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Abstract
Coordinate descent methods have considerable impact in global optimization because global
(or, at least, almost global) minimization is affordable for low-dimensional problems.
Coordinate descent methods with high-order regularized models for smooth nonconvex box-
constrained minimization are introduced in this work. High-order stationarity asymptotic
convergence and first-order stationarity worst-case evaluation complexity bounds are estab-
lished. The computer work that is necessary for obtaining first-order ε-stationarity with
respect to the variables of each coordinate-descent block is O(ε−(p+1)/p) whereas the
computer work for getting first-order ε-stationarity with respect to all the variables simultane-
ously is O(ε−(p+1)). Numerical examples involving multidimensional scaling problems are
presented. The numerical performance of the methods is enhanced by means of coordinate-
descent strategies for choosing initial points.
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1 Introduction

In order to minimize a multivariate function it is natural to keep fixed some of the variables
and to modify the remaining ones trying to decrease the objective function value. Coordinate
descent (CD) methods proceed systematically in this way and, many times, obtain nice
approximations to minimizers of practical optimization problems. Wright [51] surveyed
traditional approaches andmodern advances on the introduction and analysis of CDmethods.
Although the CD idea is perhaps the most natural one to optimize functions, it received little
attention from researchers due to poor performance in many cases and lack of challenges in
terms of convergence theory [49]. The situation changed dramatically in the last decades.
CD methods proved to be useful for solving machine learning, deep learning and statistical
learning problems in which the number of variables is big and the accuracy required at
the solution is moderate [17, 46]. Many applications arose and, in present days, efficient
implementations and insightful theory for understanding the CD properties are the subject of
intense research. See, for example, [2, 3, 14–16, 19, 27, 31, 41, 53, 54] among many others.

In this paper we are concerned with complexity issues of CD methods that employ high-
order models to approximate the subproblems that arise at each iteration. The use of high-
order models for unconstrained optimization was defined and analyzed from the point of
view of worst-case complexity in [5] and subsequent papers [4, 23, 34, 35, 42, 55]. In [4]
numerical implementations with quartic regularization were introduced. In [23], [34], [35],
and [42], new high-order regularization methods were introduced with Hölder, instead of
Lipschitz, conditions on the highest-order derivatives employed. In [40], high-order methods
were studied as discretizations of ordinary differential equations. These methods generalize
the methods based on third-order models introduced in [37] and later developed in [21,
22, 29, 30, 47] among many others. Griewank [37] introduced third-order regularization
having in mind affine scaling properties. Nesterov and Polyak [47] introduced the first cubic
regularized Newton methods with better complexity results than the ones that were known
for gradient-like algorithms [36]. In [20], a multilevel strategy that exploits a hierarchy of
problems of decreasing dimension was introduced in order to reduce the global cost of
the step computation. However, high-order methods remain difficult to implement in the
many-variables case due to the necessity of computing high-order derivatives and solving
nontrivial model-based subproblems. Nevertheless, if the number of variables is small, high-
order model-based methods are reliable alternatives to classical methods. This feature can
be exploited in the CD framework.

High-order models are interesting from the point of view of global optimization because,
many times, local algorithms get stuck at points that satisfy low-order optimality condi-
tions from which one is able to escape using high-order resources. The escaping procedure
is affordable if one restricts the search to low-dimensional subspaces, which suggests the
employment of CD procedures.

This paper is organized as follows. In Sect. 2, we present some background on optimality
conditions, while in Sect. 3 we survey a high-order algorithmic framework that provides a
basis for the development of CD algorithms. In Sect. 4, we present block CD methods that,
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for each approximate minimization on a group of variables, employ high-order regularized
subproblems and we prove asymptotic convergence. In Sect. 5 we prove worst-case com-
plexity results. In Sect. 6 the obtained theoretical results are discussed. In Sect. 7, we study
a family of problems for which CD is suitable and we include a CD-strategy that improves
convergence to global solutions. Conclusions are given in Sect. 8.
Notation. The symbol ‖ · ‖ denotes the Euclidean norm.

