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Abstract. Compared to elliptic curve cryptography, a primary drawback of lattice-
based schemes is the larger size of their public keys and ciphertexts. A common
procedure for compressing these objects consists essentially of dropping some of
their least significant bits. Albeit effective for compression, there is a limit to the
number of bits to be dropped before we get a noticeable decryption failure rate
(DFR), which is a security concern. To address this issue, this paper presents a
family of error-correction codes that, by allowing an increased number of dropped
bits while preserving a negligible DFR, can be used for both ciphertext and public-
key compression in modern lattice-based schemes. To showcase the impact and
practicality of our proposal, we use the highly optimized ML-KEM, a post-quantum
lattice-based scheme recently standardized by NIST. We provide detailed procedures
for tailoring our codes to ML-KEM'’s specific noise distributions, and show how
to analyze the DFR without independence assumptions on the noise coeflicients.
Among our results, we achieve between 4% and 8% ciphertext compression for ML-
KEM. Alternatively, we obtain 8% shorter public keys compared to the current
standard. We also present isochronous implementations of the decoding procedure,
achieving negligible performance impact in the full ML-KEM decapsulation even
when considering optimized implementations for AVX2, Cortex-M4, and Cortex-A53.
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1 Introduction

In 2022, NIST chose Kyber [ABD21], a lattice-based key-cencapsulation mechanism (KEM),
for standardization as ML-KEM [Nat24]. Like most modern quantum-resistant lattice-
based schemes, ML-KEM is very efficient, but the sizes of its public keys and ciphertexts
arc orders of magnitude larger than those of schemes based on elliptic curves. Although it is
possible to compress public keys and ciphertexts by dropping a few of their least significant
bits, there is a limit to how much one can compress them before decryption failures
start to occur. Such failures are a well-known sceurity concern [DGJH19,DVV19,GJY19]
and can be exploited by attackers to mount key-recovery attacks. Thercfore, designers of
lattice-based schemes usually employ error-correction strategies aiming to achieve negligible
DFR even when compression techniques are used.

Following Regev’s [Reg09] work, ML-KEM and other cfficient lattice-based schemes use
the same encoding scheme during encryption: cach bit b of the message is encoded into
Zq as b[q/2]. For higher performance, though, some schemes take extra steps to achieve
better error correction. For example, some lattice-based candidates in the first round of
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NIST’s post-quantum standardization process [AASAT19] apply distinct error-correction
codes to the message before encryption. LAC [LLZT 18] uses well-known BCH codes,
Round5 [BBFT19] uses a custom code named XEf [Saal8], and NewHope [AABT20]
uses repetition codes. Interestingly, a previous version of NewHope [ADPS16] used more
complex, 4-dimensional lattice codes, but those were replaced by simpler repetition codes,
which are casier to understand and analyze.

In an effort to improve Kyber’s performance, recent studies have explored ways to adapt
Kyber for the use of higher-dimensional lattice codes [Sal22, SLL21,LS23]. Unfortunately,
state-of-art techniques still come with significant limitations. For example, Liu and
Sakzad’s [LS23] approach assumes that the cocfficients of the noise polynomial accumulated
during decryption arc independent, which does not hold in practice and may result in
an overestimation of the scheme’s security [DVV19]. Meanwhile, although the work by
Saliba et al. [SLL21,Sal22] does not require independence assumptions, the resulting Kyber
variant has a larger ciphertext size. Moreover, all of these approaches [Sal22, SLL21, LS23]
require changing at least one of Kyber’s core parameters: the polynomial degree n and the
modulus g. Consequently, the resulting constructions cannot take advantage of Kyber’s
NTT-based efficient polynomial multiplications, a major feature behind the scheme’s high
performance.

Contributions. We present a new family of higher-dimensional error-correction codes,
called Minal codes, that are applicable to most modern lattice-based KEMs, including
ML-KEM [Nat24], Saber [DKSRV20], and NewHope [AAB20]. Our codes are designed
to be efficiently decodable in small dimensions and have two main benefits. First, unlike
other complex encoding schemes, Minal codes do not impose limitations on the underlying
scheme parameters (e.g., power-of-two moduli are not required). Second, our codes can be
tailored to the specific distribution of the error to be corrected for cach different target
scheme.

To demonstrate the practicality of our proposal in a concrete and challenging scenario,
we target ML-KEM, which is arguably the most important and highly optimized lattice-
based KEM available today. We show that Minal codes allow 4% to 8% shorter ciphertexts
for ML-KEM, without adding independence assumptions or requiring changes to the
scheme’s core parameters (unlike [LS23,Sal22,SLL21]), while maintaining ML-KEM’s DFR
close to the values targeted by the current standard. Actually, only our proposal for Level 3
requires one extra assumption, namely the hardness of the learning with rounding (LWR),
which is used by ML-KEM-512 (but not for the higher levels). Alternatively, our codes can
be used to obtain 8% compression of public keys in all sccurity levels. We also discuss how
Minal codes could enable previously unexplored parameter sets by lowering their DFRs to
negligible values. In addition, unlike previous work, we show such gains with isochronous
implementations for encoding and decoding, reinforcing the practical benefits of our codes.

The performance impact of our codes on ML-KEM’s decapsulation is evaluated by
considering optimized implementations for AVX2 or running on Cortex M4 and A53
processors. In most of the platforms considered, the impact on decapsulation remains below
1%, much lower than the benefits in terms of ciphertext or public key compression. Our
code and data are publicly available at https://github.com/thalespaiva/minal mlkem.

2 Background and setup

Notation and background. Tor any prime g, we write Z, to denote the field of integers
modulo g. When n is a fixed positive integer, we let R, denote the polynomial ring
Zg4|z]/(z™ + 1). Then, R‘:’f is the module of rank k& whose scalars are polynomials in R,.

Polynomials a € R, arc denoted using lowercase letters. Vectors a € R;‘ and matrices
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Ac R(":x"“ arc denoted in bold using lowercase and uppercase, respectively, where £ = 1.
When u, v € R‘:’f, we let (u,v) € R, denote their dot product.

Given a polynomial @ € Ry, the function poly_to_vec rcturns its n cocfficients
as a vector in Z;‘. In other words, given a = ag + a1z + ... + ap_12™ "1, we have
a = poly_to_vec(a) = [an? [ S an_l]. With a slight abuse of notation, we denote the
i-th cocfficient of a polynomial a € R, associated with the power z*, by cither a; (when
discussing the polynomial form of a) or by a[i] (when discussing its vector equivalent).
Tuples of cocfficients from a polynomial a are denoted by aliq, . .., i,] = (ali1], - - ., alin])-
We denote by B, the centered binomial distribution (CBD) with range [—n, 7).

The circulant matrix generated by a vector a € Z™ is the n x n matrix whose first row
is a, and cach subsequent row is a right circular shift of the row above it. Let negashift,
be the function that returns the i-th column of the negacyclic matrix generated by the
cocfficients of a given polynomial. For example, if @ = ag + a1z + ... + @n_12™ 1, then
negashift;(a) = [(I.g, B (T P —aH_]] . With this notation, we can represent the
product of polynomials a and b in the negacyclic ring R, using its vector form, whose i-th
coefficient is given by poly_to_vec(ab)[i] = (poly_to_vec(a),negashift (b)) .

The centered modulo operation, denoted as o’ = a mod? q, returns the unique in-
teger @' = amod g such that —|(g—1)/2] < o’ < [(¢—1)/2]. The distance mod-
ulo g between points vy and vy is defined as dist,(vq,va) = “(vl — vg)mod : q“. We
write y = Compress(z,d) to denote the lossy compression of x to d bits defined as
Compress(z,d) = [(2‘1/ q)’r] mod 2¢, where |-] is the rounding function that rounds up on
ties. The decompression is defined as 2 = Decompress(y, d) = L(Q/Q‘I) y—| . The error |z’ — x|
caused by (de)compression is then almost uniform over the set {— Lq/ 2‘“‘1J . [q / 2‘“’1] },
with possibly some slight skewness when ¢ is not a power of 2.

Experimental setup. To ensurce a broad evaluation, our experimental testbed covers three
types of platforms: Intel AVX2, ARM Cortex-A53, and ARM Cortex-M4.

To obtain the AVX2 cycle counts, we considered the latest AVX2 implementation
provided by the Kyber team [ABD*21| running on an Intel Core i7-8700 (Coffee Lake)
CPU with a base frequency of 3.20GHz. The code was compiled using gec version 14.2.1
with flags -03, -march=native, -mtune=native, and -fomit-frame-pointer. We report
the median cycle count of 10,000 executions.

For Cortex-Ab3, we used the AArch64-optimized Kyber implementation from
PQClean [KSSW22, commit 0c5bb14|, running on a Raspberry Pi Zero 2W [Ras24].
The compilation was done using aarch64-none-1linux-gnu-gcc v.13.3.1 with flags -03,
-mcpu=cortex-ab3, and -mtune=cortex-ab3. Ior cycle count benchmarking, we used the
Performance Monitors Cycle Counter (PMCCNTR_ELO) to measure the average of 10,000
runs.

