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A B S T R A C T   

Although sound classification in soundscape studies are generally performed by experts, the large growth of 
acoustic data presents a major challenge for performing such task. At the same time, the identification of more 
discriminating features becomes crucial when analyzing soundscapes, and this occurs because natural and 
anthropogenic sounds are very complex, particularly in Neotropical regions, where the biodiversity level is very 
high. In this scenario, the need for research addressing the discriminatory capability of acoustic features is of 
utmost importance to work towards automating these processes. In this study we present a method to identify the 
most discriminant features for categorizing sound events in soundscapes. Such identification is key to classifi
cation of sound events. Our experimental findings validate our method, showing high discriminatory capability 
of certain extracted features from sound data, reaching an accuracy of 89.91% for classification of frogs, birds 
and insects simultaneously. An extension of these experiments to simulate binary classification reached accuracy 
of 82.64%,100.0% and 99.40% for the classification between combinations of frogs-birds, frogs-insects and 
birds-insects, respectively.   

1. Introduction 

Habitat loss, fragmentation and degradation are between the main 
threats to biodiversity and ecosystem function maintenance worldwide 
(Butchart et al., 2010). Therefore, evaluating the health of environments 
is of utmost importance in the Anthropocene (Johnson et al., 2017). 
Acquiring reliable information on occurrence of species in the field is 
very costly, which many times impairs the simultaneous monitoring of 
large or multiple areas for longer terms. While autonomous audio re
corders generate huge amount of data to support those tasks, identifying 
the best strategies to handle this data –and rapidly extract information 
from them– is amongst the top demands for ecologists and stakeholders 
that use audio data on their studies and decisions. 

Ecoacoustics (Sueur and Farina, 2015), which includes soundscape 
ecology –the study of geophony, anthrophony and biophony (Pijanowski 
et al., 2011) – is gaining space in research and monitoring arenas, 
becoming a very promising venue to tackle current challenges in envi
ronmental studies. Audio recordings of soundscapes are becoming 

important tools for measuring biodiversity integrity and environmental 
health (Servick, 2014), as well as monitoring and understand how 
different environments respond to human-induced modifications (Hu 
et al., 2009; Joo et al., 2011; Parks et al., 2014). With the advances of 
soundscape analysis and autonomous audio recording technologies, 
with consequent growing interest in these approaches, data sets have 
increased in size and become more complex over time (Servick, 2014; 
Towsey et al., 2014c; Sankupellay et al., 2015). As a consequence, a 
large amount of time is necessary for experts to identify events of in
terest in recordings. They employ their knowledge about specific sound 
features to identify acoustic events (defined as sound produced by ani
mals (e.g. bird, dog, frog), nature (e.g. rain, wind, river) and human 
activity (e.g. speech, cars, steps)). Advancing computational ability to 
support those users tagging events and phenomena of interest is para
mount to advance other technologies such as classification and retrieval 
of soundscape data. Supporting these tasks is one of our main goals. 

In order to employ sound recordings in accomplishing analysis tasks, 
features are extracted from both the signal and the corresponding 
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spectrogram. A large number of features can be obtained, aiming to 
describe different aspects the audio data and summarize their content. 
The resulting data space has a high number of dimensions or attributes. 
In this context, one of the main challenges is identifying a subset of 
adequate and sufficient features to describe events of interest. Finding 
this best ideal subset implies in targeting a small number of features 
capable of performing specific classification tasks with high precision 
(Alpaydin, 2014). 

In sound classification tasks (e.g. Phillips et al., 2018; Xie and 
Towsey, 2016), methods usually extract acoustic metrics or features that 
are used to train a learning model. Features are therefore employed to 
summarize and describe a soundscape. However, due to the complexity 
of environmental sounds (see Figs. 1a, 1b and 1c), characterizing the 
sound content can become a difficult task. A typical scenario is the 
combination of time of recording (morning, afternoon and night) and 
animal habit; for instance frogs and insects usually occur at night and are 
simultaneous (Pijanowski et al., 2011), adding additional burden to the 
classification of event categories. 

Other research work have focused on the study of features and pat
terns in soundscapes with ecological perspectives (Fuller et al., 2015). 
These studies reveal that acoustic peculiarities vary according to specific 
conditions of each environment. Due the lack of enough studies, for the 
larger part one does not know what possible features are to be employed 
to adequately describe a particular acoustic event. However, some work 
targeted scenarios based on extracted features (Sankupellay et al., 2015; 
Dias, 2018; Phillips et al., 2018). In a recent review of soundscape study 
gaps from 1,309 published papers (Scarpelli et al., 2020b) observed that: 
(a) regarding the scope, 58% focused on anthrophony, and only 8% on 
biophony; (b) regarding the region, 56% were developed into temperate 
areas, and only 18% are dedicated to tropical ecosystems; (c) terrestrial 
ecosystems were 89%, and 11% aquatic ecosystems; (d) regarding the 
focus of study, 61% were in urban ecosystems, and only 7% in natural 
areas. However, it is still important to offer tools for the user to under
stand different environmental situations at a more specific level within a 
particular recording location, such as distinguish the daytime period 
(morning, afternoon or night), groups of animals, and categories of 
events present in the environment, among other elements coded by the 
sound signals. 

