lR . • Furthermor~, the same 

., 
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• 
argument shows that the trace z1}t has non-vanishing derivative. 

Hence the function 

defined by _ Z(p)• Z1 (p) •. p, ul U t~ . Z(p
0

)• Z1 (t(p)), p E Uz- is ~ • 

and satisfies 

LZ■O~ dZ~O on U • 

We now set 
. , 

x(p)• 

We claim that Cx.t) is a diffeomorphism satisfying the 

~equired properties:- First of all it is clear that p~ Cx(p), t(p)) 

is one-to-one; also it is easy to see that dx and dt are linearly 

independent outside t. Next,in a local chart Uj• we have 

at Z-it3
.axz• o. 

j" . 

Consequently . Imz(xj ,o).o, at· ImZ(xj ,0)E0.Moreo~~r a:. ~Cxj ,O) never ,vanishes 

for z1 tt has non-vanisiing derivative. Thu!, in a neighborhood 

in U · 
j 

ImZ(xj,tj)• t1 h(x3;tj) 

with h > O. This show~ that f-+t (p) is a g_• map and that dx 

and dt are linearly independent on t, which concludes the proof 

r 
. ,,. 
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· that p~ (x(p) ,t __ (p)) ' is a diffeomorphism.Fin_ally, . the.· push­

forward of L by this diffeomorphism is equal· to 

L(x)a +L(t)at. L(t) cat-ita) 

since LZm L(x+it~/2)-0 • 

The proof in the case ·t: s1 is analogous. The only dif­

ference is that we cannot take u1 . simply-connected. But in this 

case we can assume n1 cu1): Z which implies that u1 is con­

formally equival~nt to an annuius {a <ltl < l} where 

corresponds to· t. With this remark the proof becomes the same as 

the one just describe~.- .Q.E.D. 

It follows from the proof that the neighborhood U can 

be taken in such a way so as to contain one ~imply-connected com 

poncnt of lR~\ t. 

Next we show that we cannot achieve a more global result 

than the one we have obtained. Let (x,t) denote the, coordinates 

in lR 2 and con$ider the vector field 

(1.5) 

where the function 1li will be described in what fol.lows. · 

' Let {Dj} ·. be a sequence of ~losed discs contained in the 

half-plane 

. . + . 
H • _{(x,t) :t>O} _.,;, 

. ,, . 
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1 
4 

converging to the point (0 ,a), where a>O. We suppose that t "he 

discs ·Dj are pairwise disjoint and then take; E~~CH+), 1J,)0, and 

. 0 

suppl/I c.LJ Dj ,· ~ > 0 ·on D.• 
• J .• J ( 

we· observe that the operator L given in 1.S)belongs to our 

class • Notice that, in .this case, t is the line t•O and that 

local integrability follows outside· t by ellipticity and on I 

because L is the Mizohata operator in a neighbotho6d 6f t. 

Theorem 1.. 4 : Let n b• an op•n, conn•ahd neighborhood of th• origin 

2 . . 
in_. m. , eymm.tl'-lo tJ,(.th reepect to I and containing t~• point (O,a) 

if Z : n~ a: is a C1 . ;fwl~t~n •at·hfylng 

(1. 7) LZ-0 on n _ 

lt fottotJs that dZaO . at (O,a). 

Proof:· Let n- •<Cx,t) n: t<O}. We can find a holomorphic function 

f on Cx+it2/Z: (x,t)En}, continuous up to t•O such that 

(1.8) t(x,t~- f(x+it 2/Z) 

over n- (se~ the proof of lemma 1.2]. If we' assume that all discs 

·:· Dj are contained in n 

.·. · _·(1.8) holds on n,\.! Dj" 
. .- · . . . . . . . J 

it follows,. by analytic continuation, that 

Hence, for each j, 

o.· J f(x+it2/Z) d(x+it2/Z)• 

aDj 
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-J Z(x,t) dCx+1t212). Jf 14Zcx,tl dxdt• 

a~j Dj 

• i n · az ,cx,t), rx (x,t) d~dt 

. D • 
J 

by (ireen's theorem. 

Thus, ·for each j ' there exist pj'qj f.tDj. 