For Cortex-M4, we used the m4fspeed version of pgméd [KRSS19, commit cdaé1£b], and
measured the performance on an STM Nucleo-F439ZI board [STM24]. The compilation
cmployed arm-none-eabi-gcc v.13.2.1 with the following flags: -03, -mcpu=cortex-m4,
-mfpu=fpv4-sp-d16, -mfloat-abi=hard, and -mthumb. For cycle counts, we used the
Data Watchpoint and Trace (DWT) registers to get the average of 100 runs.

3 ML-KEM

This section reviews ML-KEM’s parameters and algorithms, ending with a discussion on
alternative encoding mechanisms that are related to our construction.
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Table 1. ML-KEM parameters for cach sccurity level [Nat24].

Ciphertext

NIST security Parameter set kE m 12 du size (bytes) DFR
Level 1 ML-KEM-512 2 3 2 10 4 768 2 1391
Level 3 ML-KEM-768 3 2 2 10 4 1088 2 1652
Level 5 ML-KEM-1024 4 2 2 11 5 1568 2 1782

3.1 Parameters and algorithms

ML-KEM is a lattice-based key encapsulation mechanism (KEM) whose security relies
on the intractability of the module learning with errors (MLWE) problem. Essentially,
it enables two parties to establish a shared 256-bit secret. In what follows, we present a
slightly simplified version of ML-KEM that, although lacking some details, is sufficient for
our discussion. In particular, we describe only the underlying algorithms that make the core
of ML-KEM sccure against chosen-plaintext attacks (CPA), ignoring the implicit-rejection
Fujisaki-Okamoto (FO) transformation that protects the scheme against adaptive chosen-
ciphertext attacks (CCA) [FO99, HHK17]. Furthermore, we omit the optimizations based
on the number theoretic transform (NTT) that arc part of the ML-KEM specification.

Setup. ML-KEM supports NIST sccurity levels 1, 3, and 5 [Nat24]. For all security levels,
it fixes parameters ¢ = 3329 and n = 256, defining the polynomial ring Ry = Z,[z]/(z™ 4 1)
over which most operations are performed. This benefits crypto-agility, as any optimization
or hardware acccleration for operations in R, can be reused for all sceurity levels. Given a
desired sccurity level, the setup takes public parameters k, 1, 72, dy, and d,, from Table 1:
k defines the sizes of the modules used in the scheme; 1y and 75 define the centered binomial
distributions B, and B,,, used to generate cocfficients with small norm in Z,; and integers
dy and d,, are the number of bits into which coefficients from the two parts of the ciphertext
arc compressed. Table 1 also shows the upper bounds on the decryption failure rate (DFR)
for cach parameter set, as computed using the Kyber sccurity scripts [DS21].

Key generation. Let A be a k x k matrix of polynomials sampled uniformly at random
from R,. Sample two vectors s and e from B, (Ii’.j) , L.e., the cocfficients of their polynomials
are sampled according to the centered binomial distribution B,,. Compute vector t =

As+ece R‘:’f . The resulting public key is (A, t), while the private key is the vector s € Rz.

Encryption. Let m be an n-bit message to be encrypted using public-key (A, t). Sample
vectors r and e from B, (Rfl‘) and B,, (Rfl‘) , respectively. Similarly, sample a polynomial
ey from B,,(R,). Let u = ATr + e;. Compute polynomial z = (t,r) + 3. Let v =
Encode (m) + z, where the encoding function, when applied to cach bit b of m, returns
Encode (b) = b[q/2]. Compress the coefficients of vector u and polynomial v to d, and
d, bits, respectively, obtaining ¢, = Compress(u,d,) and ¢, = Compress(v, d,,). Finally,
return the ciphertext (cy, ¢y)-

Decryption. To decrypt ciphertext (cy, ¢,,) using sceret key s, first decompress the cipher-
text components to obtain u’ = Decompress(cy, dy) and v’ = Decompress(ey, d,, ). Com-
pute m’ = v'—(u’, s). Let Au = Decompress(cy, dy) —u and Av = Decompress(c,, dy,) —v.
We can then write m’ = Encode (m) + Am, where the accumulated noise polynomial Am
is given by Am = (e,r) — (s,e; + Au) + ez + Awv.

ML-KEM'’s parameters are carcfully chosen to ensure that polynomial Am has only rela-
tively small coefficients. The message can then be recovered by computing 2 = Decode ('),
where the decoding function, applied to cach coefficient of the noisy polynomial m/, returns
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Table 2. The DFR and ciphertext sizes obtained by Saliba et al. [Sal22, SLL21].

. Ciphertext ) Relative  Relative AJ:l\-rauLagL'.'-;
Security q .- (bytes) DFR . hertext size  DFR (ciphertext
SlZC wyies clpheriexth s1Zc . SiZL‘, El.I].d DFB)
Level 1 211 832 27133 108.3% 2¢ None
Level 3 211 1184 27174 108.8% 210 Better DFR
Level 5 211 1600 2137 102.0% 237 None

0 or 1, depending on whether m/[i] is closer to 0 or to q/2, considering distances modulo q.
More formally, Decode (m/[i]) = 0 if |m/[i] mod*q| < [¢/4], otherwise Decode (m’[i]) = 1.

3.2 Security and decryption failure rate

ML-KEM'’s design and sccurity analysis revolve around finding parameters that ensure
the MLWE problems protecting the secret key and the ciphertext are hard to solve while
maintaining a negligible DFR. To facilitate the scheme’s security analysis, the Kyber team
provided public seripts [DS21] that compute the complexity of known attacks, which is
obtained through the core-SVP hardness metric [ADPS16], and the resulting DFR.

The parameters having the most impact on the MLWE security are the modulus ¢, the
degree n, and the module dimension &, together with the parameters n; and 72 that control
the noise added to the LWE samples. Albeit not as much, the ciphertext compression
paramcters dy, and d, can also affect sccurity. In particular, under the learning with
rounding (LWR) hardness assumption, increasing the deterministic compression noise
improves sccurity. This is explored in the choice of ML-KEM-512 parameters to reduce
ciphertext sizes, making it the only parameter set whose security is based both on the
hardness of LWE and on an LWR-like assumption.

A nceessary condition for a KEM to provide CCA security is to resist attacks exploiting
decryption failures [DGJT19,GJY19]. For a given parameter sct, the DFR is algorithmically
computed as follows. Since cach coefficient Am[i] follows the same distribution, we
can start by computing the distribution of Am[0]. This is done by considering the
sums of the distributions corresponding to the right-hand side of the following equation
Am|0] = (e,r) [0] — (s,e1 + Au) [0] + e2[0] + Av[0], which are casy to compute. Then, an
upper bound on the DFR is computed using the union bound as Pr (Decryption fails) <
n Pr (lAm[O] mod” ql = q/4). Table 1 shows the DFR values achicved by ML-KEM as
computed using the scripts provided by the Kyber tcam [DS21].

3.3 Previous work on alternative encoding methods for Kyber

Like our work, some recent studies present strategies to use higher-dimensional codes in
Kyber variants. One example is [LS23], which relies on lattice codes with dimensions 16 and
24. The authors claim to improve both the DFR and the ciphertext size, but they require n
to be changed, preventing the NTT-based multiplication. Morcover, their work, like most
proposals for error correction in lattice-based schemes, requires independence assumptions
on the coefficients of the noise polynomial Am, which do not hold in practice and are
known to cause potentially dangerous underestimation of the DFR when error-correction
codes are used [DVV19]. In particular, these assumptions would break Kyber’s DFR
arguments from Section 3.2, so it would be hard (if at all feasible) to adapt [LS23] to
Kyber’s design.

More closely related to our work is the approach taken by Saliba et al. [SLL21], which
is explained in depth in Saliba’s PhD thesis [Sal22]. They propose a variant of Kyber
based on reconciliation, which, in lattice-based schemes, refers to a procedure in which
the sender and receiver produce the same shared string from different noisy versions of it.
This contrasts with the encoding-decoding paradigm, where the intended shared message



144 Tailorable codes for lattice-based KEMs with applications to ML-KEM

is predefined.  Their construction uses 8-dimensional lattice codes and does not require
independence assumptions, so it can be seen as an extension of the original NewHope’s
DFR. analysis [ADPS16,PSSZ22] to Kyber. While Saliba ct al. [Sal22, SLL21] delivers
between 10 to 15 extra bits of LWE sccurity for Kyber’s three security levels, their approach
has a few practical shortcomings, listed in Table 2. One of the main issucs is that the
values of the modulus g are powers of two, which means they cannot use the NTT for
polynomial multiplication. Furthermore, their scheme increases the ciphertext size in all
sccurity levels, while the DFR is increased in levels 1 and 5. For example, compared with
Kyber, there is a noticeable inerease in the DFR for level 5, by a factor of 237,

In summary, since the approaches found in the literature [Sal22, SLL21, LS23] on
alternative Kyber encoding mechanisms require changing n or g, they do not benefit from
a core feature in Kyber: the fast NTT-based multiplication. Moreover, their proposal’s
performance is not reported, and we could not find any public implementation for an
independent evaluation.