In this scenario, the main questions we are interested in contributing 
to answer are: (a) How classify large amount of environmental audios 
efficiently? (b) What is the segregation ability of each group of features? 
Considering that some features vary according to the specific conditions 
of each environment, (c) What set of features describe a particular set of 
acoustic events adequately?. 

In this work, we propose a method to identify the most discriminant 
features of sound events based on analysis and evaluation of the accu
racy achieved by automatic classifiers. We also employ algorithms for 
feature rankings and visualizations to support identification of effective 
features. 

The purpose of our study was to examine the power of discrimination 
of a set of features extracted from natural sounds, which have been 
categorized into three groups according to its source of extraction: 

audio, spectrum and image. From the audios, we have extracted acoustic 
indices, which are usually employed to evaluate the environment 
(Towsey et al., 2014a); from the spectrogram, we have extracted fea
tures with cepstral coefficients (Terasawa et al., 2005); and in the image 
for the spectrogram, we have applied descriptors provides by image 
processing (such as texture and color) (Gonzalez and Woods, 2010). The 
research is focused on the analysis of such features to determine what 
subsets of them best describe the soundscape under study. The perfor
mances were assessed evaluating the accuracy achieved when classifi
cation tasks were performed. 

We have employed different machine learning and visualization 
techniques to assist in the exploration, analysis and description of 
acoustic data, due to the multi-dimensional and exploratory aspects of 
the data, generating a large set of features that describe each audio 
instance (Mazza, 2009), from which visualization methods can support 
identifying and confirming segregation power (Card et al., 1999) of sets 
of features. 

In the Section 2 we describe the uses for feature sets in studying 
soundscapes. In Section 3 we explain each element of our study. In 
Section 4 we describe the application of such methods for the discrim
ination of frogs, birds and insect, and discuss the various results. Our 
conclusions are presented in Section 5. 

2. Audio-based feature extraction and its applications 

Studies have analyzed the scope of acoustic indices (for a review see 
Towsey et al., 2014a; Sueur et al., 2014; Gasc et al., 2015). Gasc et al. 
(2013) performed an acoustic indices analysis and concluded that there 
is correlation between the acoustic diversity index (ADI) and phyloge
netic diversity in bird communities. Another study with the goal of 
finding appropriate descriptors used Linear Correlation Coefficients 
among 14 acoustic indices, to select the least correlated, which were 9: 
Background noise, Average signal-to-noise ratio, Acoustic event count, 
High-frequency coverage, Mid-frequency coverage, Low-frequency 
coverage, Acoustic complexity index (ACI), Entropy of the signal enve
lope and Spectral Entropy. In this study they have achieved their goal of 
summarizing the content of 24-h recordings visually in a spectrogram to 
monitor, describe and compare two distinct acoustic landscapes (San
kupellay et al., 2015). Other researchers (Fuller et al., 2015) also eval
uated acoustic indices as indicatives of ecological conditions of a 
landscape. They studied six types of acoustic indices, identified the 
relationship between acoustic complexity index (ACI) and bioacoustics 
(BIO) for bird vocalization, an determined that three acoustic indices 
known as entropy (H), acoustic evenness (AEI) and the normalized dif
ference soundscape index (NDSI) are the ones that best related sound
scape, ecological conditions and bird species. 

Dias et al. (2021) aimed at defining a strategy for exploration of 
soundscapes, capable of revealing similarity level between distinct 
natural environments, based on features extracted from the image of 
spectrograms, features of type Cepstral, and acoustic indices. According 
to the authors, the descriptors Mel-Frequency Cepstrum Coefficients 
(MFCCs) can distinguish effectively between two different soundscape 

Fig. 1. One minute spectrograms labeled with the dominant events: (a) frogs, (b) birds and (c) insects. In the figures we can observe background noise, which can be 
a sound another event happening in parallel to an event of interest. 
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locations. Also aiming to compare two soundscapes environment visu
ally, Sankupellay et al. (2015) generated false-color spectrograms from 
three acoustic indices (Towsey et al., 2014c) revealing distinct visual 
patterns for different habitats. Another analysis strategy (Towsey et al., 
2014b) is based on the combination of several acoustic indices that can 
produce more useful ecological information than individual indices, 
using ranking of acoustic indices (features) based an “acoustic richness” 
score. the study concluded that indices such as temporal entropy H[t], 
spectral entropy H[s] and ACI are useful indicators of bio-acoustic ac
tivity and of species diversity. 

