

PALEOPROTEROZOIC EVOLUTION OF THE MINEIRO BELT, SÃO FRANCISCO CRATON, BRAZIL.

Teixeira. W. 1, Avila, C.A. 2, Noce, C.M. 3, and Sato, K. 1

² Museu Nacional. Federal University of Rio de Janeiro, Brazil.

ABSTRACT

The Mineiro belt occurs along the Southern São Francisco Craton, and associated with the Paleoproterozoic crustal growth, collision and extensional collapse, diachronic metamorphism (2.131 Ma -2.121 Ma; 2.059 Ma-2.028 Ma) overprinted the Neoarchean foreland. The orogen produced plutonic pulses (2.250 Ma-2.200 Ma; 2.190 Ma-2.160 Ma; 2.130 Ma-2.040 Ma) either by intraoceanic dynamics with minor recycling of material formed in previous accretionary phases, or by partial melting of Archean crust. The oldest plutons (e.g., Serrinha suite; U/Pb and ²⁰⁷Pb/²⁰⁶Pb ages between 2.239 Ma \pm 25 Ma and 2.207 Ma \pm 4 Ma) yield T_{DM} ages (2,6-2,3Ga), $\varepsilon_{Nd(t)}$ values (-0,8 to +1,8) and ⁸⁷Sr/⁸⁶Sr_i ratios (≤0,703) suggesting the protholiths derived predominantly from Paleoproterozoic juvenile sources, originated in an intraoceanic arc zone. The Mantiqueira gneisses give a few similar U/Pb ages (2.203 Ma to 2.210 Ma) revealing a protacted magmatic evolution which may be genetically linked with the Serrinha event -as products from NW-SE subduction of oceanic lithosphere occurring outboard of the evolving passive margin. Another plutons to the north yielded U/Pb and 207 Pb/ 206 Pb ages from 2.191 Ma \pm 9 Ma to 2.101 Ma \pm 8 Ma; the T_{DM} ages (2,5 Ga to 2,7Ga), and ε_{Nd} (1) values (-1,3 to -5,1) indicating Archean components participated as magma source for the protholiths. Most of the Mantiqueira orthogneisses yield comparable U/Pb ages (2.180 Ma-2.160 Ma; 2.102 Ma-2.040 Ma); and T_{DM} ages between 3,4-2,9Ga ($\epsilon_{Nd(t)}$ from -10 to -13) and 2,7-2,4Ga ($\epsilon_{Nd(t)}$ from -7 to -3). These youngest granitoid pulses may be therefore considered as inboard plutonism, resulted from a later, inverted (SE-NW) subduction of the lithosphere below the active continental margin, after stacking of the 2,25 Ga-2,20 Ga accretionary prism (e.g., Serrinha suite).

¹ Institute of Geosciences, University of São Paulo, Brazil. Rua do Lago, 562, São Paulo, SP, CEP 05508-080 (wteixeir@usp.br).

³ CPMTC- Institute of Geosciences, Federal University of Minas Gerais, Brazil.