~---
such that 

az (pj )- Im az (qj)- O• Re ax rx • 

Thb implies az axCO ,a)•O since Pj • qr (O,a) :• \ 

But .LZ•O implies .that !! also vanishes at (0,a). 

The proof is complete. 

Reasoning like in [Ni] we can construct another fun~tion 

-~ such that the operator L defined in (1.S)belongs to£. and has 

the following property: 

(1.9) There is an open, connected neighborhood n of the or~g~n on 

IR 2 , symmetric 1,1ith respect to t such that given an11 t 1 fi,mctwn 

Z: Sl-H: satisf·1r£ng (1.i) it fo1,'l.oi.,a that Z ia· constant. 

The details are left to the reader • 

. . ... 
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• 
§2. Gtoba1, rntegrabi·'H.ty; Gtobat · Reduction ~ !l!,! Miaohata Operatw 

~ 

In section l we have proved that for an operator L in 

the class .f. we can, in a full nei~h~orhood of its characteristic 

set, reduce it to th~ Mizohata operator. In this section ·we inves 

tigate conditions on L in order :t_o conclude that this. kind of 

2 · reduction in valid in the whole IR • At the same time we study the 

pr_oblem of global 'integrability- for L. 

An operator L £t will b.e said to be of type I if t - lR 1 

ln this -case lR 2, t has two connected components n1 , n2 ,each of 

them simply-connected. Since L _is elliptic on m.lt it defines, 

- over the latter,. a structure of .Riemmann surface [this argument 

. _has already appear~d in the proof of theorem 1. 2) and consequently, 

by uniformization·, there are biholomorphisms Zj: nf•,..H, j •l, 2 (.it is 

easy to ~onclude · that nj . cannot be conformall1 equivalent to t). 

Here H is as in the proof of theorem 1.Z.The functions Zj are 

g•· up to - t - and the traces , ♦j• Zj It, j•l,2, have non-vanishi_ng 

. · .. derivatives. 

We select two distinct p~ints p, q Et 
1
and suppose that 

- -
(2. l) ♦j(p)• O, 'fj(q)• l, ♦j(•)• •• j•l!2. 

Notice that I • 

(2.Z) ·~.(t)• ]-b., •[ where •b,.£[-•,O[. 
. "J . J 

Theorem Z.l L ··-t• gf.obatZ.11 .intflgrabZ.. if and on'Z-11 if there .are 

rr 
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hotomozophio funotiona Fj on H, j•l,2, auch that 

(i ) F j is g" a,p to th• Hgion of th• Hat a:ria dafi.ncd 'b1f.
0 

bj < X < •, j•l,2; 

(ii)_ F°j haa non-vanishing d•zolvatl1'B (aHn at th• 'boundar11 

(iii) 

Pro<jf: If 

-1 
• ZoZj , 

suffices 

. is. a ~-

(2.3) 

points), j -1 ,2; 

Fl o •1• Fz o •z 01)Bl' t. 

there is ze. ~•cm 2> 
j·-1 ,2 satisfy Ci)' 

to notice that 

. t Fl • zl 
on 

z-
. Fl o ♦l on 

map which satisfies 

satisfying LZaO, dZ•O then F:• 
J . 

(ii) and(iii). ,ar th!•~Onver!e it 

nj' j•l ,2 

t 

LZ• o, dZ• 0 · on · JR 2 • 

(2 .4) The I'• is a g1.obai di.fiflomorphism . x: m!.,. JR 2 undlng t · 

. . . 

onto { (X, 'J'.): TaO} ~ and such that x.L is a muitiph • . of 

the Niaohata op•ratol' (1.3) in th• aool'dinat•• (X,T). 

Proof: ·p~rst assume the validity-of (2.4) and oonsid•r 

Z• W·o X, W(X,'t)•· X+iT2/; 

r 
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(see(l .4))°, which .f?bviously satisfies LZ1oO{"dz+o on lR. i. l=ur­

thcmore Z lnj is a biholomorphism from > ~-/."~~~to H with respect 

to the complex structures induced by : \it~ respectively • 'lben 

·_. Zj(p)• aZ(p)~b, -~~,fl~/'- · 
♦- . :.~l.· ·· 

~here a- [Z(~)-Z(;)i-1 •. b- -Z(p).a, which .shows that (2.3) holds. 