The classification of soundscapes for multiple species based on 
Gamatone filter features was addressed in Agrawal et al. (2017). The 
data set employed was ESC-501 with category of events as animals, 
natural soundscapes and water sounds, human, interior domestic, 
exterior urban noises; in that case, the data set is not recorded under 
natural conditions and sound files contain 5 s with one specific event. 
Also in the literature, more rigorous work that perform sound classifi
cation for specific subspecies is presented, for example, for classification 
of subspecies frogs (Xie et al., 2018; Han et al., 2011; Xie and Towsey, 
2016), anurans (Noda et al., 2016) or for classification of bird subspecies 
(Raghuram et al., 2016; Stowell and Plumbley, 2014; Qian et al., 2015). 

Several studies have investigated the relationship between different 
acoustic indices and biodiversity, mainly for birds (Depraetere et al., 
2012; Towsey et al., 2014a; Mammides et al., 2017; Retamosa and 
Ramírez-Alán, 2018; Machado et al., 2017; Jorge et al., 2018; Zhao 
et al., 2019; Moreno-Gómez et al., 2019). A consensus is that rarely did 
investigators identify the best index, since the climate (tropical or 
temperate), type of environment (forest or savanna), species composi
tion or even incorrect sampling design resulted in inconsistencies when 
trying to capture differences between different areas (Eldridge et al., 
2018). In a recent study, also conducted in the LTER CCM region, target 
of this paper, several acoustic indices were used to describe the sound
scapes and to access how the forest cover influences these indices 
(Scarpelli et al., 2020a). 

In contrast to such studies, here we use the indices not to correlate 
directly with bird of forest richness or abundance, but combine indices 
with other extracted features in order to best predict the presence of a 
particular event (such as bird vocalizations), in a large and diverse 
database. Being able to answer that is important in preprocessing steps 

of the database, both for the tagging of species of interest and to 
automatize the analyzes, such as to describe biodiversity and to tell 
species apart automatically, allowing their monitoring. 

Our work presents a study of such segregation tasks by applying 
classification of events after visually and numerically assessing the 
relevance of features for a particular event of interest. The ranking of 
features can also be used for predicting categories of events. This work 
takes a different approach from previous ones by employing visualiza
tion to support the initial analysis and verification of meaningful attri
butes regarding particular events (such as the presence of anurans, birds 
and insects). We analyze a series of attributes from various sources, 
ranking them and narrowing down the choices to the ones representing 
each phenomenon of interest. We also use classification to confirm 
findings. We aim to achieve a stable methodology that can be replicated 
for characterization in the study of additional events beyond those 
exemplified in our case study. 

3. Material and methods 

3.1. Region of study 

The region under study hosts the Long-Term Ecological Research 
project in the Ecological Corridor of Cantareira-Mantiqueira (LTER-CCM 
or Pesquisa Ecológica de Longa Duração-PELD CCM in Portuguese), 
localized in the transition between northeastern São Paulo state and 
south Minas Gerais state - Brazil (Fig. 2). The region is considered as a 
conservation priority because it connects two important highly forested 
blocks, the Cantareira and the Mantiqueira (Boscolo et al., 2017). 
Landscapes are composed by forest in different succession stages, agri
culture, forestry plantation (mainly Eucalyptus spp.), swamps, water, 
roads, villages and larger urban areas (Barros et al., 2019). The region is 
part of Atlantic Forest biodiversity hotspot (Mittermeier et al., 2011), 
where habitat loss and fragmentation reduced forest cover to about 
16%, with remnants reduced in size (84% is <50 ha), highly isolated 
(average isolation c.a. 1440 m) and high edge effect (50% of forests are 
less than 100 m from any edge) (Ribeiro et al., 2009). 

3.2. Experimental design and sound recordings 

We have collected sound data in 22 landscapes, which varied in 
forest cover (16% to 86%) and spatial heterogeneity levels. The same 
sampling design and audio data was used by Scarpelli et al. (2020a), and 

Fig. 2. On the left the location of landscapes where soundscape data were sampled using autonomous audio recorders within the Long Term Ecological Research of 
Ecological Corridor Cantareira-Mantiqueira (LTER CCM or PELD CCM), São Paulo, Brazil. On the right side we present four of our sampling landscapes varying in 
forest cover, with the location of each audio recorder. Black blue dots represent forest, rhombus shape are pastures and crosses triangle are swamps. 