4 Minal codes: Tailorable codes for lattice-based schemes

In this scction, we introduce the family of Minal codes.! Our codes can be defined for
any dimension g = 2 and encode binary p-bit messages into clements of Zg. However, for
cryptographic implementations, we are mostly interested in low-dimensional Minal codes
(c.g., 2 < p < 8), for which we obtain cfficient decoders. First, we discuss the motivation
for higher-dimensional codes and then present the formal definition of Minal codes.

4.1 Motivation

Consider ML-KEM’s mechanism for encoding a message into a polynomial. We can treat
it as a two-dimensional code by pretending it encodes a pair (bg, b1) of message bits into
cocfficients (b [q/2],b1[q/2]) € Zi. This is illustrated in Figure 1a, where dots denote the
codewords, and the circles around them show the radius of minimum distance decoding.

Figure 1a highlights one limitation of ML-KEM'’s code: it leaves too much uncovered
spacce under its minimum distance. To support denser codes in 2 or more dimensions, one
possible solution is to use a lattice code, such as the one illustrated in Figure 1b. Lattice
codes are well-known to be useful for correcting Gaussian noise, or errors that have a short
Euclidean norm. However, it can be difficult to use them directly in lattice-based schemes
because, in general, they are not periodic in Zff. To sce why this is a problem, consider
what happens when one adds (g, g) to the (0,0) point to the lattice shown in Figure 1b.
Ideally, since ML-KEM'’s operations are done in Zg, we would like (g, g) to result in a point
encoding (0,0), however, the resulting point is not a codeword, and the closest codewords
to it are encodings of (0,1) and (1,0). Notice that, since the 2D view of ML-KEM’s code
illustrated in Figure 1a is periodic in Zﬁ, this problem is avoided.

Previous proposals [Sal22,SLL21] handle this issue by changing the parameter q to
powers of 2, so it is casy to employ an 8D lattice that is periodic in Zg. While this allows
such proposals to exploit the lattice structure when proving the DFR of the resulting
scheme, these values of ¢ significantly impact ML-KEM’s performance, because fast NTT
multiplication would no longer be available. Furthermore, the resulting scheme has larger
ciphertexts.

To overcome such shortcomings, in what follows, we introduce a new family of higher-
dimensional codes, called Minal codes, that can be scen as an intermediate between
lattice codes and ML-KEM’s code (sce Figure 1¢). By construction, we enforee that our
p-dimensional code is periodic in Zf. Furthermore, our code’s structure is not as rigid
as ML-KEM’s code: our code uses a tailoring parameter that allows the position of the

IThe name Minal is an acronym for Minal is not a lattice.
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Figure 1. Comparison between the original ML-KEM code seen as a 2D code, a denser
lattice code, and a Minal code. The shaded arcas represent the Zf, squarc.

codewords to change. This results in codes that are more efficient at correcting errors from
the particular error distribution observed for the target lattice-based schemes.

4.2 Definitions and properties

We begin with a formal definition of Minal codes.

Definition 1 (Minal code). Given an integer g2 2 2, a prime number ¢, and a non-negative
integer 8 < q/2, the p-dimensional Minal code with parameter 3 over alphabet F, is the
infinite set of points defined as M = {Gm + gz : z € Z* and m € Z§}, where G € Z#*#
is the circulant matrix generated by [|g/2], 8,0, ...,0]. Matrix G is called the generator
matrix of M and /3 is called the tailoring parameter. We say that ¢ encodes a p-bit message
m € Z4 when ¢ = Gm + gz, for some z € Z*. (I

A natural consequence of Definition 1 is that, by sctting (g, 8) = (3329,0), we get
p~dimensional Minal codes that are equivalent to the code used by ML-KEM. Furthermore,
notice that the simple definition of Minal codes can mislead one to think that they have a
linear structure. However, unlike linear codes or lattice codes, Minal codes do not even form
groups, as these sets are not closed under addition. For concreteness, take two codewords
¢1 = Gmy + gz; and cq = Gy + gzo. Their sum ¢ + co = G(my + ms) + g(z1 +z2) is
not always a codeword because m; + mg is not guaranteed to be in Z%.

Since the structure of Minal codes is periodic over Z#, we consider that the main repre-
sentative of cach codeword lics in Z4. In addition, to measure the distance between elements
of Z#, we use the distance modulo ¢ metric, defined as dist,(vq,va) = ||{v1 — vy ) mod : q||
We can then define the minimum distance decoding under the dist, metric as follows.

Definition 2 (Minimum distance decoding). Let M be a p-dimensional Minal code over F,
with generator G, and suppose we are given a vector t € Z*. A minimum distance decoder
is an algorithm that finds the point m = Decode (t) € Z5 that minimizes disty(t, Gm),
that is, the distance between t and the codeword corresponding to m. (I

Interestingly, Definition 2 implicitly defines a simple algorithm to decode a vector
t € Z*: iterate over all possible m € Z4 to find the closest codeword to t. While this
algorithm’s complexity is clearly exponential on the dimension g, it is efficient in small
dimensions. In fact, this is the decoder we use in Section 5.1 for decoding 4D Minal codes
that can be applied to ML-KEM. Morcover, in Section 5.2, we also show a more efficient
decoder that is specific for g = 2. Naturally, minimum distance decoding is more effective
when codewords are farther apart. This motivates us to compare different codes based on
the widely used minimum distance property, which is defined next for Minal codes.
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Definition 3 (Minimum distance). The minimum distance of a p-dimensional Minal code
M over F,, denoted as dist (M), is the smallest distance between different codewords in M.
Formally, we have dist (M) = min{dist,(Gm;, Gms) : m;,my € Z§ and m; # my}. [

Figure 2 shows that higher-dimensional Minal codes, when the tailoring parameter 3 is
adequately chosen, can have much larger minimum distances. Interestingly, we observed
that 8 has a deeper application: it can be further tuned to provide better codes for different
crror distributions that appear in a target scheme. For example, we observe that the best
g for a 4D Minal for ML-KEM-512 is different than that for ML-KEM-1024. The next
section explores this in more detail, showing tailoring procedures for finding the best value
of 4 in a way that minimizes the code’s DFR for a given error distribution.

4.3 Tailoring Minal codes for lattice-based schemes

In most lattice-based schemes, the accumulated noise that needs to be corrected during
decryption is a sum of two components. The first is an approximately normal distribution
stemming from the sums of products of polynomials with a small norm. The second,
present in schemes allowing ciphertext compression, is an approximately uniform com-
ponent resulting from the decompression error. For concreteness, notice that the error
polynomial Am in ML-KEM indeced consists of an approximately normal factor, coming
from ({(e,r) — (s,e; + Au) + e3), and a somewhat uniform term resulting from Aw.

Although it might be tempting to pick the code with the largest minimum distance, the
best choice actually depends on the overall shape? of the error distribution. For example,
for a normally distributed noise, the code with the largest minimum distance is indeed the
best. However, if the noise is uniform in a region, then ML-KEM’s original code would be
a better choice. In what follows, we evaluate how to find the optimal tailoring parameter
£ under two settings. First, we consider the case in which we are able to fully determine
the distribution of the noise. In this case, a simple exhaustive search for the parameter
that minimizes the DFR gives us very good results, but this can only be done for small
dimensions. In particular, for ML-KEM, this approach only works for 2D. We then show
how to find § in larger dimensions without the need for the full noise distribution.

Tailoring in 2D using exhaustive search. In this case, we assume that the multidimen-
sional noise distribution is efficiently computable and known. Using the noise distribution,
we find the parameter 8 that minimizes the DFR using a simple exhaustive scarch. While

2More formally, we can consider the level curves of the error’s probability distribution. This means that,
if the error is normally or uniformly distributed, it’s overall shape is a sphere or a hypercube, respectively.
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Figure 4. Level curves of 2D noise distribution corresponding to probability 27128 for
different values of d,, in ML-KEM-1024. The values of p show the p-norms where the shape
is closcly approximated by a circle.

this simple approach can be very effective, it does not scale well for dimensions higher
than 2 because, in these cases, it is very expensive to compute the full noise distribution.

For a concrete example, we consider the noise distribution for ML-KEM, which can be
computed using the approach described in Section 6.2. The following experiment shows
how the best value of 3 varies depending on the noise distribution. For ML-KEM-1024,
we changed parameter d,, from 1 to 12, and computed the DFR of 2D Minal codes using
£ =0 to 500. Figure 3 depicts our results.