Conversely, let us . assume the validity of (2.3) and introduce 

.l i JR!...,, I: by the foI11DJla ~ 

Pt J: • 

C-on,Ution (2.3) implies the continuity of Z.But LZ•O in IR 2 and 

i~cn . z 'is, in fact, a s· map • . •, . 

Proceeding as·in the proof of Theorem 1.Z one can show that 

." . · .. . T-hi.$ property will then :i.mply -that the map 

:.· ... ;· {~ '> . 
. ·~ x(p)•CX(p), Ttp)), 
. . . . lX(p)• ReZ(p) 

T(p)• ±(2ImZ(p))l/Z 
I • 

·• ·: ~ .a . global ·diffeomorphism from 
. . . . . 

IR 2 onto .. itself(here the · "+" 
~ 

or 
. . . 

· u_·._ 11 sign is taken according to wether p belongs to o1 or Oz 

. ~~ectively). Finally,since 
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Z• X+iT2/2 

we have 

L• CLT) caT· -rraxl. 
; . . 

The proof is compfete. 

Next we give examples of operators of type I that are 

globally inte~rable but cannot · be globally reduced to the Mizohata 

·operator • . .. 
Our first· example is the operator .· 

.. (2.7) 

. which is globally.~ntegrable since the function 

(2.8) 

has non-vanishing differential and satisfies LZ•0. With the not: 

tion introduced a.t the begining of this section we choose 

and p .(O,O), 

Then . 

. + n1• H. {Cx,t): t > o} 
I . 

n2- H••· {Cx,t): t < O} , .. 
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Notic~ · that b1- -•• bz• -Cew-l)-1 and thus property ~.3) 

does not hold true in this case. We also remark that,·.with"thenotation 

of theorem 2.l, we have 

. 
and that this last function is e,• (lp to the •eal axis ·_only in the 

region x > bz. 

{2.9) 

(2.10) 

Next we set 

The function 

2 
Z(x,t)• x+i(l-e-t )/2 

shows that this vector field is also globally integrable. With the 

same notation as before we have 
· z 

zl (x.t)•• Zz(x,t)• ez;~l- {!~2,r[x-,.i(l-e-t )/2] .1} ; 

· in the case ~• ~ . and b1•bz• -(e211'-1)-~ and thus the vector 

field g~ven in (2.9) also cannot be globally reduced to the Mizohata 

operator. 

An operator L will be called of t'l/pdI if its · characteristi 

r r 
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,· 
,. 

set t is · diffeomorphic to the unit. cle. In this situation 

JR~ t has two connected components, one of them, n1 , bounded 

and simply-connected and the· other, n2, unbounded and with fun 

damental group isomorphic to the group of the integers. As before, 

by uniformization, we can determine two maps: The first one is a 

biholomorph_ism z1 :n1--, D, wh_ere· D is the unit disc in a:,· with 

respect to the complex structures induced by L and t respec-

tively; The second_ one is a biholomorphism z 2:n2~A (a), where 

A(a) is the annulus { a< lzl < 1 } and a e [0,1[ is intrinsically 

associated to L ([SJ)·. We will denote such a number by a(L).Inthis 

case the ~aps .zj . are (1• up to t and the tra~cs 

map i diffeomorphical\y onto s1 • 

We select three points p1 ,p2 ,p3 in t and suppose tha·t 

For global integrability the result is similar to the one 

stated in theorem 2.1 for operators of type I. 

Theorem 2.3 Let L(.f_bc of type II. Than L 1' is globally inte 

grabl11 if and only' if th11r•. ar11 holomorphic fun.ation.• · F1 : D-+ I:, 

F2 : A( a(~))-+ t satisfying: 

are smooth up to··· s1.; ... , . 

have . n.on-van.ishing deriv~tiwls" eve.Tl ai: s1; . . ., . 

(i) Fj 

(ii) Fj 

(iii) Fl o t1• F2 o , 2 over t. 