1 available in:  https://github.com/karoldvl/ESC-50/ 
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the recordings occurred between October 2016 and January 2017. In 
each landscape, we set up autonomous audio recorders Song Meter 
Digital Field Recorders (SM3) (Wildlife Acoustics, Inc., Massachusetts), 
which were fixed on trees at 1.5 m above ground. Three sites with 
different environment types were sampled within each landscape: forest, 
pasture and swamps. However, it is not our focus here compare the 
differences of soundscape variations between the above environment 
types. The equipment used two omni-directional microphones (fre
quency between 20 Hz and 20 kHz), and sounds were recorded at 44.1 
kHz with 16 bits, in ”mono” mode to save battery and memory card 
space. The recording schedule of the equipment is presented in Sup
plementary Material S1. For each site we recorded 34 h, totaling 102 h 
per landscape, and summing 2,255 h of raw data for the entire project. 

3.3. Audio subset and species labeling 

For the current study, we employed only a subset of audios per 
landscape and sites, a selection made in two steps. First, we selected five 
files of 25-min each in the period of highest activity of birds in the 
morning (5h00 AM to 8h30 AM), and nine files of 15-min each in the 
period that amphibians and insects are more active (6h30 PM to 10h45 
PM); we adopted this collection strategy for balance of the amount of 
sampling of the landscape, the animal activity times and the use of 
hardware battery. In the morning there is a maximum of 3 h of collection 
in consequence recorded every 25 min; however, at night it is almost 4.5 
h of collection, in consequence recorded every 15 min. Second, we 
randomly selected 2 non-continuous minutes of each file, totaling 
18,594 min for the morning, and 22,132 min for the night. These files 
were selected equally from each type of environment (forest, pasture 
and swamps) of each landscape. Therefore, our subset has a total of 
40,726 min. 

From these subsets we proceeded with partial labeling at minute- 
level, which resulted in 822 min tagged as birds, 615 min tagged as 
anurans (frogs and tree frogs) and 840 min tagged as insects, in a total of 
2,277 min. For the purpose of the current study, the minutes were 
labeled considering only the presence of acoustic signals of these three 
groups of species. For birds and anurans, every minute with presence of 
acoustic signal has been labeled as ”bird occurrence” or ”frog occur
rence”. However, for insects, only minutes with predominance of insect 
vocalizations were labeled as “insect occurrence”. The management of 
the audio recordings was performed in the free programming environ
ment R (R Core Team, 2018); labeling was done using the acoustic 
analysis software Raven Pro 1.5. 

3.4. Dataset 

For this study our dataset comprised 2,277 sound files of one-minute 
each, divided into three classes: 615 for frogs, 822 for birds and 840 for 
insects. However, for the experiments, a total of four new data partitions 
were created: (a) DS1 (frogs, birds and insect), with 2,277 instances 
(minutes-files); (b) DS2 (frogs and birds), with 1437 instances (minutes- 
files); (c) DS3 (frogs and insects), with 1455 instances (minutes-files); 

and (d) DS4 (birds and insects), with 1,662 instances. 

3.5. Method 

In Fig. 3 we illustrate the main steps of the methodology. First, data 
pre-processing step is responsible for collecting and transforming audio 
signal in spectrograms. Then, feature extraction is performed on the 
audio signal and the on spectrograms for each selected recording. After 
that, the proposed feature analysis is performed to determine what 
features are most discriminating for the target events. Subsequently, 
each feature configuration is visualized to allow further analysis and 
confirm accuracy. Each step of the methodology is further described in 
the next sections. 

3.6. Data pre-processing 

Audio files were converted to mono channel format employing 
40,124 (samples/s). Spectrum creation was generated using the 
following configuration: (n fft=512, hop length = 2048,win length=512) 
(McFee et al., 2015; McFee et al., 2019). Them, the spectrogram was 
obtained using only the real part of the spectrum. 

From the spectrograms, color images of dimensions 100 × 100 were 
created, in which the spectrogram intensities were normalized in the 
range of real numbers (0 − 1). Colors for the pixels were given following 
a particular color lookup table. The nipy spectral and inferno color maps 
of the matplotlib library2 were used. 

3.7. Feature description 

In this section the descriptors used for feature extraction are briefly 
presented and were categorized into three groups: (a) based on images; 
(b) based on spectrum; and (c) based on acoustic indices. 

3.7.1. Descriptors based on image  

• Gray Level Co-occurrence Matrix (GLCM): In order to describe the 
texture in the spectrogram images, GLCM features were computed. 
For this, the color image was converted to gray-scale, then six 
matrices were computed with the following offsets d(xy) = {(0,1),(0,
3), (0, 5), (1, 0), (3, 0), (5, 0)}. Texture features were obtained by 
computing, for each co-occurrence matrix, the following six Haralick 
measurements: Energy, Entropy, Contrast, Correlation, Homogeneity 
and Maximum Probability. In the present study a total of 36 features 
were extracted for each sound minute file.  

