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Abstract
On the basis of the full analytical solution of the overall unitary dynamics, the time evolution
of entanglement is studied in a simple bipartite model system evolving unitarily from a pure
initial state. The system consists of two particles in one spatial dimension bound by harmonic
forces and having its free center of mass initially localized in space in a minimum uncertainty
wavepacket. The existence of such initial states in which the bound particles are not entangled
is discussed. Galilean invariance of the system ensures that the dynamics of entanglement
between the two particles is independent of the wavepacket mean momentum. In fact, as
shown, it is driven by the dispersive center of mass free dynamics, and evolves in a time scale
that depends on the interparticle interaction in an essential way.

PACS number: 03.65.Ud

(Some figures may appear in colour only in the online journal)

1. Introduction

Quantum entanglement, given its relevance as a resource
in the context of quantum information [1, 2], has been
extensively studied [3], mostly in contexts involving
non-interacting subsystems of composite quantum systems.
This is in fact the context in which the consequences of
the existence of non-classical correlations involving separate
subsystems were first quantitatively formulated by Bell [4], in
the wake of the seminal paper of Einstein et al [5]. Although
originally cast in terms of systems involving dynamical
variables with continuous spectra (position, momentum), the
basic issues involving non-classical correlations were soon
recast in terms of spin, or photon polarization degrees of
freedom, which were in fact the ones used in connection with
decisive experimental work [6]. On the conceptual side, the
focus on non-interacting subsystems (after mutual interaction
has taken place) has led to the important role played by
‘local (subsystem) operations’ in the characterization and
quantification of quantum entanglement [3, 7].

A major issue concerning the dynamics of entanglement
involves the effects of dissipative environment couplings,
leading, in particular, to the development of the ‘quantum
channel phenomenology’ for the dynamics of open
quantum systems [8–10]. However, the effects of internal
couplings on the dynamics of entanglement of subsystems
involving continuous dynamical variables have received
theoretical attention, notably in connection with scattering
situations ([11, 12], and [13] and references therein) and also
in connection with interacting particles bound in external
potential traps. Relevant issues in the latter connection have
been the role played by the interaction between subsystems
in determining the non-classical correlations between them
in stationary states [14, 15] and in affecting the dynamics of
entanglement in non-stationary situations [16].

In this work, we try to pin down further the role of
interparticle interactions in the dynamics of entanglement by
considering a simple model system in which their effect is
non-perturbatively strong and stationary. We thus consider
a Galilean invariant system of two distinguishable, mutually
interacting particles in one dimension and restrict the role
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of the interparticle interaction to that of maintaining a
stationary two-particle bound state. In a sense, this can be
seen as an extreme case of the resonant scattering effects
treated in [11]. We deal with states which are product states
of center of mass and relative variables and choose the
individual particle variables as the ‘local’ variables4 . The
initial state of the free center of mass is prepared as a Gaussian
wavepacket, so that the system is in a non-stationary state
which subsequently evolves dispersively under the free center
of mass Hamiltonian. This evolution induces a monotonic
increase in time of the entanglement of the two particles. The
associated time scale is independent of the center of mass
momentum and differs from that of the dispersive spreading
of the wavepacket, as it also depends on parameters related
to properties of the two-particle bound state and hence on the
interaction between the particles.

The paper is organized as follows. In section 2, the
characterization of the model system is given and its dynamics
is fully worked out analytically. The presence of entanglement
in the adopted initial states is also discussed. Section 3
constitutes the main body of the work. It is divided into
three subsections, dealing respectively with the independence
of the entanglement dynamics from the mean center of
mass momentum, with the entanglement properties within the
chosen manifold of initial states and with the time evolution of
the entanglement. Section 4 contains the concluding remarks.

2. Two decompositions of a flying two-body
bound state

The system we consider consists of a flying bound state
of two (spinless) particles in one dimension, the binding
being provided by a simple harmonic potential in the relative
coordinate of the two particles. If the masses and positions
of the particles are {m1, x1} and {m2, x2}, respectively, the
dynamics of the system is described by the Hamiltonian

H =
p2

1

2m1
+

p2
2

2m2
+
γ

2
(x2 − x1)

2

where p1 and p2 are the momenta canonically conjugated
to x1 and x2. These variables will be considered as the
‘local’ subsystem variables. The dynamics associated with
this Galilean invariant Hamiltonian is, however, much more
conveniently worked out in terms of (‘non-local’) center of
mass and relative variables

R =
m1x1 + m2x2

m1 + m2
, P = p1 + p2;

(2.1)

r = x2 − x1, p =
m1 p2 − m2 p1

m1 + m2
,

in terms of which it appears in the guise

H =
P2

2M
+

(
p2

2µ
+
µω2

2
r2

)
≡ HCM + Hrel.