The proof, being similar to that ·of theorem 2 .1 , · tiill be 

• 
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ommited. 

We now present · an example of an operator of type II. Let 

cSE[O,l[ and let 

be a smooth function satisfying the following properties: 

g6Cr)• 
·-1 

r€]~,l/3[, r • 
g 6 Cr) ■ 1-r rE]2/3,4n[, 

(2.11). 
g6(r)• 0 if and only if r•l, -J 16C_s)ds• logcS . 
l 

We define ·· . · 

(2. 12) 

where (r,8) are polar coordinates in the plane. The presence o/ 

the factoi · ei812 is due to the fact that,with this. definition, 

M6 is the Cauchy Riemann operator when r<l/3, in particular M6 

is well defined at the origin. 

If we write 

(2.13) 

... 
it follows immediately that z6 defines a smooth function over IR 2 

and that 1 

,.. 
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over 
• 

Thus M6 is globally integrable. [hotice that z6 is the identity 

over s1] 

We leave to the reader the verification that! M6 is aper-

• ator .of type II with J:., s1 and a(M6)._ 6. 

Theo:z,em 2.4 For an op•rator . L of type II the foiiow~ng atat•- ~ 

• 

(2.14) 

(2.15) There-£• a g"Loba7, .di,ffsomorphi,em ·x: :m~m. 2 •uoh that 

X cnl) • D ,X CO2)· C \ lJ, X (J:) • s 1 . and •uoh that x.L_ -l• a muZti.pZ• 

ol· Ma(L). 

Proof: Let us first prove that (2.15) i.JDplies (2.14). 

Tho mapping Z (z X) -1 
1° o(L) 0 is art automorphism of D 

. . [ with the standard complex structure]. Similarly 
-1 

z2oCZ 0 cL>'o· x> 

is an auto~orphism of A(o(L)) and hence both these maps are 
• I j 

linear fractional _transfonn~~~ons, which we call T1 and T2 r_! 

:: spectively. Then 'r Tj o_ x> on · t, j .. ;L,2 . ~hich i.mpli_es T1 (x(pk))• 

· ._: · .• · T2 CxCP1J>, ka: 1,2,3. -Thus T1• _T2 and co?1~equently (2.14)holds. 

We will now prove that (2.14)implie~ (2.1S) . . . . .... 
As in the proof of theorem 2.1 the map 

r 
. r • 

• 

1 
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r 

-- j•l ,2 

(2.16) 
• 

o•. is of·.class o satisfies LZ•O:. ·and· has non-vanishing differen 

tial •. ·Writing .. . · .. 

(2.17) 

a~d making use of the coordinates (x,t) provided by theorem 1.2 
d 

o~e can.derive, from the relatt~n MZ•O, the following identities 
. . . -· 

(2.18) 

Next we consider the transformation 
.. . 11 . . 

(2.19) 
~ i go(L)(s)d~ 

1 
11 >0. 

f(l"I)• e . . 

This map defines, by restriction, two diffeomorphisms 

We are now ready to define the diffeomorphism X• Let 

x(p)~ (r(p)c:ose(p), r(p)sin8(p)) 1 p£JR 2 

.where e is as ·in (2.17) and 
--

. rCpl~fi' 
(R(p)) • p_€D1 

.. 
.... 

. . -1 
(R(p))' PE Oz• . ·. £1 

.. . r 

\ 
\ 
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Using (2.9) we get 

r- (-21ogR(p))l/2 _ pESl1 f\V \ 
r(p) .. 

. l+ (-2logR(p)) 1l 2 pE n2 I\ V, 

where V is a tubular neighborhood of Land then (2.lS}shows that 

r is g• near & •. Also r•R in a neighborhood of z-1 {O}. It is 

now easy to conclude that x is a diffeomorphism with· the required 

properties •. _ 

We now present a result for the operatoil · M0 which -is the 

analogue of the one .stated in lemma 1.3 for th~ Mhohata operator: 

. Lemma a. s Let I! 6 ] 0 ,•] and ht n be the baU -ln JR 2 .'. · d11fined 

by r < l+I!. :If u is a continuous function on n satisfying 

morphia in D such that U• F O z6 over n. 