• Border Interior classification (BIC): Using the color images of the 
spectrogram, features of the Border Interior Pixel Classification (BIC) 
type were extracted. In this case, the colors of the images have been 
quantized to 64 colors. Thus, two feature vectors were computed to 
classify the pixels colors located at the edges and the pixels located 

Fig. 3. Schematic process of the Methodology to identify discriminant features.  

2 available in:  https://matplotlib.org/ 
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within regions. A total of 128 features were extracted for each sound 
minute file. 

3.7.2. Descriptors based on cepstral 
Cepstral or “Ceptrum” was introduced by Bogert (1963) and is 

defined as frequency (Fourier transform) of the logarithm of the 
magnitude of spectrum of the original signal. Cepstral features facilitate 
similarity comparisons among signals.  

• Mels-Scaled Spectrogram (MEL): Directly from the spectrum, 16 
MELs were extracted. Mel-Scaled Spectrogram is computed by 
passing the fourier transformed signal through a set of band-pass 
filters known as Mel-filter bank. A Mel is a unit of measurement 
based on the frequency perceived by human ears (Rao and Sarkar, 
2014). 

• Mel-frequency Cepstral coefficients (MFCC): Employing the spec
trum, 16 MFCC were computed. MFCC makes an analysis of spectral 
features of short time, based on the use of the voice spectrum con
verted to a frequency Mel-Scale. These coefficients are a represen
tation defined as the cepstrum of a time-winded signal, which has 
been derived from the application of Discrete Cosine transform 
(DCT), in non-linear frequency scales, where DCT is used to remove 
redundant information (Mitrović et al., 2010).  

• Gammatone Frequency Cepstral Coefficients (GFCC): Similarly to the 
MFCC feature, from the spectrum 16 GFCC were computed. GFCC 
has several advantages compared with MFCC. For example GTCC use 
Gammatone filter-bank that is a group of filters for the cochlea 
simulation, which is more accurate than triangle filters employed in 
MFCC (Liu et al., 2013).  

• Linear Predictive Coefficients (LPC): Employing the essentia3 library 
directly from the audio signal frames, 11 LPC feature were 
computed. In LPC, filter coefficients can be computed directly in the 
time domain. Coefficients can be obtained using an inverse filter to 
produce a prediction error signal. Then the original signal can be 
synthesized exactly from the prediction error signal using a synthesis 
filter (Harma, 2001). 

3.7.3. Descriptors based on Acoustic Indices:  

• Acoustic indices (AI): Finally, the following 15 Acoustic Indices 
feature were computed:Average Signal Amplitude (ASA) calculated 
as the average amplitude of the wave envelope, formula in Towsey 
et al. (2014b); Background Noise (BGN) calculated from removing 
acoustic activity of the wave envelope using (Lamel et al., 1981) 
method (Towsey, 2013); Signal to Noise Ratio (SNR) calculates the 
difference ratio between the envelope (maximum amplitude) and the 
background noise (Towsey, 2013); Acoustic Activity (AA) computes 
a fraction of frames within a one-minute segment, where the signal 
envelope is more than 3 dB above the background noise level 
(Towsey, 2013); Number of Acoustic Events (NAE) determined by 
the number of times the signal envelope overcome the 3 dB limit 
(Towsey et al., 2014b); Temporal Entropy (Ht) calculated on the 
amplitude envelope over the time unit, with formula in Sueur et al. 
(2008); Spectral Entropy (Hs) seeks the concentration of energy on 
the frequencies, with formula in Sueur et al. (2008); Acoustic En
tropy (H) is obtained by multiplying (Ht) and (Hs) (Sueur et al., 
2009); Antrhophony (A) is calculated in function of the portion of 
acoustic components generated by humans (Sueur et al., 2014); 
Biophony (B) calculated in function of the portion of acoustic com
ponents generated by biological entities (Sueur et al., 2014); 
Normalized Difference Soundscape Index (NDSI) calculated from the 
proportion between anthropological (human) and biological (animal 
species) sounds (Kasten et al., 2012); Acoustic Complexity Index 

(ACI) quantifies the acoustic activities (biological sounds, anthro
pological sounds) of soundscape, based on differences in the vari
ability of intensities produced by sounds (Pieretti et al., 2011); 
Shannon Index (H’) derives from the entropy calculation, the for
mula is found in Villanueva-Rivera et al. (2011); Median Of Ampli
tude Envelope (M) is the median of the amplitude envelope whit 
formula in Depraetere et al. (2012); and Mid Band Activity (MBA) 
that is fraction of fragments of the spectrogram between the values 
482 Hz and 3500 Hz, where the spectral amplitude exceeds 0.015, 
this for one minute of audio (Towsey et al., 2014a). 