We can make two important observations. First, we clearly sce that the best values of
£ get larger when increasing d,,, although with diminishing returns. Sccond, we see that
the DFR improvement compared to ML-KEM’s code (8 = 0) is more noticeable for higher
values of d,,. Both of these stem from the fact that, by increasing d,,, we progressively
lower the uniform component of the noise, increasing the effectiveness of codes with higher
minimum distances. Interestingly, even for a code with only 2 dimensions, we can see that
tailoring has a major impact on the DFR, taking the DFR of ML-KEM'’s original code
(8 = 0) from 271924 down to 2729°® for the best tailored code (8 = 445) when d,, = 8.

Tailoring in higher-dimensions using p-norms. We now discuss how to find a good
parameter 3 for g-dimensional codes without having to compute the joint distribution in
2 dimensions. Qur main observation is that the shape of the discrete level curves in the
joint distribution of the noise can be approximated by cireles in the p-norm. Concretely, if
the noise distribution is approximately normal, then p is close to 2, corresponding to more
circular level curves. Alternatively, if the uniform component of the noise is very strong,
then p will be higher, leading to level curves shaped as squared cireles.

Figure 4 shows how d,,, which is the main parameter controlling the intensity of the
uniform component of the noise, impacts the overall shape of the level curves corresponding
to 27128 when the other parameters are those adopted by ML-KEM-1024. It is interesting
to consider both Figures 3 and 4 together, which provides a clearer picture of the relation
between the optimal values of 8 and the overall shape of the noise distribution.

Figure 5 shows how the p-norm that best approximates the shape of the noise distribu-
tion impacts the shape of the best code. Intuitively, for a given error distribution whose
shape is an approximate circle in the p-norm, the best p-dimensional Minal code should
provide a good packing of p-dimensional spheres defined in the corresponding norm.

We then propose the following steps to find the optimal value of 3.

1. Compute the 1D noise distribution D. This is efficient for most modern schemes —
e.g., Kyber [ABDT21] and Saber [DKSRV20| provide scripts for this task.

2. Build the set of 2D points P = {(z,x3) : D[z;] - D[zy] = 27%}. The st P € Z2
approximates the level curve corresponding to probability 27 in 2D, where 27 is
close to the DFR values we want to achieve.

3. Find the value of p that best approximates the points in P as a circle in the p-norm.

4. Find the parameter 3 of the p-dimensional Minal code that maximizes the minimum
distance with respect to the p-norm.
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(a) Minal code with 8 = 446, (b) Minal code with g = 339, (c) Minal code with 3 = 111,
which is the best for p = 2. which is the best for p = 3. which is the best for p = 10.

Figure 5. Best codes depending on the p-norm closest to the noise distribution.

In this paper, when implementing step 2, we use k& = 128 for all parameters as it
makes the procedure casier to implement and appears to provide reasonably good results.
Notice that while there is an implicit independence assumption to approximate the 2D
distribution using the 1D distribution D, it does not have any sccurity impact because we
arc only using it to get a reasonable value for 8. The DFR of the resulting code will be
derived later without requiring any independence assumptions. For step 3, we choose p
that minimizes the variance of the p-norm for the points in P. Intuitively, if we treat cach
point in P as a radius, we want the norm in which the radii vary the least.

Step 4, which effectively finds the best tailoring parameter 3, can be implemented by an
exhaustive search (similar to what was done for the 2D case). However, for large dimensions
ft, the computation of the minimum distance in Minal codes may be time-consuming. We
can do better if we assume that the minimum distance is a unimodal function of 3, i.c.,
starting from 8 = 0, the minimum distance increases until it reaches an optimal value,
and then it decreases. We observed this property in our empirical tests, and, in particular,
it appears to hold for g = 2 dimensions and p = 2 (sce Figure 2). However, formally
proving unimodality for any dimension and p-norm does not seem trivial. Nevertheless, by
assuming unimodality, we implemented step 4 using a ternary scarch, which is the optimal
scarching algorithm in this case. Since our Python implementation of this procedure
provides good results for 3 in dimensions g < 10, we leave a more formal treatment of our
heuristic assumptions for future work.

5 Implementation and performance

This section describes the practical aspects of our Minal codes, allowing us to achicve
cfficient implementations by following isochronous programming practices to protect against
timing attacks. We remark that the encoding using Minal codes is rather trivial: every row
of the generator matrix has only two non-null entries, so the encoding complexity per bit
is independent of the dimension. Hence, this section only describes how decoding can be
efficiently implemented, whereas the companion implementation contains both operations.

5.1 General decoding algorithm

For concreteness, this section describes the general decoding algorithm induced from
Definition 2 by using 4D Minal codes as basis — see Algorithm 1. We emphasize, however,
that the same approach can casily be extended to other dimensions while still following
isochronous implementation practices. Indeed, in the accompanying code, we provide a
generic implementation of the decoding algorithm that works for 2D up to 16D.

To decode a 4D point t € Zj, we need to find m € Zj that minimizes dist,(t,Gm) =

||{t — Gm) mod* ql

, where G is the generator matrix of the Minal code. For the reference
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int16_v CW_COORD_VALUES [4] = {0, CODE_BETA, KYBER_Q/2, CODE_BETA + KYBER_Q/2 - KYBER_Q};

3 int32 v centered_mod_sqr(int32 t value) {

1 uint32 ¢ mask_sign = value >> 31;

] value "= mask _sign;

[} value += mask_sign & 1; // Result: value = abs(value)

7 value -= KYBER_( & lower_than mask (KYBER_Q/2, value); // Result:+-(value center_mod gq)
& return value # value; // Result: (+- (value center_mod q))~2 = (value center_mod gq))~2
9 }

10 wint32 v dist_sqr_to_codeword(uintlé t idx, uwint32 t dist_sqr_matrix[4]1[4]1) {
11 int32_t a0 dist_sqr_matrix [0] [CODEWORDS [idx][0]1];
12 int32_t al dist_sqr_matrix[1] [CODEWORDS [idx]1[1]1];
13 int32_t a2 dist_sqr_matrix[2] [CODEWORDS [idx]1[2]1];
14 int32_t a3 dist_sqr_matrix [3] [CODEWORDS [idx]1[3]1];

= 0

15 return (a0 al + a2 + a3) << 4 | idx; // Returns ‘distance_sqr | codeword_index®
16 }

17 int decode_minal 4d(intl6_t target[4]) {

18 // Build memorization matrix with square distances to target coordinates

19 wint32 v dist_sqr_matrix[4]1[4] = {0};

20 for (int i = 0; i < 4; i++) {

21 for (int j = 0; j < 4; j++)

22 dist_sqr _matrix[il[j] = centered_mod_sqr(target[i] - CW_COORD_VALUES[jl);

23 }

24 wint32 t min_dist_codeword = dist_sqr_to_codeword(0, dist_sqr_matrix);

25 for (size_t i = 1; i < 16; i++)

26 min_dist_codeword = secure_min{(dist_sqr_to_codeword(i, dist_sqr_matrix), min_dist_codeword);
27 return min_dist_codeword & 0xF; // Extracts the codeword index part

28 }

Algorithm 1. Isochronous implementation of decoding in 4D Minal codes.

ML-KEM implementation, we can assume that t € [—|q/2], [¢/2]]* is already reduced
modulo g and centered at zero.? Our implementation is based on two observations. First,
since the generator matrix is sparse and circulant, there are only four possible values for the
coordinates of cach codeword, represented by the array CW_COORD_VALUES. The distance
between the target and cach codeword can thus be computed more efficiently by using
memorization of the partial squared distances between their coordinates, stored in the
4 x 4 matrix dist_sqr_matrix. The seccond obscrvation is that we do not need a generic
reduction algorithm, such as Barrett’s reduction, because the difference between coordinates
in [—|q/2], [g/2]] is in [—q, q] and we only need the squares of the distances. Therefore,

we use a custom function centered_mod_sqr that, on input z, returns (:r mod? q)2.

We can then implement the function dist_sqr_to_codeword that uses the memoriza-
tion matrix to compute, for a given message index idx € {0, 15}, the square of the distance
modulo ¢ between the target and the codeword associated with the binary expansion of
idx. Using the secure_min function that isochronously computes the minimum between
two values, the general decoding is done by iterating over each of the 16 possible messages.

The runtime of Algorithm 1 grows exponentially in the number of dimensions p, as,
in general, the loop in line 25 runs from 7 = 1 to 2*. However, even for more than
4 dimensions, the performance of this decoder is comparable to state-of-the-art error-
correction codes used in PQC. For example, the decoder of HQC’s [MAB™21] optimized
AVX2 implementation uses around 660 cycles per decoded bit. This is close to the 600
cycles per bit we observed when decoding 9D Minal codes.

5.2 Decoding 2D codewords using approximate Voronoi cells

For 2D decoding, we propose a custom algorithm that is more efficient than the generic
approach from Section 5.1. We begin by observing a symmetry, illustrated in Figure 6a,
that can be exploited for decoding. We can sce that, by construction, the codewords of
the Minal code M with parameter 8 are symmetric over the identity line, which separates
the [—q/2,q/2]? square in two triangles.