The proof will be left to the reader. 

Corot.tar~ a.s Let L be an_operator of type II satisfying . (2.14) 

and 'Let u €. €0 
(JR. 

2 ) b11 a sot.ution of Lu-=0. ·:rhen u is bounded. 

' 
Proof: Combine Theorem 2.4 and Lemma 2.5. 

.. 
r 

• 
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Appendix !£ section !=· Hypoe
0

llip t·i·c vector fields .. -

In most of the proofs of section 2 we have used, .in an 

.essential way, the classification ~f simply-connec~ed 'Riemann 
. . ' 

surfaces. As an additional illustration of this approch we ·will 

~ show in this appendix that for a· hypoelliptic vector field . · L 

one has, in a simply-connected.domain n, a global solution to 

the ··problem 

We recall that a vector field L defined in n is called !:!lfeE.­

.. eHiptio • if si.ngsuppu~ singsuppLu for any u ED' en) ;notice that 

. the class of hypo~lliptic: vector fields over JR 2 is . disjoint 

.··from the class£ intr~duced in sectiqn 1. 

Pzoo position ·A. l L•t L · b• a v•oto:r fi•'Ld ov•r an op•n •· · · •ubset 

n, m2 • ~hs fo'L'Lo~ing etate~ent• a~• equiva'Lent: 

(i) L i-s hypoe?.'Liptia 

(ii) There e:rist an open covering {U} of n and for •ach U 

a g· map Zu: u-c euah that LZu·' 0, dZu, • O; Zu 

on•-to-on• i11 u. 

We sketch. the proof. If L is hypoelliptic then i 't satisfies 

. coridi tion (P) (see [HJ and [T 21) which •implies, due to .t:heorem 

-~_. 3.2 in [T3], -the existence of a syst.-~m-r {Z0 : U-i-t} __ of ff maps 

satisfying LZu• O, dZu# O_ over U (see also proposition 2.1 

r 
r 
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in criJ). Here CU} forms an open covering of n. We can assume 

that each open set U is small enough in order to be the :domain 

of a coordinate system• (x,t) in which we can write 

z0 cx, t)• x+_it'uC~,t), 

where tu _ is a ·g• real-valued function. The hypoellipticity of 

· L is then equivalent to the fact that 

is one-to-one for each fixed x( [HJ, [T21) which is als·o equivalent 

to the lnjecti~ity of Zu· . .\ 

We . now applr this re·sul t. By a theorem of Baouendi - Treves 

{BT] the maps Zu and Zy are holomorphically related in an 

overlap U" V and then the system {Zu} _- def_ines, over n a -struc 

·ture of Riemann surface · (O ,'IJO whose Cauchy-Riemann : bundle is 

generated by L. Let us point out that when L is not elliptic the 

identity map (n,tt} ➔ O 

{)°" b structure induced by 

is not smooth [here the latter has the 

IR-2]. In any case, when n is _simply-

connected we can, by uniformization, assert the existence of a 

smooth map Z: 0-4 t 

. ~ 

satisfying (A.1). 

.. ... 
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53._!?!.!_ G%obaZ Rang• 
. . 

In this final section we study the global range for the 
Mizohata operator (1.3) and i~s generalization given in (2.12). 

We start with the operator M- given in (1.3). By standard 
arguments(see, for inst~nce,(T3.p.23])one can prove that -for an 
arbitrary fEg'°(JR 2) . there exists uE g•cm 2) such that Mu-f 
vanishes to infinite order at t•O. Let us call £1-Mu-f. _Thedwige 
of variables t.-. s- t 2/2 conv~rts the equation Mv-£1 into the 
equation 

( 3 .1 f 

. Since the right--hand side of this. equation can be extended · as a 
gm · function on m. 2 we can find a g• solution of (3.1) in the 
whol·e plane lR 2 • Going back to the original variables (x • t) we 
reach the following conclusion 

· that MU• f on . 11+ • 

We are still using .the notation 

H+• {(x,t): t > O}, 

a-. {Cx,t): t < o} 
. . , 

J 

and we will denote by~ the subspace of e;- CH+) c:onsis_~ing of all 
functions that are holomorphic in the variable x+it ~ H+ • 