As a result, 238 features were processed for each audio minute file 
–hereafter named instance. Instances with extracted features are deno
ted by Xm, where X the instance and m the number of features per 
instance. 

3.8. Discriminant feature analysis 

In the following text we describe the steps taken to process the 
feature space formed by the collection of all previously mentioned.  

• Data cleaning: similar to how data processing is performed in other 
tasks in data science, features that had constant values or low vari
ability were removed because they are redundant and less informa
tive (Faceli et al., 2011). In this case when presenting constant values 
or low variability, the features were eliminated using a standard 
deviation of less than or equal to 0.015.  

• Normalization: the features were normalized using the Min–Max and 
Z-Score methods. One of the purposes of normalization is to place the 
variables within a certain numerical range of distribution, increasing 
reliability of distance calculations performed in subsequent tasks.  

• Feature analysis: visual tools such as Box-plot Haemer, 1948 and 
Histograms Faceli et al., 2011 supported visual analyzes of the 
variability and behavior of features and comparing the behaviour of 
values when normalized by Min–Max and Z-Score.  

• Feature selection: to determine the most representative features, we 
proceeded to run feature selection methods. This helps us manage 
the problem of the high dimensionality of the feature space, while 
also improving segregation results. In the process, further redun
dancy and correlation are handled (Kohavi and John, 1997; Hall, 
2000). Given the set of instances and features, feature selection can 
be mathematically denoted as Xm⇒Xp, where m denotes dimension 
the original set of features, and p the dimension of optimal subset of 
features, p < m. Approaches to feature selection are based on filters, 
wrappers and embedding (Miao and Niu, 2016). Due to its advan
tages in classification tasks, we have chosen the embedded method 
known as Extra Trees Classifier (ETC); this method weighs features 
according to their importance, where the importance is given spe
cifically by calculating the reduction of impurity in the split of fea
tures values when multiple decision trees are built; high values of the 
decrease in impurity indicate important features.  

• Identification of the most discriminating features: Employing the 
ranking of importance of features, classification tasks are performed 
for the n first ranked features. Training and testing instances are 
established by 5-k-folds cross-validation for Training and some per
centage of instance for Testing. The classification models used are: 
Random Forest (RFC), K-Nearest Neighbor Classifier (KNNC), Sup
port Vector Classifier (SVC) and Extreme Gradient Boosting Classifier 
(XGBC). The most discriminating features are determined by the 
highest accuracy results of the classification of the n feature 
combinations. 

3.9. Visualization 

To validate the quality of identified features visually, multidimen
sional projections were employed. In this way, the set of instances and 3 available in: https://essentia.upf.edu/ 
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Features Xp is mapped onto two dimensions p = 2 so we can visually 
distinguish sets of similar points by proximity. The projection tech
niques employed were t-SNE (van der Maaten and Hinton, 2008) and 
UMAP (McInnes et al., 2018). 

It is expected that the employment of best features in multidimen
sional projections will improve the quality of the visualizations. We use 
the Stress metric (Kruskal, 1964) to measure such quality. Stress has 
values in the interval [0, 1] for normalized distances values, with 0 being 
the highest quality and 1 the lowest, meaning the projection is not 
capable to reconstruct distance relationships in the data. The Stress that 
we use is defined in Eq. 1: 

stress =

∑

ij

(
dij − dij

)2

∑

ij
d2

ij
(1)  

where dij is the distance in the original space and dij is the distance in the 
visual space. We also employ the Silhouette Coefficient (Rousseeuw, 
1987) to evaluate the cohesion and separation between grouped in
stances on visual space, computed by Eq. 3.9: 

S =
1
n

∑n

i=1

(bi − ai)

max{ai, bi}

where n is the number of instances and for each instance i, ai is the 
average distance between all instances with the same class of yi (cohe
sion), and bi is the minimum average distance between all other 

instances in other groups different of yi (separation). S has values in the 
interval [ − 1, 1], with values closer to 1 meaning that the projection is 
better in terms of cohesion and separability. 

3.10. Implementation 

The methodology was implemented in Python, Cython and C. For 
preprocessing data and reading audio files we used the follow libraries: 
soundfile4 version 0.10.3, librosa5 version 0.8.0. For feature extraction 
were used essentia6 version 2.1. For analysis and identification of 
discriminant features we used the algorithm ETC implemented in scikit- 
learn7. The source code of the methodology is available in the repository 
( https://github.com/hhliz/SoundscapeEcologyFeatures). 

4. Results and discussions 

In order to predict in a minute-file acoustic database with predomi
nant vocalization of frogs, birds and insects, we performed all the tasks 
described in the previous section. After feature redundancy detection, 
the number of features reduced from 238 to 102. The experiments were 
divided into two steps: the analysis of discriminating features and the 

Fig. 4. Ranking of features: from top to bottom results of ranking of features from data partitions DS1 (frogs, birds and insect), DS2 (frogs and birds), DS3 (frogs and 
insects) and DS4 (birds and insects). Colors are: purple for features based on acoustic indices; green for spectrum; and orange for images. x axis shows features 
analyzed and y axis shows the level of importance for each feature. 