2 Background on high-order optimality conditions

In order to understand the main results of this paper we need to visit the topic of neces-
sary optimality conditions of high order. The main question is: What is the relation between
minimizers of a function and minimizers of its Taylor polynomials? Firstly, we show that,
in one variable, the two concepts are closely related in the sense that local minimizers of
a function are local minimizers of all its Taylor polynomials. Immediately, we show with
a simple counterexample that this property is not true if the number of variables is greater
than 1. The third step is to show that, for an arbitrary number of variables, every minimizer
of f is a minimizer of its Taylor polynomials regularized by a suitable Lipschitz constant.
This definition leads us to distinguish between exclusive and inclusive optimality conditions.
Exclusive conditions are the ones that can be expressed exclusively in terms of the function
derivatives. Inclusive ones are related with a slightly more global behavior and include Lip-
schitz bounds. Inclusive conditions are stronger than exclusive ones. In this paper, we show
that algorithmic limit points are more related to inclusive conditions than to exclusive ones.

As it is well known from elementary calculus, if a function f : R → R possesses

derivatives up to order p at x̄ ∈ R, denoted by f ( j) for j = 1, . . . , p, its Taylor polynomial
of order p around x̄ is given by

T p(x̄, x) = f (x̄) +
p∑

j=1

1

j ! f
( j)(x̄)(x − x̄) j .

If f and its derivatives up to order p are continuous and f (p) satisfies a Lipschitz condition
defined by γ1 > 0 in a neighborhood of x̄ , we know that

| f (x) − T p(x̄, x)| ≤ γ1

(p + 1)! |x − x̄ |p+1 (1)

for all x in a neighborhood of x̄ . This fact allows one to prove the necessary optimality
condition given in Theorems 2.1 and 2.2.

Theorem 2.1 Assume that f : R → R, its derivatives up to order p are continuous, and f (p)

satisfies a Lipschitz condition defined by γ1 > 0 in a neighborhood of x∗. Assume, moreover,
that a < b, x∗ is a local minimizer of f subject to x ∈ [a, b], and there exists q ≤ p such

that f ( j)(x∗) = 0 for j = 1, . . . , q − 1 and f (q)(x∗) �= 0. Then,

1. if q is even, then we have that f (q)(x∗) > 0;
2. if a < x < b, then q is even;
3. if x = a and q is odd, then f (q)(x∗) > 0;

4. if x = b and q is odd, then f (q)(x∗) < 0.
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Proof Suppose that q ≤ p is such that all the derivatives of order j < q ≤ p are null and
f (q)(x∗) �= 0. Then, by (1),
∣∣∣∣ f (x) − f (x∗) −

[
1

q! f
(q)(x∗)(x − x∗)q + · · · + 1

p! f
(p)(x∗)(x − x∗)p

]∣∣∣∣ ≤ γ1

(p + 1)! |x − x∗|p+1.

Then,
∣∣∣∣ f (x) − f (x∗) − 1

q! f
(q)(x∗)(x − x∗)q

∣∣∣∣ −
∣∣∣∣

1

(q + 1)! f
(q+1)(x∗)(x − x∗)q+1 · · · + 1

p! f
(p)(x∗)(x − x∗)p

∣∣∣∣

≤ γ1

(p + 1)! |x − x∗|p+1.

Thus, if p = q , it follows trivially that
∣∣∣∣ f (x) − f (x∗) − 1

q! f
(q)(x∗)(x − x∗)q

∣∣∣∣ ≤ c|x − x∗|q+1. (2)

If p > q , for all j = q + 1, . . . , p, the quantities | 1j ! f ( j)(x∗)| are bounded by the same
constant. By the boundedness of |x − x∗| in a neighborhood of x∗ and the fact that p + 1 >

q +1, (2) follows as well. Assume firstly that q is even. Then, dividing (2) by (x − x∗)q > 0,
we have that

∣∣∣∣
f (x) − f (x∗)
(x − x∗)q

− 1

q! f
(q)(x∗)

∣∣∣∣ ≤ c|x − x∗|. (3)

Taking limits for x → x∗ we deduce that

lim
x→x∗

∣∣∣∣
f (x) − f (x∗)
(x − x∗)q

− 1

q! f
(q)(x∗)

∣∣∣∣ = 0. (4)

Thus,

lim
x→x∗

f (x) − f (x∗)
(x − x∗)q

= 1

q! f
(q)(x∗). (5)

Since f (x) ≥ f (x∗) for all x sufficiently close to x∗ and the right-hand side of (5) is different
from zero, we deduce that f (q)(x∗) > 0. Therefore, we proved that if not all the derivatives
are null, the first statement in the thesis is true.