4 The importance of the choice of the subsystem dynamical variables to be
considered ‘local’ in evaluating entanglement measures has been stressed
in [13].

Here the new mass parameters are, respectively, the
total mass M = m1 + m2 and the reduced mass µ= m1m2/

(m1 + m2). The oscillator frequency is ω =
√
γ /µ.

It is worth stressing that in both cases the system
maintains a composite character, but in the latter rendering
this reduces to two decoupled, ‘non-local’ (with respect to
the particle variables) parts [13]. The well-known stationary
solutions to the Schrödinger equation consist of the product
of a center of mass momentum eigenfunction with a stationary
state of the harmonic oscillator equation, the latter governing
the dynamics of the relative motion. Taking the relevant state
to be the oscillator ground state one has

9K (R, r)= eiK R 1

π
1
4

√
b

e−
1
2 (

r
b )

2

, b =

√
h̄

µω
.

Note that one faces here the well-known normalization
problem in the case of the continuous spectrum of the center
of mass Hamiltonian. We will not have to deal explicitly
with this, however, since we consider a (non-stationary)
normalized Gaussian wavepacket of width B and mean
momentum h̄K as the wavefunction describing the initial state
of the center of mass. The relative part remains in its chosen
ground stationary state, so that our normalized initial state is

9(R, r, t = 0)=
1

π
1
4

√
B

e−
1
2 (

R
B )

2

eiK .R 1

π
1
4

√
b

e−
1
2 (

r
b )

2

. (2.2)

The exact time evolution of this state under the assumed
Hamiltonian can be easily obtained analytically. Performing a
double Fourier transform on the initial state (2.2) before acting
on it with the evolution operator, one obtains

9(κ, ξ, t)= e−i Ht
h̄

∫
e−iκRe−iξr9(R, r)dRdr

= 4

√
Bb

π
e−

ih̄κ2 t
2M e−2B2(κ−K )2 e−i ω2 t e−2b2ξ 2

. (2.3)

We may now revert to ‘local’ subsystem variables
by means of the transformation κ = k1 + k2, ξ = (m1k2 −

m2k1)/M (see equations (2.1)), where k1 and k2 are the wave
numbers associated with the momentum eigenfunctions of
particles 1 and 2, respectively, and the result is

9(k1, k2, t)= 4

√
Bb

π
e

−ih̄t
2M (k1+k2)

2
e−2B2(k1+k2−K )2

× e−i ω2 t e−
2b2

M2 (m1k2−m2k1)
2

. (2.4)

Unlike the description in terms of center of mass
and relative variables, equation (2.3), this wavefunction in
general does not factor in terms of the particle variables,
indicating entanglement of the two particles. Wavefunction
factorization in the ‘local’ variables is, however, not altogether
excluded [17], as it does occur at t = 0 for the particular
choice B0 of the center of mass wavepacket width parameter
given by

B2
→ B2

0 =
m1m2

M2
b2

=
µ

M
b2. (2.5)

While it can be seen here as an artifact of the Gaussian
character of the assumed wavefunctions, it provides, on the
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other hand, a counter-example disallowing direct association
of dynamical correlations (here embodied in the two-particle
bound state) to entanglement. The factorized amplitudes of
the wavefunction cast in terms of the ‘local’ variables are in
this case

ψ1(k1)= N1e−2b2 m2
M k2

1 +4b2 µ

M k1 K and

ψ2(k2)= N2e−2b2 m1
M k2

2 +4b2 µ

M k2 K ,

where N1 and N2 are appropriate normalization constants. It
is apparent from these expressions that, while the quantum
kinematical property of amplitude factorization ensures lack
of entanglement, each one of the two factor amplitudes
involves parameters referring to both particles and has a
bearing on their dynamical correlation.

3. Dynamics of entanglement

We next examine the time dependence of the entanglement
of the two bound particles under the free dispersive dynamics
of their center of mass. For this purpose we first obtain the
reduced density matrix for one of the particles using the joint
wavefunction (2.4), i.e.