Because of this property, if a point is closer to a codeword associated with (1,0) in the
upper triangle, it will be closer to a codeword associated with (0,1) in the lower triangle

3In some implementations (e.g., and pqind), it is more convenient to use t € [0, )7, but this can
31 1 tat AVX2 and 1), it tt t € [0,q)*, but t
be accommodated by the algorithm with minor changes.
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a/2 0 a/2
(a) Symmetry used for decoding a (b) Lines #; for decoding in the
point x in the upper triangle. lower triangle.

Figure 6. The geometric properties of our codes used during decoding.

and vice-versa — e.g., see point x in Figure 6a. However, we can also sce that closeness to
codewords associated with (0,0) and (1,1) is preserved by reflection around the identity
line. Therefore, we only need a way to efficiently decode points in the lower triangle.

For the sake of building our argument for our optimized strategy, assume for a moment
that q is divisible by 2. In this setting, we can construct the Voronoi cells of each codeword
relevant for decoding points in the lower triangle, as illustrated in Figure 6b. By the
definition of M, the points whose Voronoi cells intersect the lower triangle, which are
shown in Figure 6b, arc defined as:

A= (q/2+B,q/2+ B), B =(0,0), C=(B-4q/2,8—q/2),
D = (¢/2,8), E = (8,—q/2), F = (q/2+B,—q/2+p).

The Voronoi cells intersecting the lower triangle can be defined by the perpendicular
bisector lines, which we call #;, between the codewords and their neighbors. First we define
¢4, £4 and ¢ as the biscctors between pairs (A, D), (B, C), and (C, E), respectively. Now,
since we assume q is even, the sct of codewords {B, D, E, F'} forms a square, so line 3 is
the bisector of the pairs of points (B, E) and (D, I'). Similarly, line #3 is simultancously
the bisector of both pairs (B, D) and (F, F'). This mecans that, for an even ¢, we can
characterize the Voronoi cells of these codewords using only 5 lines. To effectively use
these lines to decode a point (z,y) in the lower triangle, we can verify whether (z,y) is
above or below 4; for cach i. For example, if (z,y) is above lines £4 and fo, but below £3,
then it should be decoded as (0,0).

Now, for a real-world g, which is usually a large prime, the definition of the points is
slightly different. In this case, {B, D, E, F'} is an approximate square, but not exactly one.
Because the difference is rather small, the algorithm works effectively even for odd valuces
of g. We then use this decoding approach based on approximate Voronoi cells to compute
all DFR results involving 2D codes. We emphasize that there is no security issue in using
this approximate decoder as long as its DFR is negligible.

Algorithm 2 shows the full algorithm for decoding using these ideas. It builds upon
macros ABOVE_Li, that return Oxffffff£f if point (x,y) is above £; and 0x0 otherwisc.
Notice that the equations that define lines ¢; have only integer coefficients, because the
cocfficients of all codewords are also integers. Hence the implementation of ABOVE_Li based
on the lines’ equations uses only 32-bit integer multiplications, which most implementations,
including the ones of ML-KEM, assume to be isochronous. Futhermore, a simple reflection
mask is used to reflect (z,y) whenever needed, and then to reflect the result in case
codewords corresponding to (0, 1) or (1,0) are found.

We note that this algorithm could be made more efficient if a different square of
representatives was used. In particular, using the g x g square whose bottom left point is
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Table 3. Number of cycles for encoding and decoding under different targets.

Code Dimension Encoding (poly_frommsg) Decoding (poly_tomsg)
AVX2 M4 A53 AVX2 M4 A53
ML-KEM’s code 1D 24 6676 141 17 3587 816
Minal code 2D 79 2017 332 118 92418 2724
Minal code 1D 62 1771 337 986 20,1142 7937
Minal code 8D 141 1645 268 52,016 1,010,886 279,951

(|—q/2] — €,|—q/2] — €), the comparison with linc #; is not necessary. However, since this
would lead to a more complex description, we leave extra optimizations for future work.

5.3 Performance evaluation

To cvaluate the performance of encoding and decoding operations with Minal codes,
we considered three platforms for which highly optimized ML-KEM implementations
arc available: Intel AVX2 [ABD*21], ARM Cortex-M4 [KRSS19], and ARM Cortex-
A53 [BHK™21], as described in Section 2. We integrated our isochronous implementations
of 2D, 4D, and 8D Minal codes into the existing Kyber implementations in which the
encoding and decoding of the full 256-bit message are done by the poly_frommsg and
poly_tomsg functions, respectively. No manual optimization of the Minal code operations
was done for those targets.

Table 3 shows the encoding and decoding cycle counts. Notice that, for the 2D decoding,
we used our custom decoder from Section 5.2, which was about 35% faster than the general
decoder in 2D (e.g., 418 cycles instead of 646 in our AVX2 sctup). Unsurprisingly, decoding
higher-dimensional Minal codes is more complex under all architectures. However, since the
cycle count for decapsulation® is much larger than this difference, the overall performance
impact of Minal codes on the decapsulation procedure is very small for the 2D and 4D
cases. The same cannot be said for 8D decoding, for which we leave the development of
more cfficient implementations as future work. The impact of our codes in ML-KEM’s
decapsulation time is evaluated in Section 7.3.

5.4 On protected implementations against physical side-channel attacks

Applications that require sccurity against side-channel attacks (SCA) typically protect their
implementations using masking and shuffling countermeasures. There have been proposals
for such implementations for Kyber that are directly applicable to ML-KEM [BGR*21,
HKL'22]. Although such countermeasures do not ensure resistance against SCA, their
correct implementation does increase attack costs [Del22, DNGW23, RP.J*24].

4In our AVX2 sctup, decapsulation takes 20725, 31748, and 16104 cycles, for levels 1, 3, and 5.

1 int decode_minal 2d(int32 t x, int32 v y) {

2 uint32_t reflect_mask = mask lower_than(x, y); // -1 if (x < y) and 0x0 otherwise
3 int32_t x_prime (x & ~reflect_mask) | (y & reflect_mask);

1 int32_t y_prime (y & ~reflect_mask) | (x & reflect_mask);

5 uint&_t abovell ABOVE_L1(x_prime, y_prime);

G uint&_t abovel2 ABOVE_L2(x_prime, y_prime);

7 uint&_t abovel3 ABOVE_L3(x_prime, y_prime);

a8 uint&_t aboveld ABOVE_L4(x_prime, y_prime);

9 uint&_t abovelb ABOVE_L5(x_prime, y_prime);

10 /f It is unnecessary to check for (00), but: c00 = (~abovel3 & abovelZ & aboveld);
11 uint& t 0l = ~abovel2 & ~abovelb & -~abovel3;

12 uint& t 10 = abovel2 & abovel3 & -~abovell;

13 uint& t e11 = abovell | (abovel3 & -~abovel2) | (abovels & -aboveld);

14 c01 &= (1 "~ reflect_mask);

15 €10 &= (2 " reflect_mask);

16 return (e01 | 10 | e11) & 3;

17 }

Algorithm 2. Isochronous implementation of decoding in 2D Minal codes.
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A potential drawback of our proposal is that the decoding step is more complex,
which could encumber the application of some SCA countermeasures to it. In particular,
approaches based on look-up tables (LUTs) [BGR™21] are not efficient for Minal codes.
For concreteness, the decoding function f : {0,...,¢ — 1} — {0,1} for the original ML-
KEM’s code can be implemented using a LUT of g rows. However, the function f' :
{0,...,q— 1} — {0,1}" for decoding p-dimensional codes requires a LUT of ¢* rows,
which can be impractical even for small values of p. Therefore, it is important for future
work to devise strategies for efficient and protected decoding of Minal codes.

6 Analyzing Minal codes’ DFR when used in ML-KEM

In this section, we discuss how to compute the DFR for our Minal codes when they
arc used in a lattice-based scheme. For concreteness, we focus specifically on ML-KEM,
but the procedure can be extended to other schemes such as Saber [DKSRV20] and
NewHope [AAB7T20]. While one of the main features of our analysis is that it does not
require any independence assumptions on the coefficients of Am, designers who are willing
to make such assumptions can also benefit from our approach. We begin by exploring the
source of the dependence between coefficients in Am.

Consider the noise polynomial Am = (e,r) — (s,e; + Au) + es + Av. Notice that, by
definition, all coefficients from e, and Aw are independent. However, the coefficients of the
polynomials resulting from the two dot products {e,r) and (s,e; + Au) cannot be assumed
to be independent, because they are computed through sums of polynomial multiplications.
If ignored, this dependence is known to cause issues in scenarios where error-correction
codes are used, leading to significantly underestimating the scheme’s DFR [DVV19).

Now, let us focus on (e, r), which is the simplest of the two dot products that determine
Am in Kyber. It is defined as (e,r) = e[0]r[0] +. ..+ e[k — 1|r[k — 1]. We start by noticing
that every product of polynomials e[i|r[i] is independent of e[j]r[j] for j # i. Also, because
all e[f] and r[:] arc sampled from the same B,,, every product e[i]r[i] follows the same
distribution for all 2. Therefore, in what follows, we focus our attention on the joint
distribution of e[i]r[i] for any particular i to analyze the distribution of (e, r).