4 Available in:  https://pypi.org/project/SoundFile  
5 Available in:  https://librosa.github.io/librosa  
6 Available in: https://essentia.upf.edu  
7 Available in:  https://scikit-learn.org/ 

L.M. Huancapaza Hilasaca et al.                                                                                                                                                                                                            

https://github.com/hhliz/SoundscapeEcologyFeatures
https://pypi.org/project/SoundFile
https://librosa.github.io/librosa
https://essentia.upf.edu
https://scikit-learn.org/


Ecological Indicators 126 (2021) 107316

7

visualization, described below. 

4.1. Ranking of features 

For the four data sets - (recalling DS1 (frogs, birds and insects); DS2 
(frogs and birds); DS3 (frogs and insects) and DS4 (birds and insects) - 
we have followed the methodology for discriminant analysis of features, 
that is, embedded feature selection by Extra Trees Classifier (ETC). After 
the relevance for the features was obtained, they were sorted in 
descending order (highest to lowest) forming a ranking (see Fig. 4). The 
figure shows the categorization features, in which orange corresponds to 
image-based features, purple to spectrum-based features and green to 
acoustic indices. 

In this experiment, it can be noted that features based on images such 
as BIC color descriptors do not perform as well as GLCM features. This 
may be because the color map does not provide relevant information to 
describe the spectrograms and, also, the color quantization might not 
favor them. On the other hand, between the two descriptors, the texture 
descriptors are more important and can better describe spectrogram 

information, and 36 texture features are more relevant than most of the 
128 BIC color features. With relation to the features based on cepstral, it 
can be noted that they are within the top 10 features. MFCC and MEL 
features along with some GLCM texture features are the first in the 
ranking. Considering the acoustic indices feature set, the most important 
features are Temporal Entropy (Ht), Spectral Entropy (Hs), Acoustic 
Entropy (H), Acoustic Complexity Index (ACI) and the Shannon Index 
(H′). These features are generally placed in the 5 first positions in the 
rankings and have better predictive power compared to other de
scriptors. Entropy (H) indices and their variations in addition to ACI, 
were good indicators of bio-acoustic activity in previous work (Towsey 
et al., 2014a). 

4.2. Identification of best features 

Following the ranking of relevance of features in each partition, the 
discriminatory power of the combinations for the n first features was 
evaluated. In this experiment, in each combination of features, the ac
curacy in the training and test subsets was computed using respectively 

Fig. 5. Best features: from top to bottom results of best features for each data partition, employing four classifiers (Random Forest Classifier (RFC), K-Nearest, 
Neighbor classifier (KNNC), Support Vector Classifier (SVC) and Extreme-Gradient Boosting Classifier (XGBC)). The first graphic shows DS1 (frogs, birds and insect) 
with 30 features (89.91% accuracy); the second is DS2 (frogs and birds) with 30 features (82.64% accuracy); the third is DS3 (frogs and insects) with 46 features 
(100.0% accuracy) and the fourth is DS4 (birds and insects) with 31 features (99.40% accuracy). 

L.M. Huancapaza Hilasaca et al.                                                                                                                                                                                                            
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the 5-k-fold cross validation strategy and 10% of instances per class. 
Fig. 5 presents the average accuracy results of the 10% Test subsets with 
the features normalized using Z-Score. We have also computed results 
with original features (without normalization) and with original fea
tures processed by min–max normalization, but Z-Score normalization 
provides the best results. Results were obtained from four learning 
models: Random Forest Classifier (RFC), K-Nearest, Neighbor classifier 
(KNNC), Support Vector Classifier (SVC) and Extreme-Gradient Boosting 
Classifier (XGBC). 

In this experiment, the best results were obtained using RFC learning 
model, with 30 features (89.91% accuracy) for DS1 (frogs, birds and 
insect); on the other hand, other models present results similar to RFC, 
such as the SVC model. In this case, either model may be employed, but, 
in order to select the best model, we have to evaluate the computational 
cost also. For this reason, RFC is the best model to learn acoustic data of 
the categories discussed in this work. 

For a deeper analysis of feature quality, the results of an extra study 
of the previous experiment are presented in Table 1. These results 
correspond to the 4 Training and Testing data sets, with accuracy of the 
training and testing, with their best n first score features. In this 
experiment, the percentage variation (10%,20%, 30%, 40% and 50%) is 
taken into account in the formation of Test set; the rest of the instances 
are employed for training, in which it is also used a 5-k-fold Cross- 
validation as a strategy to validate learning. Based on the accuracy of 
most results in the training, we can demonstrate the superiority of the 
Random Forest classification model. In variations of test percentages, we 
can also see the preservation of accuracy results. 