ρ(1)(k1, k ′

1; t)≡
∫

dk2 9(k1, k2, t)9∗(k ′

1, k2, t)

=
8BbM e

−
4K 2 B2b2m2

1
M2 B2+m2

1b2

π

√
M2 B2 + m2

1b2
e
−

h̄2 t2

16(M2 B2+m2
1b2)

(k1−k ′

1)
2

× e4K B2(k1−k ′

1)e
(µb2

−M B2)2

M2 B2+m2
1b2 (k1+k ′

1)
2

× e
2K B2 M

(
µb2

−M B2

M2 B2+m2
1b2

)
(k1+k ′

1)

× e−
2

M2 (M
2 B2+m2

2b2)(k2
1 +k ′2

1 )e
−

ih̄t
2

(
m1b2

M2 B2+m2
1b2

)
(k2

1−k ′2
1 )
.

(3.1)

The complementary reduced density ρ(2)(k2, k ′

2; t) can of
course be read off from equation (3.2) simply by replacing all
indices 1 by 2 and vice versa. In order to gauge entanglement
on the basis of the reduced densities, we evaluate the linear
entropy 1 defined as5

1(t)≡ 1 − Tr[ρ(1)(t)]2

= 1 −
1√

h̄2t2

16M2 B2b2 + (M2 B2+m2
1b2)(M2 B2+m2

2b2)

M4 B2b2

≡ 1 −
b

B

τB

τ

1√
1 + t2

τ 2

. (3.2)

As shown, the result is a simple analytical expression
for the time dependence of the linear entropy. In the
last expression, τB = M B2/h̄ is the characteristic time
associated with the dispersive spreading of the center of mass
wavepacket, and τ has been introduced as the characteristic

5 The quantity 1 −1(t), referred to as purity, or its inverse K =

1/(1 −1(t)), referred to as Schmidt number, are sometimes adopted instead
of 1(t).

time associated with the time dependence of the linear
entropy. It is given by

τ ≡ τB

√(
1 +

m2
1b2

M2 B2

) (
1 +

m2
2b2

M2 B2

)
, (3.3)

an expression which is symmetric under the interchange of
indices 1 ↔ 2, consistent with the fact that the same result for
the linear entropy is obtained if one uses ρ(2)(k2, k ′

2, t), instead
of ρ(1)(k1, k ′

1, t), in its evaluation.

3.1. Independence of center of mass momentum

A first, general feature to be noted in connection with the
expression obtained for the linear entropy 1(t) is that it
turns out to be independent of the mean center of mass
momentum K . This indicates Galilean invariance of the
dynamics of entanglement in the present case, and is similar
to what happens in connection with the dispersive spreading
of wavepackets in position space. Actually this feature can be
examined in very simple terms by considering the action of
the unitary center of mass momentum translation operator

G(ζ )= eiζ X
= eiζ m1 x1+m2 x2

M = G1(ζ )⊗ G2(ζ ).

The unitary factorization of G(ζ ) results from the fact
that the operators x1 and x2 commute. The action of this
operator on the Schmidt decomposition of the wavefunction
for the composite system then gives

G(ζ )9(k1, k2, t)=

∑
n

√
λn

(
G1(ζ )χ

(1)
n (k1, t)

)
×

(
G2(ζ )χ

(2)
n (k2, t)

)
,

showing that the amplitudes
√
λn , are preserved, while the

orthonormality of the associated subsystem wavefunctions
is preserved by unitarity. The eingenvalues of the reduced
densities are therefore preserved and so is, in particular, the
value of the linear entropy.

3.2. Initial state entanglement

The linear entropy (3.2), evaluated at t = 0, is given in terms
of the mass parameters m1, m2 and of the Gaussian width
parameters b, B as

10 ≡1(t = 0)=1−

[
B2

b2

(
1 −

b2

B2

m1/m2

(1 + mi/m2)2

)2

+ 1

]−
1
2

,

(3.4)

which, as shown, depends just on the two dimensionless
quantities B/b and m1/m2. Their value, supplemented by one
additional scale-setting quantity, which can be conveniently
taken to be the total mass M , completely determines particular
initial states of the assumed form (2.2). Note that the linear
entropy is independent of the scale setting, so that its behavior
over different domains in the considered manifold of initial
states may be mapped by analyzing 10 as a function of B/b
and m1/m2. A view of the behavior of this function in a
relevant domain can be seen as a surface plot in figure 1.