Nowconsider the case inwhich all the derivatives of order j < q ≤ p are null,a < x∗ < b,
and f (q)(x∗) �= 0. Suppose, by contradiction that q is odd. Assume, firstly, that x > x∗.
Dividing (2) by (x − x∗)q > 0, we have that

∣∣∣∣
f (x) − f (x∗)
(x − x∗)q

− 1

q! f
(q)(x∗)

∣∣∣∣ ≤ c|x − x∗|. (6)

Taking lateral limits for x > x∗ and x → x∗ we deduce that

lim
x→x∗, x>x∗

∣∣∣∣
f (x) − f (x∗)
(x − x∗)q

− 1

q! f
(q)(x∗)

∣∣∣∣ = 0. (7)

Thus,

lim
x→x∗, x>x∗

f (x) − f (x∗)
(x − x̄)q

= 1

q! f
(q)(x∗). (8)

Since f (x) ≥ f (x∗) for all x sufficiently close to x∗, we deduce that f (q)(x∗) ≥ 0. A similar

reasoning for x < x∗ leads to f (q)(x∗) ≤ 0. Therefore, f (q)(x∗) = 0. Therefore, we proved
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that if all the derivatives of order j < q ≤ p are null, a < x < b, and f (q)(x∗) �= 0, then q
is even.

Let us prove now that, if all the derivatives of order j < q ≤ p are null, f (q)(x∗) �= 0,

x∗ = a and q is odd, we have that f (q)(x∗) > 0. Dividing (2) by (x − x∗)q > 0, we obtain
(6), (7), and (8) with x∗ = a. Since f (x) ≥ f (x∗) for all x sufficiently close to x∗ and, by

assumption, f (q)(x∗) �= 0, we have that f (q)(x∗) ≥ 0. The last part of the thesis follows
exactly in the same way.

Theorem 2.2 Assume that f : R → R and its derivatives up to order p are continuous

and f (p) satisfies a Lipschitz condition defined by γ1 > 0 in a neighborhood of x∗. Assume,
moreover, that x∗ is a local minimizer of f . Then, x∗ is a local minimizer of the Taylor
polynomial T p(x

∗, x).

Proof By Theorem 2.1 we have four alternatives for the coefficients of the Taylor polynomial
of order p. The first one is that all its coefficients are null. In this case, x∗ is, trivially, a
minimizer of the polynomial and there is nothing to prove.

In the second case the first nonnull coefficient of the polynomial is positive and its order
is even. Therefore, the Taylor polynomial can be written as

T p(x
∗, x) = f (x∗) +

p∑

j=q

1

j ! f
( j)(x∗)(x − x∗) j

for some even q ≤ p and 1
q! f

( j)(x∗) > 0. Then,

T p(x
∗, x) − f (x∗)

(x − x∗)q
= 1

q! f
(q)(x∗) +

p∑

j=q+1

1

j ! f
( j)(x∗)(x − x∗) j−q . (9)

This implies that x∗ is a local minimizer of T p(x
∗, x) as we wanted to prove.

In the third case x∗ = a, q is odd and 1
q! f

( j)(x∗) > 0. Then, (9) takes place and a is a

local minimizer. The fourth case, in which x∗ = b and 1
q! f

( j)(x∗) < 0, follows in a similar
way.

We now consider the n-dimensional case. If f : Rn → R admits continuous derivatives
up to order p ∈ {1, 2, 3, . . . }, then the Taylor polynomial of order p of f around x∗ is defined
as

T p(x
∗, x) = f (x∗) +

p∑

j=1

P j (x
∗, x), (10)

where P j (x
∗, x) is an homogeneous polynomial of degree j given by

P j (x
∗, x) = 1

j !
(

(x1 − x∗
1 )

∂

∂x1
+ · · · + (xn − x∗

n )
∂

∂xn

) j

f (x). (11)

For completeness we define P0(x
∗, x) = f (x∗).

Let us define ϕ(t) = f (x∗ + t(x − x∗)). Obviously, if x∗ is a local minimizer of f
over a nonempty closed and convex set C ⊂ R

n , it turns out that 0 is a local minimizer of
ϕ(t) for every choice of x ∈ C . Thus, by Theorem 2.2, 0 is a local minimizer of the Taylor
polynomial associated with ϕ subject to the interval defined by the boundary of C . But, by
the construction of (10), this implies that x∗ is a minimizer of T p(x

∗, x) along any line
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that passes through x∗ over the interval defined by the boundary of C . This fact is stated in
Theorem 2.3.