6.1 The joint distribution of coefficients in ML-KEM'’s noise

We start with two results that allow us to separate the joint probability distribution of
p cocfficients of a polynomial product in R, = Z4[z]/(z™ + 1) into a sum of independent
distributions, provided that three conditions are met: (7) n and g are powers of 2 with
1 < p < n; (4) the distance between adjacent pairs of coefficients is n/p; and (#4) the
probability distribution for the coefficients of at least one of the polynomials is symmetric.
In particular, by the end of this section, we characterize the p-dimensional noise distribution

Pr(Amli,i +n/2,...,i+ (n— 1)n/2]),
s0 we can analyze the DFR of p-dimensional codes without any independence assumptions.

Lemma 1. Let n = 4 be a power of 2, and let g be a positive nontrivial divisor of n.
Define v = n/p and consider the probability distribution P,, defined over p-tuples as

P, =Pr(c|0,v,2v,...,n—v]),

where the polynomial ¢ is defined by the following experiment. Let Dy be any distribution
over Zg, and Dy be a symmetric distribution also over Z,;. Choose polynomials a and b in
R, = Z,[z]/(z™ + 1) by taking its cocfficients from distributions D; and Da, respectively.
Compute their product ¢ = ab € Ry, and output the tuple ¢[0, v, 2v, ..., (n — v)| consisting
of the cocfficients of ¢ associated with powers %%, for i = 0 up to g — 1. Then P,, can be
split as P, = Prjo + Pryo.
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Proof. Let n = 2 for some ¢ = 2. Take polynomials a and b from Ry. If ¢ = ab, we can
write® cach coefficient of the product as

¢; = poly_to_vec(c)[i] = (poly_to_vec(a),negashift,(b)).

Let a = poly_to_vec(a) and b = negashift,(b), i.c., vector b is the first column of
the negacyclic matrix generated by the coefficients of b. Notice that, since Ds is symmetric,
b = (by, —bu_1,--.,—b1) has the same distribution as b. Because n > 4 is a power of 2
and p divides n, a and b can be split into p parts, each of length v, such that

Co = <[a1 ; A2 5., a(;i—l) 1 a;:.:l ? [bl 1 b? IR b(p—l) ’ b.u]>-
More generally, for 2 = 0 up to g, we can write

Cipe = <[¢'—l]_ ;a2 5..., a(p.—l) ’ a}.!:l ’ I:_b(p—i—‘,-l) IERER ] b(p.—'r'.—l) ’ b(p—i)]) -

Remember that, since p is a nontrivial divisor of n, then v = n/p is even, so we can split
cach a; and b, into two halves, such that a; = [a],a’] and b, = [b], b”], respectively. Now
we write ¢, = ¢}, + ¢!, where each term is defined as

c;u = <[ai H ?_lé 1Tt aE;L—l) ? a:‘] H [_szz—i+1) 1ttt bj(l;;.—\i—l) ? b;.u—i)]) ? and
i, =([at, a8 s al, s all] [bl iy s Bl s By )

Notice that the entries of a and b appearing in terms ¢, ¢, ..., ¢},_y, that come from

the left halves of the blocks of length v, are completely independent from those appearing in

L I

Cp, Cys - - -5 €1, Which come from the right halves. Furthermore, tuples (c’n, ey, (:L_l
and ((:g, e, (:;‘:_1) are not only equally distributed, but, by the definition of P;, both
of them follow the p-dimensional distribution Py, /2. Therefore, P,, = P2 + Pryjo. O

As a companion result, we now show that we can use the distribution P, from Lemma 1
to characterize all distributions Pr(e[i,i +v,i+2v,...,i+n—v]), fori=0to v —1.

Proposition 1. Let g, v, and n be positive integers such that v =n/p, and 1 < p < n.
Let a and b be two polynomials in R, = Z4[z]/(z™ + 1). Suppose that the cocfficients of a
and b are sampled from two distributions D, and Ds, respectively, and assume that Do is
symmetric. If ¢ = ab is their product, then, for all 0 < i < v, we have

Pr(cli,i+v,i+2v,...,i+n—v]) =Pr(c[0,v,2v,...,n —v|).

Proof. Since ¢ = ab, cach coefficient of ¢ is given as ¢; = (poly_to_vec(a),negashift (b)) .
Notice that this means that the p-tuple ¢i,i + v,i + 2v,...,i+n — v| is completely
defined by the sequence of vectors S; = (negashifti(b), ...,negashift; +n_u){b)). But
remember that the clements of b come from a symmetric distribution. Therefore, by the
definition of the negacyclic shifts, the sequence S has exactly the same distribution as
So = (negashiftn{b), ey negashift(n_u)(b)). O

We notice that Lemma 1 is analogous to the polynomial splitting for recovery used
in NewHope’s original analysis [ADPS16, §C]. The main difference is that we provide a
broader presentation for supporting a more direct construction of the joint distribution,
whose effective computation is not needed in related works.

Let us now discuss the applicability of Lemma 1 to ML-KEM. Fix parameters g = 3329
and n = 256. Consider the two dot products (e,r) and (s,e; + Au) that appear in the

SRemember, from Section 2, that poly_to_vec(ab)[i] = (poly_to_vec(a),negashift;(b)).
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computation of Am. The first one is done with polynomials whose coefficients are taken
from the centered binomial B, , which is symmetric. In the second one, clements from
s arc also drawn from B,,. Therefore, we can swap the operands of the commutative
product so that all of the lemma’s hypotheses are satisfied. We now provide a simple
corollary that explicitly states the distribution of the coefficients of the ML-KEM noise.

Corollary 1. Fix integers g and v such that v = n/p and 1 < p < n. Let T(:fs(’l%)

the probability distribution of a product ¢ = ab of two polynomials a,b € Z, / (.7:" + 1), with
cocfficients sclected according to distributions ¢, and ¢y, respectively. Let D a,, denote
the distribution of the cocfficients of Au and P(a,4.,) be the probability distribution of
(Av+e9)[i,i+v,...,i +n —v]. Then, by Lemma 1 and Proposition 1, we have:

denote

kn _(B,,,B,)  kn (B, By +Dau)

.. . 4 10y nzs=ny Au
Am[zv 1+ Vy.ooy? +n— V] ~ !_J':Pprud + ;_L:Pprod + T(A‘U‘i‘ﬂa)' O
When p is sufficiently small, we can calculate the base distributions over coefficient

i B, B BBy +DA i . L
pairs, ’J’l(m:l“ m) and CPI(m:f’ B “), by enumerating the corresponding polynomials in

Zgy/(xz* + 1) and computing their products while keeping track of the associated probabili-
ties. Also, the product rule can be used to directly compute ’J’(&U_,_,,_g), as the coefficients
in both Av and e, are all independent.

The above analysis has an important consequence on how we encode messages using
pi-dimensional Minal codes. Since n = 256 in ML-KEM, we arce bound to use codes whose
dimension is a power of 2. Additionally, since we need to compute the base p-dimensional
distributions, the complexity grows exponentially, making it harder to use g > 8 for ML-
KEM parameters. Morcover, to use Corollary 1 when evaluating the DFR of p-dimensional
codes applied to ML-KEM, we must encode cach p-bit string in the message m € Z5 into
cocfficients separated by n/u entries. In the following sections, we show how to evaluate
the DFR when using 2D and 4D Minal codes in ML-KEM.

6.2 Computing the DFR using 2D Minal codes

The core observation allowing us to compute the DFR for 2D Minal codes is that it is
possible to use Lemma 1 to fully compute the 2D joint noise distribution Aml[i,i + n/2],
which is then used for computing the DFR. While the Python scripts [DS21] provided
by the Kyber team are fast enough to compute the distribution of a single cocfficient of
Am, their approach is highly inefficient when computing sums of joint distributions. To
address this problem, we implemented a custom 2-dimensional FF'T with multiprecision
complex arithmetic using the MPC [EGTZ22] and MPFR. [FHL*07] libraries. Running
in a standard PC using 6 threads, the computation of the joint probability distribution
Pr (Am[i,i + n/2]) with 260 bits of precision takes less than 3 minutes for cach parameter
sct.

6.3 Computing the DFR using 4D Minal codes

If we try to use the approach from Section 6.2 to compute the DFR in the 4D setting, we
need to compute the joint distribution Pr(Am|[0,n/4,n/2,3n/4]). The problem is that
the 4D FFTs, which have to be computed with padding so that the convolutions do not
cause cyclic interference, would incur prohibitively large memory and processing costs.
Our solution is then to make a different use of Lemma 1 in a way that is akin to how the
DFR of NewHope's first variant was computed [ADPS16]. Algorithm 3 briefly describes
the 4D DFR computation, while a detailed explanation is given in what follows.