3



Phys. Scr. 85 (2012) 065002 F Pinheiro and A F R de Toledo Piza

0.45

0.5

0.55

B b

–101
log10 m1 m2

0

0.025

0.05

0.075

0.1

0

Figure 1. View of a relevant section of the initial linear entropy
landscape as a function of log10 m1/m2 and B/b. The section shown
here contains the point m1/m2 = 1, B/b = 0.5 where the valley of
1(t = 0) at m1/m2 = 1 for B/b > 0.5 branches into two valleys
where 1(0)= 0, separated by a ridge still at m1/m2 = 1, for
B/b < 0.5.

We now discuss some features of this initial entanglement
landscape, which can be scrutinized by analyzing equa-
tion (3.4) in some detail. First of all, one easily finds that,
for any given value of the mass ratio m1/m2, the relevant
extremum of 10 as a function of B/b occurs for B/b →
√

m1m2/(1 + m1/m2). Substitution back into the expression
for 10 shows that one has at these points 10 = 0. We
thus re-obtain, in the guise of the vanishing of the initial
value of the linear entropy, the parametric conditions for the
factorization of the initial wavefunction (see equation (2.5))
when cast in terms of particle variables.

All the possible values of B/b associated with this set
of unentangled initial states lie in the interval 06 B/b 6 0.5,
as follows from the range available for m1/m2, namely 06
m1/m2 <∞. They are therefore confined to a front vertical
slice of figure 1. In order to explore the behavior of the initial
value of the linear entropy for B/b > 0.5 one may fix the value
of this variable and study the dependence of the initial linear
entropy on m1/m2. What one finds in this way is that there is
an extremum at m1/m2 = 1 for all possible values of B/b, in
addition to two other extrema with m1/m2 values given by(

m1

m2

)
±

=
b2

2B2
(1 ±

√
1 − 4B2/b2)− 1,

which are real, non-negative numbers only for B/b 6 0.5.
It turns out that the extremum at m1/m2 = 1 is in fact a
(non-vanishing) minimum of the initial linear entropy for
B/b>0.5, which however becomes a maximum for B/b<
0.5. In this range, the additional extrema are the minima for
which 1(0)= 0, which have already been identified earlier.
The fact that there are two such minima is due to the symmetry
of the linear entropy under interchange of the masses m1

and m2. As a check on this, one can easily verify that
(m1/m2)−(m1/m2)+ = 1 for all values of B/b. At B/b = 0.5,
1(0) has a very flat minimum (a zero of the fourth order)
as a function of m1/m2 at m1/m2 = 1. These features are
displayed in figure 1, which covers the relevant domain of the
initial linear entropy landscape, namely 0.0316 m1/m2 6 31

0.425 0.45 0.475 0.525 0.55
B b

0.005

0.01

0.015

0.02

0 , m1 m2 1

Figure 2. A cut of the surface shown in figure 1 at the plane
α = m1/m2 = 1, showing values of the maxima (for B/b < 0.5) and
minima (for B/b > 0.5) of the initial linear entropy. The plotted
range of B/b is the same as in figure 1.

and 0.426 B/b 6 0.55. A cut of this surface graph, showing
the values of 1(0) at m1/m2 = 1 as a function of B/b, is
shown in figure 2. In this graph the ranges B/b < 0.5 and
B/b > 0.5 correspond, respectively, to a ridge and to a valley
in the 1(0) surface.

3.3. Time evolution of entanglement

The time dependence of the linear entropy measure
of particle–particle entanglement consists in a simple,
monotonic approach to the upper bound 1= 1 as seen in
equation (3.2). It involves an algebraic expression which is of
the same form as that which governs the dispersive spreading
of the center of mass wavepacket albeit involving a time scale
τ 6= τB . Since τB is the relevant time scale in the unitary
dynamical evolution of the initial state of the composite
system, it is both natural and convenient to use this time scale
to analyze the dependence of the characteristic time τ of the
dynamics of entanglement on the different initial states of the
form (2.2).

The quantity τ/τB is found from equation (3.3) to
be closely related to the initial state value of the linear
entropy (3.4). In particular, it is also independent of the scale
setting parameter M , and can be written explicitly as

τ

τB
=

b/B

1 −1(0)
=

[(
1 −

b2

B2

m1/m2

(1 + m1/m2)2

)2

+
b2

B2

] 1
2

.