. r . r 
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Theorem 3.a Th• foU.owi.ng stat•m•nts ai'• •quivatsnt fpz, a fun~ 

ti.on f E fb• (lR 2) : 

. . Ci) There e:iats u e: -o , c·lR 2 l su-~h that · Mu• f; 

(ii) There u:ists u G .g•(lR 2) such that Mu• f; 

(iii) Ther• e:iat u•e e,•cii+), ·u-£«°'CH-l such that ± Mu• £Iii± 

and such that +· -u -u • F .on t•O fo'Z' some Fi ~ ; 

(iv) Given any pair u+e g"(ii+), u·e g'(ii·) sati.sf'lling Mu:t:• flH:t: 

there e:r:ists Ff.~ suoh that + -u -u. p on t• o. 

Proof: That Ci~) implies Ci) iS . trivial and th~t (iv) ~mplies (iii) 

follows from proposition 3.1. As_sume now that (iii) holds and 

fine 

u(x,t)• 
{ 

u+ (x,t~ t ~ 0 · 

de­
\\ 

The verification that 

u·cx,t) + 

uEg'(lR 2) and that Mu• f is immediate; 

thus (iii) implies (ii). It remains to prove that (i) implies (iv). 

Suppose that Mu- f for som; u E O'(m 2). Then u is smooth outside 

t• 0 and it is in fact a smmoth function of t valued:in the space 

Qf distributions in x. We ·define 

(3.2) v(x,t)• u•cx,t)-u·cx.~t)-u(x,t)+u(x.~t), for t > o. , 

Since-Mv• 0 on H• - we have v(;,t)• F(x+it2/2), -where F 

is holomorphic; °furthermore lim F(.+it)• cu•-u __ -Ht• .. in the weak 
t+O O 

sense. Then p·E ~ and (iv) follows. Q.E.D~ 
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We can derive t~o immediate consequences of theorem 3.2. 
The first one )s that 'u, P' (IR-2), M~ f e• cm. 2) imply t~t 
·u-v~ 8'9 cm. 2) for some v e P' CIR 

2
) in the kernel of M; in other 

words the singularities of u are carried by the solutions of the 
homogeneous equation. The secon~ one is a kind of " symnetric global 
hypoellipt~..ity property": if · ~u€·'D' (JR 2) has even part in t 

of class g•, then the odd part in t of u is of class g~. 
We have then obtained a characterization of ·the .... space 

Mi(m. 2) s· €CIR 2); for the space M €"'cm. 2)11 ~(lR 2) -: a sharper• 
result can be achieved: 

. rheorem 3.3 L•t fci;cm 2). The following properties are equivo.­
lent: 

_(3.4) J (p-o WI'.) f•O for . et1er11 poZi,nomid p E [ [X]. 

In partiou7.ar M g'°(lR 2)n,~(~ 2) i• o1,oud in i~(IR 2) • 

Here we are still denoting 

. 2 W(x,t)• x+it /2. 

Proof: We first show that (3.3) . implies (3.4). Since 
implies M[(poW)u] ■ (poW) f · for every p £ CLX] it suffices 
show that J f• O. · 

.... 

We assume that suppf ·is contained in an open. disc 

r r 

· to 
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centered at _the origin. We decompose f• fe+f
0

, U• ue+u0 ·, where 

the subscripts "e" and 11 0 11 stand for even and odd parts in 

t respectively. Thus 

and hence -

: s· f • ' f £8 • 2Jfe. • 2fMu0 
. n Dl'I H+ QII H+ 

• 

• J .u0 dW.~ 
a(n o·H+) 