Theorem 2.3 Assume that f : Rn → R and its derivatives up to order p are continuous and
satisfy a Lipschitz condition in a neighborhood of x∗. Assume, moreover, that x∗ is a local
minimizer of f . Let L be a line that passes through x∗. Then, x∗ is a local minimizer of the
Taylor polynomial T p(x

∗, x) subject to L ∩ C.

Proof Observe that the fact that the derivatives of order p satisfy a Lipschitz condition imply
that the p-th derivative of ϕ exhibits the same property. Then, apply Theorem 2.2.

Definition 2.1 We say that x∗ is pth-order stationary of f over the closed and convex setC if,
for all x ∈ C , 0 is a localminimizer of the Taylor polynomial of order p that corresponds to the
univariate function ϕ(t) = f (x∗ + t(x − x∗)) restricted to the constraint x∗ + t(x − x∗) ∈ C .

Counterexample Unfortunately, it is not true that, when x∗ is a local minimizer of f , it is
also a local minimizer of the associated Taylor polynomial. (As we saw in Theorem 2.2, this
property is indeed true when n = 1.) For example, if f (x1, x2) = x22 − x21 x2 + x41 , we have
that (0, 0) is a global minimizer of f , but it is not a local minimizer of its Taylor polynomial
of order p = 3.

In the following theorem we prove that, although according to the counterexample above,
a minimizer does not need to minimize the Taylor polynomial, such property is true if the
Taylor polynomial is regularized with a Lipschitz term.

Theorem 2.4 Assume thatD ⊂ R
n, f : D → R, and x∗ is a local minimizer of f (x) overD

such that, for all x ∈ D,

f (x) ≤ T p(x
∗, x) + γ ‖x − x∗‖p+1, (12)

where T p is, as defined in (10), the Taylor polynomial of order p of f around x∗. Then, for
all σ ≥ γ , x∗ is a local minimizer of T p(x

∗, x) + σ‖x − x∗‖p+1 over D.

Proof Suppose that the thesis is not true. Then, x∗ is not a local minimizer of T p(x
∗, x) +

γ ‖x − x∗‖p+1 over D. Thus, there exists {xk} ⊂ D such that limk→∞ xk = x∗ and

T p(x
∗, xk) + γ ‖xk − x∗‖p+1 < T p(x

∗, x∗) = f (x∗).

Thus, by (12),

f (xk) < f (x∗)

for all k = 0, 1, 2, . . . This contradicts the fact that x∗ is a local minimizer of f over D.

The following definition is motivated by Theorem 2.4.

Definition 2.2 Assume that D ⊂ R
n , f : D → R, x∗ is such that (12) holds for all x ∈ D,

and that σ ≥ γ . Then x∗ ∈ D is said to be pth-order σ -stationary of f overD if x∗ is a local
minimizer of T p(x

∗, x) + σ‖x − x∗‖p+1 over D.

It is trivial to see that, ifD is convex and x∗ is pth-order σ -stationary of f overD according
to Definition 2.2, then it is pth-order σ̃ -stationary for every σ̃ ≥ σ and it is also pth-order
stationary according to Definition 2.1. However, pth-order σ -stationarity is strictly stronger
than pth-order stationarity. Consider the function f (x1, x2) = x22 − x21 x2 and p = 3. Note
that x∗ = (0, 0) satisfies (12) with γ = 0. Straightforward calculations show that the point
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Fig. 1 Level sets of T p((0, 0), (x1, x2)) + σ‖(x1, x2) − (0, 0)‖p+1 with p = 3 and σ = 0.125, where

T p((0, 0), (x1, x2)) is the pth-order Taylor polynomial of f (x1, x2) = x22 − x21 x2 (that coincides with f ).
The graphic shows that Condition C5 with p = 3 and σ = 0.125 does not hold at (0, 0), since it is not a local
minimizer of the regularized pth-order Taylor polynomial. There are two local minimizers at “the eyes of the
cat”

(0, 0), that is not a local minimizer of f , is pth-order stationary according to Definition 2.1.
On the other hand, (0, 0) is not pth-order σ -stationarity if σ < 1/4. See Fig. 1.