First, we define the parameters g and S of the Minal code M whose DFR. we want to
evaluate. Usually, the field size g is defined by the eryptographic scheme (e.g., g = 3329
for ML-KEM) and f can be found using the p-norm approach discussed in Section 4.3.
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1: procedure DFR 1D(code M)

2: Compute the 41D Voronoi cells of the main codewords of M
3: Prailure — 0 = Accumulates the decoding error probability for M
4: for cach main codeword ¢ € M N Zf’l do
5: vor(c) + Voronoi cell centered in ¢
6 neigh(e) < sct of codewords whose cells share a hyperplane with vor(c)
T for cach adjacent codeword v in neigh(e) € M do
8: Vi-v—c
9: Compute the 1D distribution Pr ({(Am|0,n/4,2n/4,3n /4], v))
10: Pfailure = Pfailure T % Pr ((A"i’[ﬂ| n/4,2n/4,3n/1],v) = %)
11: return ¥ prilure & Union bound over the n/4 = 64 tuples

Algorithm 3. Computation of the DFR for a 4D Minal code M.

Using these parameters, we can compute the 4D Voronoi cells for all main codewords
using the Quickhull [BDH96a] algorithm from the Qhull library [BDH96b]. From the 4D
Voronoi cells, we can sce which are the Voronoi-relevant vectors of cach codeword, i.c., the
neighboring codewords that characterize the Voronoi cells of a given codeword.

Based on the Voronoi cells, we define a function neigh(c) that, for a main codeword
ceMn Zj? returns the set of points whose Voronoi cells share a common hyperplane
with the Voronoi cell centered in e. Let perror(c, v) denote the probability that ¢ =
c + Am|0,n/4,2n/4,3n/4] is closer to v than to ¢. The DFR is then upper-bounded by

DFRgl—l6 3 D perarle,v) |,

c&MﬂZg veEneigh(c)

where the 1/16 factor accounts for the probability of getting cach codeword c.
We know, from clementary linear algebra, that ||’ —c¢|| = ||’ — v|| if, and only if,

(c¢/,v—c) = %(”V”Q — ||(_.||2) Then, expanding ¢/, we can compute perror(c, v) as

Perror(,v) = Pr ((Aml0,n/4,20/4,3n/4],v — ) > §|Iv — |]*).

While we cannot compute the noise distribution Pr (Am[0,n/4,2n/4,3n/4]) in 4D, we
can compute pypror(c, v) as follows. Consider the following vectors and their associated prob-

. . B, B B, B
ability distributions: x; ~ CPI(JHL“ nl),XQ ~ ’J’l()mr:f’ '”),Xg ~ DAy, and x4 ~ P(Apte,)-

Define probability distributions Dy, Dy, D5, Dy such that cach D; = Pr{x;,v — c), for
i =1 up to 4. Then, by Corollary 1 and the linearity of the dot product, we have

Pr({(Am[0,n/4,2n/4,3n/4],v —c)) = @1)1 + @ﬂ)g + D3+ Dy.
1 1

Notice that cach P; is efficiently computable because the dimension 4 is relatively
small and is a simple 1D distribution. Now, to compute the multiple convolutions above,
we can again use arbitrary precision FI'Ts. We notice that, because v — ¢ may have
large coordinates, the padding required for the FFT-based convolution is relatively high.
Therefore, we use Bailey’s [Bai90] trick that transforms an FFT over a large vector into
a 2D FFT with shorter vectors to make the implementation more efficient. For a given
ML-KEM paramcter sct, together with the 4D Minal code parameters, our implementation
gives the corresponding DFR in about 1 hour in a standard computer using 6 threads.

7 Applications to compact ML-KEM instantiations

This scction shows a key benefit of our proposed codes: with them, ML-KEM parameter
sets associated with shorter ciphertext sizes can achieve lower decryption failure rates
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(DFR), thus making them viable. We begin by remarking that the size of a cipher-
text (cy,ey) in ML-KEM is completely determined by the parameters n, k, dy, and d,
as [in(kdy + d,)] = 32(kdy + d,) bytes. Hence, to obtain shorter ciphertexts without
changing the core parameters n and k, we need to use smaller parameters for dy, and d,
than thosc adopted by the current standard. In this section, we show how this can be
accomplished for cach security level supported by ML-KEM.

7.1 The DFR targets for each security level

Since our goal is to propose parameters that reduce ciphertext or public-key sizes without
compromising the DFR, we now explicitly state which DFR, values we consider viable
for cach security level. We start by noting that NIST did not define such DFR. targets,
but only requires them to be negligibly small values. This gave KEM designers a lot of
flexibility to propose parameters offering good balance between sizes, security, and DFR.
However, it also resulted in very different DFRs among different schemes: code-based
schemes such as BIKE [ABBT22] and HQC [MAB™21] target very low DFRs of 274,
where A is the scheme’s security in bits, while Kyber and Saber are more permissive.
Namely, in round 1, Kyber mentions the DFR of 27149 as a target for all levels [ABD*17].
Then, in Kyber’s round 2 specification, the authors state that the DFR target was at
most 27160 for all security levels [ABDT19, §1.5]. This was later relaxed in round 3, with
DFR targets of 27128 for level 1, and kept at 27160 for levels 3 and 5 [ABD*21, §1.4 and
§4.4], as the authors perceived the previous DFR . levels as too conservative. Conversely,
Saber [DKSRV20] does not state DFR targets, but only achieved DFRs of 27120 2-136
and 27165 for NIST sceurity levels 1, 3, and 5.

We could define the DFR targets to be exactly those obtained in the latest version
of Kyber (or ML-KEM), and have ciphertext compression for Level 5, or public-key
compression for Level 1, as shown in the next section. However, this scems too restrictive
since Kyber enjoyed some flexibility when changing parameters between rounds, and NIST
considers Saber to be secure even with its higher DFR levels. Hence, we sought to provide
useful insights on possible parameters while imposing a limit on how much our DFR can
deviate from the state of the art in lattice-based schemes. As a result, we hereby define our
DFR targets for cach sccurity level as the maximum between the DFR targets mentioned
in the latest Kyber specification and the conerete DFR provided by Saber parameter sets.
This gives us DFR; = 27120, DFR3 = 27136 and DFRs = 27160, for levels 1, 3, and 5,
respectively. These targets are then used in the next section to sclect viable parameters.

7.2 Finding compression parameters that yield shorter ciphertexts

First, we consider ML-KEM settings with values of (dy, d,,), allowing for shorter ciphertexts
than the current standard. We then compute the DFR for the regular ML-KEM 1D code,
and for our 2D and 4D Minal codes tailored for the error distribution induced by these
paramecters. Then, we can select points with shorter ciphertext sizes, as long as their DFR
lies below the target for each security level.

Figure 7 shows our results. Note that results for the experiment described above are
the regular (d,,d,,) points, i.c., points marked as (dy, d,)* or (du,d,)T are not part of this
experiment, as they require additional changes that are described later in this section. We
can scc that the impact of our codes is greater in Level 5, as there are multiple points using
2D and 4D codes with significantly shorter ciphertexts — namely, up to 8% compression.
This results from the fact that Level 5 parameters, in general, use higher values of d,,, so
the uniform part of the noise is less relevant, and our codes are better at error correction.
To allow for an casier comparison of the actual numbers, we collect in Table 4 the relevant
paramcters discussed in this section.
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Figure 7. The impact of our 2D and 4D Minal codes in obtaining viable compression
paramcters (dy, d,) allowing for shorter ciphertexts. Parameters marked with a star (%) or
a dagger () require changing ns to 0 and 1, respectively.

Now, to obtain compressed ciphertexts for levels 1 and 3, we proceed as follows. First,
remember that the sceurity evaluation of ML-KEM-512 uses not only the LWE hardness
but also considers the deterministic compression noise when evaluating the Core-SVP
hardness associated with the ciphertext security, which is akin to also considering the
LWR in the sceurity analysis. This allows ML-KEM-512 to usc a slightly lower value® for
12, without compromising sccurity, because the extra noise introduced by the compression
accounts for the decrease in 7. If we extend this idea further, we can use even more
aggressive compression factors than the values (dy, d,) = (10,4) used in ML-KEM-512 and
ML-KEM-768, and get rid of 7» completely. This idea is actually not new, as it is even
mentioned in Kyber’s round 1 specification [ABD ™17, §6.4.6]. However, for this approach
to be successtul for ML-KEM, one needs to use a better error-correction code because it is
more difficult to deal with the higher compression noise, which is uniform in nature, than
with the noise from the centered binomials.

The result of this approach is illustrated in Figure 7 by the points (9,5)* and (10,3)F
that define 72 = 0 and 72 = 1, respectively. Note that these are only considered for
levels 1 and 3. We can see that our 4D Minal codes allow for viable points, providing
4% and 6% shorter ciphertexts for both levels 1 and 3, respectively. We remark that
all parameters provide the same Core-SVP hardness as ML-KEM’s standards for the
corresponding security level, as computed by the Kyber team’s sccurity scripts [DS21].