.Wec.laiin. that _u 0 · vanishes on acnnit), which ·implies 

what we want. In fact, u
0 

is identically zero on nn{t-0} simply 

because it is an odd function of t. Next Mu vanishes identically 

outside a which implies that u is a holomorphic function of 

W outside n. Since .UQ•·o ·for· t• 0 this holomorphic function 

vanishes identically; in particular u vanishes on an~ 

Conversely, let us assume that (3.4)holds. With the notation 

we define 

. ,, 

F(x,t
1
y

1
s

1
t)• ei[W(x,t)-W(y,s)]t f(y;s)/2w

1 

.. ... 
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(3.5) 

u•cx_,tl•{ r: Cf . ( 1~ I },cx,t,y,s,tldydtds, t ., 0 

u"(x,t)•{ ( ( [ + f [ [ }F(x,t,y;s,t)d7.dtds, t , e, 

It is a straightforward verification that u'\ t'oi+), Uf f' cih, 
Mut. flH1

• Furthemore 

(3.6) 

t.[dc[tJ e f • 
·-itW ] 

If we approximate e•itW :by a sequence of polynomials in 

W ~niformly over suppf and make use of hypothesis (3.4)it follows 

that u•c: ,O)-u· (. ,O) vanishes identically; thus ff M s•cm 2) by 
theor.em 3. 2 • Q.E.D. 

We now describe the global range of the operators M6 de­

in (2.12). In this cas; we will denote by]6 the space fined of 
I 

all holomorphic f~nctions in t ·he annulus 

are smooth up to s1 • 

A(6) [see section 2Jthat 

I • 
Thsozoem 3.4 

fe&-cm 2l : 

The fottowing etatemant• azoe equivatant fozo a function 

Ci) Thezoe e:iata 

(ii) Thsre e::-ld• 

uE 2''(lR 2) 

u £ ~·cm 2> 
auah that M6u. f; 

auch that M6u. f; 
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Thel'e ezist u1E.C°(D), u2£~(lR 2~.D) and Pe i 6 .uch 
M6u1'!' fjD,···Mc5Ui• fjm. 2\D. and such that u1-u2•F on 

tha-t. 
1 s .. 

Gi~en any pal~ ul~~-(D), Uz~~·cm. 2,D) \ such that M6u1 ■ £JD, 
' 2-

Mc5U2• flDt'1> thel'B ezistBFE.~6 such that u1-u2• F on sl . 

The proof is similar to that of theorem 3 .2 and ~ will be 
•. ommited. 

. . 

Finally we study the range of Mc5 in € ~ (lR. 2) ~ In order to 
do so, we shall need right inverses for . M6 over D and · R2,D 
which can be constructed by means of the Fourier series in the vari 
able e; we sketch their construction now. · 

(3. 7) 

Then 

(3.8) 
f(reie). L fn(r)eine 

n E: 1? 
with convergence in ~•(D). Furthermore,if'UEg•cn) then M6u. f i 
equivalent to 

(3.9) 

r 
r 

r 

-nJ ♦ (s~ds · . . 

ar(e 'l . ' un(r)] "!' 

. ' 



. 
• 

r 
~nJ t' (s)ds 

1· • 
e fn+l Cr) , _n E 2'l , 

\ 
by direct computation. 

T~us,in order to solve the equation Miu■ f over l> we 
~ must solve equations (3.9) with t~e 

series L iin(r)eine . conv"er~~s 

additional.requirement. that 

n E 1L . 

be a·chieved with the choice 

(3.10) 

where 

. . Jr 
· G Cr>­. . n 

· t(n) 

in g•('t;). This in fact 

·r 

nJ f(s)ds 
e P ln+l (c,)dp 

can 

. 
' L(n)•O if . n<O, t(n)•l if ·nlO. 

Proceeding exactly in the same way on JR 2,D ve will reach 
the following conclusion: 

·Proposition 3.S Th• operators I 1: (?,9(ff)+ g-9(U), 
-~ (JR 2, D) defined b11: 

(3.11) 

... 

• r 
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(3.12) fn+l (p)dp l ein8 

. ' 

~hara · t(n) has the meaning abo1Je and i(n)• 1 if n ~o. L(n)•• 

if n < 0 ~ arB rig'lit" -£~verses. for M6 ot>er · D and · lR \ D 

· J'eBpectiTJet.y. 

"(3.13) 

11m la (f)ll/p ~6. 
p 

p+<» 

p > l. 
\ 

Proof: If we combine theorem..3.4 with proposition 3.5 we conclude 

that fE;M6€"(IR 2) if and only if K1 [£]-Kz[fl equals, over s 1 

the boundary value of an element in 1!, 
6

• But, from (3 .11) and (3.12) 

we have 
.. . - . 