4.3. Visualizations 

After identifying the best features, multidimensional projection 
techniques were employed to visualize the dataset, allowing us to 
confirm the quality of the features. When projection-based visualiza
tions show greater separability, it can be inferred that the corresponding 
features are more discriminating. Fig. 6 illustrates the visualization re
sults employing t-SNE technique (visually the choice for segregation 
purposes) for the whole instance set, joining training and test sets. The 
results are presented comparing with the same visualizations generated 
with the most discriminating features and with all features (n = 238). In 
the pictures, the dots represent sound files, with blue for sounds labeled 
as frogs, pink for birds and green for insects instances. The Stress and 
Silhouette results also validate the quality of the visualizations. 

From the results, at the same time we can consider that a good vi
sualizations are produced from best features extracted and selected. 

5. Conclusions 

In this study, we were able to automatically classify the audio files in 
instances of three classes of interest: frogs, birds and insects. The pro
posed method generated a total of 238 features, indicating a large survey 
and analysis of features not carried out so far in relation to acoustic 
landscape audios. The proposed methodology has also allowed us to 
obtain 102 features as a result of a first visual analysis, after which the 
level of importance for each of them was assessed in the context of sound 
classification, issuing a set of relevant features for each of the target 
events. 

The Random Forest Classifier (RFC) learning model allowed the se
lection of the best features, with an average accuracy of 89.91%in the 
10% test subset for the classification of frogs, birds and insects. An 
extension of the experiments to simulate the binary classification 
reached the precision of 82.64%,100.0%and 98.80% for the classifica
tion between events of frogs-birds, frogs-insects and birds-insects, 
respectively. As the RF partitions the space recursively, making 
orthogonal cuts, this leads us to infer that RF captures information better 
when the classes of sound events are more spread out, justifying the 
accuracy values achieved in this study. Ta
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The learning models used also provide useful knowledge for future 
research. For example the SVC model when cutting the space by hy
perplanes, this indicates that if the space of features is very well formed 
and does not present overlap, as a result it generates accurate results. 
Therefore, it can be concluded that the classes are linearly separable. 
Therefore, in the DS3 dataset we can conclude that the most discrimi
nating features (first 23) identified with SVC provide relevant infor
mation when classifying anurans and insects, without resorting to more 
advanced methods such as RF. Additionally, we can infer that the 
discriminating features identified with the KNNC model can also be used 
in tasks of sound event retrieval, judged by the way in which the model 
performs the task of classification, as can be seen for the DS4 set. 

The analyzes allowed us to identify in a general way the most 
discriminatory features of the sound events under study, among them 
acoustic indices such as: Temporal Entropy (Ht), Spectral Entropy (Hs), 
Acoustic Entropy (H), Acoustic Complexity Index (ACI) and the Shannon 
Index (H′). We also highlight the MFCC, MEL cepstral features (coeffi
cient). Regarding the features extracted from the spectrogram image, 
those based on GLCM texture stand out. Identifying a set of more 
discriminating features is of great importance because it offers larger 
efficiency when carrying out classification tasks and we can infer that 
the discriminating features can provide better results in tasks of auto
matic labeling of sound events. 

This methodology can be used in future studies to verify accuracy of 
feature in locating events of interest. In particular one could verify 
whether classification methods are capable of differentiating between 
insect minutes and minutes of rain or strong wind, since these events 
have a high entropy index. Due to the challenge that is to deal with large 
audio datasets on the different phases of data handling, being able to 

pre-identify where in the raw data we have greater probability of vo
calizations of events of interest can significantly contribute with the 
advances of ecoacoustics research field. In the future, the proposed 
method could be applied to data sets with more categories of events and 
with features extracted directly from the audio signal through other 
methods, such as deep convolutional networks. 

As the identification problems becomes more specific, it is very 
important to be able to consider user’s knowledge in segregation tasks. 
We have recently developed visual tools for feature analysis and selec
tion based on correlation with target categorical attributes (Minghim 
et al., 2020; Artur and Minghim, 2019). In them, correlation as well as 
relevance of features are displayed in a similarity layout allowing the 
experts to select sub-set of features associated with particular occur
rences in the data. These tools will soon be adapted specifically to the 
soundscape ecology case, as a follow-up to the work presented in this 
paper. 
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Fig. 6. Visualization of data sets: columns from left to right show results for DS1, DS2, DS3 and DS4. In the 1st row (a-d) t-SNE projections are shown for the data sets 
with 30, 30, 46 and 41 best features respectively. 2nd row (e-h) shows t-SNE projections for the same data sets employing the complete set of 238 features. 
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