7.3 Proposed parameters and their performance impact

Section 5.3 shows that the decoding operation of Minal codes is significantly more costly
than that of ML-KEM’s 1D code, due to the higher-dimensional nature of our proposal.
However, we emphasize that the time taken by our isochronous decoding algorithms, up to
4D, arc still orders of magnitude lower than the full decapsulation time. Morcover, since
our Minal codes allow 772 = 0 to be a viable setting, together with (dy, d,) in levels 1 and
3, the full setup also benefits from not having to make the additional samplings related to
19 in the encryption procedure.

To show this reduced impact, we use portable isochronous implementations of the Minal
code operations, rather than optimizing it for the given targets, while integrating our code
into highly optimized implementations for AVX2 [ABD 21|, Cortex M4 [KRSS19] and

SRemember that 72 defines the binomial distribution for vector e; and polynomial ez used in encryption.
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Table 4. Relevant parameters allowing for ciphertext compression. Non-viable codes
whose DFR lic above the DFR target are marked with a slash.

NIST DFR de d Is a standard Requires  Ciphertext Minimum DFR found
Level target —© 7Y 2 parameter set? LWR? size (bytes) 1D 2D 1D
" g-120 10 4 2 ML-KEM-512  Yes 768 271391 2-144.0 91533
q 5 0 No Yos 76 2 1089 2 11576 2 125.5
5 10 4 2 ML-KEM-768 No 1088 2 165.2 9-170.6 o-183.2
- 2 136 10 ] 1 No Yos 1056 2 149.2 2 149.2 2 151.6
q 5 0 No Yos 1024 2 122:1 2 1286 2 141.6
11 5 2 ML-KEM-1024 No 1568 21752 9 185.1 9-201.8
5 g-160 11 4 2 No No 1536 21542 91584 o-172.7
10 6 2 No No 1172 2 1517 2 161.8 2 177.6
10 5 2 No No 11410 2 1433 2 1537 2 165.9

Table 5. ML-KEM instantiations with compressed ciphertexts and speedups for full
encapsulation and decapsulation.

NIST (du,dv,m2)  Minal code DFR Ciphertext  Encaps speedup Decaps speedup
us Gy 72 & 2 >

Level compression  syyo M4 A53  AVXZ M4 A53
1 (9,5,0) 4D (8 =745) 2 1255 117% 096 1.14 1.13 0.99 1.08 1.02
3 (9,5,0) 4D (B =741) 2 1416 5.88%  1.07 1.10 1.07 1.05 1.07 1.01
5 (10,6,2) 2D (8 =442) 21618 6.12%  0.99 1.00 1.00 1.00 1.00 0.99
5 (10, 5,2) 4D (B = 741) 21659 8.16%  1.01 1.00 1.00 0.99 099 097

Cortex-A53 [BHK™21]. The results are presented in Table 5, which shows the speedup”
of our proposal compared to the encapsulation and decapsulation times for ML-KEM
implementations using standard paramcters. As expected, the performance impact is
minor. For levels 1 and 3, there is even a significant speedup resulting from the fact that
some of the sampling operations are not needed in eneryption® since 1, = 0. For level 5,
no speedup was observed since there is no change to 79, but the performance impact is still
negligible, especially when 2D codes are used. Note that all parameters in Table 5 provide
the same core-SVP hardness as the standard ML-KEM parameters, for the corresponding
security levels, as computed by Kyber’s security scripts [DS21].

If we compare our results with the ones obtained by Saliba et al. [Sal22, SLL21] for
8D lattice codes (see Table 2), we can see the power of tailoring. For concreteness,
consider level 5: even the low-dimensional 2D Minal codes already provide ciphertext
compression, requiring a simple change in the compression factors; in contrast, the 8D
codes from [Sal22, SLL21| require changes to core ML-KEM parameters, and actually
increase the ciphertext size.

THor each security level, the speedup is defined as the ratio between the execution time of the original
ML-KEM and that of our proposal.
8The decapsulation also calls the eneryption procedure due to the reeneryption step of the FO transform.

Table 6. ML-KEM instances with compressed public keys and speedups for full encapsula-
tion and decapsulation. Notice that the values of 7, are the same as those in the standard.

NIST (du,dv,m2)  Minal code DFR Public L.(C'Y Encaps speedup Decaps speedup
Level COMPIESSION - AyX2 M4 A53  AVX2 M4 A53
1 (10,4, 3) 4D (B =1722) 2 1398 8.00%  1.00 1.00 0.97 091 097 0.93
3 (10,4, 2) 4D (B = 722) 2 1629 8.11% 098 0.99 0.96 0.97 098 095

5 (11, 5,2) 4D (B = 745) 21740 8.16%  1.01 099 098 0.99 099 097
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7.4 An overview of additional applications of our codes

Due to space limitations, the results presented so far focus more on applications to
ciphertext compression, which arc arguably more immediately applicable to ML-KEM.
However, we arguc that there are other important applications to which our codes also
have a relevant impact, as briefly discussed next.

Eliminating the LWR assumption from ML-KEM-512. Recall that ML-KEM-512 relics
on a hardness assumption similar to LWR to achieve its claimed sccurity using n2 = 2 < 1.
Using our 4D codes with 8 = 722, though, we can instantiate ML-KEM-512 using
72 = m1 = 3, and get a DFR, of 271356 that is very close to the one observed for ML-
KEM-512 (i.c., 2_139'1). This would not only climinate the need for the LWR assumption,
but it would also result in an casier specification by removing the need for one additional
paramcter. Morcover, it would allow for simpler vectorized implementations of the sampling,
since only one function would be needed for generating all centered binomial values.

Public-key compression with minor performance impact. Kyber’s round 1 specifica-
tion [ABDT17] allowed compression of the public key, which is useful in ephemeral-key
scttings. Using a slightly different formulation [BDK*18, Thm. 1] of the noise polynomial
Am to take public key compression into account, we extended our analysis for this case.
Table 6 shows our results when public-key compression is enabled. We consider the
compression of cocfficients in Zggag from 12 bits, as used in the standard (no compression),
to 11 bits. Notice that, in this setting, the sender does an extra decompression operation for
the public key (which is a very efficient task), while this step is not needed for the receiver.
The performance impact of our proposal is then estimated by adding the decompression
cost to the encapsulation time. Notice that, in this setting, there is no change to 79 > 0.
Hence, in Levels 1 and 3, the decapsulation is slower than what is shown in Table 5, but
still minor, especially for Cortex-M4. Qur 4D Minal codes allow for 8% compression of
ML-KEM public keys while keeping the DFR very close to the current standards without
compression (namely, the impact is less than 2 bits), for all NIST sccurity levels.

Exploring the parameter space considering our codes. Higher-dimensional Minal codes
empower designers of lattice-based KEMs by providing a richer set of trade-offs between
failure rate and both ciphertext and public key sizes. Remarkably, we showed (sce Table 5)
that Minal codes not only enable more compact schemes, but can even lead to significantly
faster ML-KEM variants, as they allow parameter sets with 72 = 0 to be secure and have
DFR. values lower than the corresponding targets. Therefore, our results suggest that
Minal codes can be explored much beyond if we consider ML-KEM variants with different
core paramecters, possibly resulting in significantly more compact and faster schemes.

8 Conclusion and future work

We present a new family of error-correction codes called Minal codes. By proposing a
novel way to model the accumulated noise in lattice-based schemes as p-dimensional circles
under different p-norms, we show how Minal codes can be tailored to improve their error
correction capability for cach particular application without requiring any change to the
target scheme’s parameters. We then demonstrate how to compute the decryption failure
rate (DFR) when applied to ML-KEM, and the corresponding gains, through an analysis
that could be adapted to most modern lattice-based schemes.

This work also raises several questions. First, we believe the most important theoretical
question is whether we can build more efficient decoders, possibly borrowing results from
the decoding of lattice codes and adapting them to our case. However, there are other
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interesting rescarch directions, such as formalizing and possibly proving some of our
heuristic” assumptions used for tailoring, or trying to find even better error-correction
codes by considering more complex constructions with additional paramcters.

With respect to the practical side, it would be interesting to devise efficient implemen-
tations using SIMD instructions for CPUs supporting AVX2/AVX512 or ARM NEON.
We believe there is great potential for more efficient high-dimensional decoding when
approximate decoders are considered, if these can be shown to still provide negligible DFR.
Extending our DFR analysis to ML-KEM using 8D Minal codes would also be interesting.
If, as in our present work, one is not willing to make simplifying independence assumptions
because these can yield underestimated DFR. values and security concerns [DVV19], the
main challenge is the increased complexity of computing the joint 8D base distributions
(before the self-convolutions). Finally, it would be relevant to understand how Minal codes
behave when decoding is implemented with countermeasures against physical side-channel
attacks, and also analyze our code’s impact on prominent lattice-based schemes such as
Saber [DKSRV20] and NewHope [ADPS16].
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