CK1 [_f]-K2(fl) (e19). L ap(f) e•iP8, 

P•l • , .• 
hence the corollary. 



• 
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· To conclude we will show that M6e•cm. 2)11t;cm. 2) is not 

a closed subspac_e of € ;cm 2), as it was 'in the case of the 

Mizohata operator. To start the study we take q~e:cAc6)) nowhere 

zero and consider the following "boundary value" problem: 

(3.15) 

. . 

q ~ • f on At6) 
ae 

ulsi. o 

u,ro(A(6)) and smooth up to s 1 • 

Here f:E {g: (A(6)). ·we. will denote by lE (q) the subspace of g~(A(6)) · 

consisting of all functions f for which (3.15) has a solution • 
., -

Lemma :s.? m (q) is not closed in g:CA (6)). 

Proof: We first take 

which is holomorphic for (ti> (1+4)/2· without holomorphic exte~ 

sion to any ·1arger domain. 

We also ~ake lj,E'(s . (JR 1) • 

• r > b2 , · where 

for 

I I • 

(1+6)/2 <a< b < 1 

and define . . 

for 



, · 

. 
• 

(3.16) 
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n 

hn(t)• L bp/tP 

p•l 

un(t)• ~Clt1 2) hn(t) 

.fn(t~~ t~'C)tl 2) q(t)~n(t) 

f(,;) • r;iji'(l,;! 2) q(r,;)h(,;) • . 

l . 

rj;) 

Then fn, f i~
00

c(A(6)), fn +fin ~c(A(6)) and . each fn 

belongs to E(q), for qilu /3t .. f , u i e,""(A(6)) and u vanishes 
n n n n 

identically in a neighborhood of s1 in A(&). We claim that _ff E(q). 

In fact suppose there is ht e,00(A{o))solving (3.15) •. 

Then 

v(t)• u(r;)- 1jl(ltl 2) h(r;), i;i A(l+6) 
2 

is a holomorphic function vanishing identically on s1 .Thus v:O 

and since au ■ O 

at 
for _. 4 < J t \ < a it follows that the . function 

defined by 

t
ult) 

fi(t)• 
·. . . h(t) 

4 < ltl ~ 

It I > 1+6 ·1 -r . 
.... 

is a holomorphic extension of h, a contradiction. 

The lemma is proved. 
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As a corollary,·.we shall~show that - M6frllR 2)ng~(lR. zl is 
not closed in ~~ (]R 2). Let us call f 6 the restriction · ·of z6 . .. 

to m2,n (see \2.13); i6 · 1s in fact the biholomorphism z2 in 
the notation of section 2) and let then y denote theisomotphism 
(of topological vector spaces) e; cAco )+C;c lR ~ D') defined by 

. Theo~em 3,8 Let q4e~(A(6)) be the nowh•r• ••ro function 4•­
fine<l; b11 

(3.17) 

P!'oof I,fg£c;~cm 2,D) can be written as g•y[fl with £EJE_(q6) 
then the function V• y[u], where u is the solution of (3.15) 
for such f ,_ ·satis~ies· · M6V:~ g · on lR 2 , D arld vanishes on s1 • 

·= · :"_ .' .. · · Extending v as zero inside D we &et a global ~olution of a C, • • . . .. . • 

. . . • : 

J i' . 
with . V£g•c~ 2 ) and g f. .~ (Jt_d)) then, . 

: .. . by l e111D1a 2. S, we can find a continuous £'unctions F on lJ, bolo-• .r • 

. ·. morphic on D such thut u.; F o z6 on r < 1 + £ for some t>O • 

• 



. . 
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Thus W• v- F· o z6 on m.2 ~atisfies Mc5w•g and vanishes 

identically for r < 1 +&.Let U• y-1 (w). Then ueg'{A(cS)), u 

S1 · au -le l vanishes identically in a neighborhood of and G5 a,• Y g • 

Thus y~1 [g] € IE (q
6
) and the proo~_. i~ complete • 

[BT) 
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