(3.5)

This implies that the main general features of the 1(0)
landscape are essentially carried over to the τ/τB landscape,
as can in fact be seen in figure 3. One finds here the
same overall structure of valleys and ridges seen in the
corresponding initial linear entropy plot, in figure 1. As a
consequence of inversion and of an additional b/B factor,
however, one sees that τ/τB is bounded by unity below,
while 1(0) is similarly bounded above. For sufficiently large
values of b/B the characteristic time for the evolution of
entanglement becomes substantially longer than τB .

Note, however, that more tightly localized center of mass
wavepackets (smaller values of B) spread faster (have smaller
values of τB), so that this does not necessarily imply very long
‘absolute’ times for entanglement evolution. In fact, for given
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Figure 3. Closer view of the valley bifurcation at m1/m2 = 1,
B/b = 0.5 in the τ/τB landscape. Compare with figure 1.

M and m1/m2, the limit of very large b/B in equation (3.5)
gives

lim
b/B→∞

τ =
µb2

h̄
,

which is just the inverse of the oscillator frequency ω.

4. Concluding remarks

We have examined in some detail the quantum entanglement
of two particles in one dimension whose center of mass
evolves as a free Gaussian wavepacket with mean momentum
h̄K , when they are bound in the ground state of a two-body
harmonic interaction potential. While the occurrence of
entanglement is of no surprise in view of the strong mutual
dynamical correlations (e.g. in position space) of the two
particles [18], one can easily see in this case that the
entanglement may nevertheless be made to vanish in the
initial state by an appropriate choice of the width parameter
of the center of mass wavepacket. The fact that dynamically
correlated, e.g. bound, subsystems can, at least in this case,
be represented in unentangled form (which means being
represented by factorized amplitudes) indicates that the two
concepts are in fact distinct.

Given the stationary character of the bound state of
the two particles, the dynamics of their entanglement is
driven by the unitary, dispersive spreading of the center of
mass wavepacket. In particular, it comes out as independent
of the mean value of the center of mass momentum, a
fact which can be understood in terms of the preservation
of the coefficients in the Schmidt decomposition of the
two-particle wavefunction under center of mass boosts. The
presence and the properties of a two-particle bound state still
plays an essential role in the dynamics of the entanglement
of the ‘local’ particle variables, however. This may be
inferred directly from the fact that entanglement becomes time
independent if the binding harmonic potential is turned off,
since in this case time evolution amounts to unitary local
operations only [17]. Furthermore, the characteristic time τ
associated with the entanglement dynamics depends on the
bound state parameters. It has been shown, in particular,
that the quadratic decrease, as B → 0, of the characteristic
time τB for wavepacket spreading is not paralleled by

the characteristic time for the evolution of entanglement,
which approaches a finite limit involving properties of the
two-particle bound state.

One must also note that the monotonic increase in time
of both the spreading of the initial width B of the center
of mass wavepacket and of the linear entropy 1 used to
measure the degree of particle–particle entanglement hinge on
the particular choice made of the initial state. A still particular,
but different choice also leading to different behavior may be
devised by taking advantage of the time-reversible character
of the overall unitary dynamics. In fact, one may use as
an alternative initial state 9̃(k1, k2; 0); the time reversed
counterpart of the state resulting from our adopted initial
state (2.2) after it evolves for a time T , i.e.

9̃(k1, k2; 0)≡9∗(−k1,−k2; T ).

Due to time-reversal invariance of the overall dynamics,
the time evolution of this state is given as 9̃(k1, k2; t)=

9∗(−k1,−k2; T − t), so that the time evolution from
9(k1, k2; 0) to 9(k1, k2, T ) is traced backwards in time. As
a result, the center of mass wavepacket will shrink and the
linear entropy will decrease as t increases from 0 to T . In
particular, if9(k1, k2; 0) is a particle-factorizable initial state,
the linear entropy decreases smoothly from a non-zero value
to zero in the finite time T , as in the cases of the so-called
entanglement sudden death [19], but immediately and also
smoothly rebounds to a monotonic increase for subsequent
times.

Finally, it is worth stressing that our simple model system
accounts for instances of quantum states consisting of parts
which are strongly correlated dynamically but which are
nevertheless not entangled. This is, in a way, complementary
to the situation treated by Schrödinger [20], namely one
in which entanglement persists after interaction between
the two parts has ceased. Since entanglement correlations
establish at the level of amplitudes, both cases seem to
point to a picture in which entanglement is ultimately a
quantum kinematical feature even if circumstantially affected
by quantum dynamical processes.
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