At this point it is convenient to summarize the properties of candidates to solutions of
Minimize f (x) subject to x ∈ C , whereC is closed and convex. Let us consider the following
conditions with respect to x∗ ∈ C :

C1: x∗ is a local minimizer.
C2: x∗ is a local minimizer of the Taylor polynomial over every feasible segment that

passes through x∗.
C3: x∗ is a local minimizer of the Taylor polynomial around x∗.
C4: x∗ is a local minimizer of T p(x

∗, x) + γ ‖x − x∗‖p+1, where γ is a Lipschitz
constant.

C5: x∗ is a local minimizer of T p(x
∗, x) + σ‖x − x∗‖p+1, where σ > γ and γ is a

Lipschitz constant.
C6: x∗ is a local minimizer of T p(x

∗, x) + σ‖x − x∗‖p+1, where 0 < σ < γ and γ

is a Lipschitz constant.

We proved that C1, C2, C4 and C5 are necessary optimality conditions, while C3 and C6
are not. We also showed that C1 ⇒ C4 ⇒ C5, and C3 ⇒ C6 ⇒ C4 ⇒ C5. However, C1
does not imply neither C3 nor C6.

Definition 2.3 We say that an optimality condition is exclusive if it can be verified using only
values of the derivatives up to order p at the point under consideration.

Optimality conditions that are not exclusive are said to be inclusive. Only condition C2
above is exclusive.C4 andC5 are inclusive necessary optimality conditions because they use
information on the Lipschitz constant in a neighborhood of x∗. Thus, the information that
they require is not restricted to derivatives of order atmost p at a single point. The annihilation
of the gradient at x∗ and the positive semidefiniteness of the Hessian are exclusive first-order
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and second-order necessary optimality conditions for unconstrained optimization. The most
natural high-order exclusive optimality condition for convex constrained optimization isC2.
In [24], an exclusive optimality condition based on curves was presented. However, exclusive
necessary optimality conditions are essentially weaker than inclusive ones. In fact, assume
that x∗ satisfies C5 and that C is an arbitrary exclusive necessary optimality condition.
Then, x∗ is a local minimizer of T p(x

∗, x) + σ‖x − x∗‖p+1, where σ > γ and γ is a
Lipschitz constant. Then, x∗ satisfies the exclusive condition C for the minimization of
T p(x

∗, x) + σ‖x − x∗‖p+1. Then, since C is a necessary optimality condition, it is satisfied
by x∗ for the local minimization of T p(x

∗, x) + σ‖x − x∗‖p+1. But all the derivatives up
to order p of T p(x

∗, x) + σ‖x − x∗‖p+1 exist at x∗ and coincide with the derivatives up to
order p of f . So, x∗ satisfies C for the minimization of f .

In order to see that C5 is strictly stronger thanC (for every exclusive necessary optimality
conditionC), consider the functions f (x1, x2) = x22 −x21 x2 and F(x1, x2) = x22 −x21 x2+x41 .
The origin x∗ = (0, 0) is a local (and global) minimizer of F , therefore, it must satisfy the
necessary exclusive optimality condition C of order p = 3. Since, up to order p = 3, the
derivatives of f and F are the same, it turns out that x∗ satisfies the necessary optimality
condition C of order p = 3, applied to the minimization of f . (Note that x∗ is not a local
minimizer of f .) However, x∗ does not satisfy condition C5 if σ < 1/4. In this case, every
σ > 0 is bigger than the Lipschitz constant of f associated with third-order derivatives, thus,
we found an example in which the exclusive condition C holds but the inclusive condition
C5 does not.

3 Regularized high-order minimization with box constraints

In this section, we consider the problem

Minimize f (x) subject to x ∈ �, (13)

where � ⊂ R
n is given by

� = {x ∈ R
n | � ≤ x ≤ u} (14)

and �, u ∈ R
n are such that � < u. We assume that f has continuous first derivatives into

�. We denote g(x) = ∇ f (x) and g
P
(x) = P�(x − g(x)) − x , for all x ∈ �, where P� is

the Euclidean projection operator onto �. In the remaining of this section, the results from
[7] that are relevant to the present work are surveyed and a natural extension of the main
algorithm in [7], that makes it possible to consider a wider class of models, is introduced.

Each iteration k of Algorithm 2.1 introduced in [7] computes a new iterate xk+1 satisfying
(p + 1)th-order descent with respect to f (xk) through the approximate minimization of a

(p + 1)th-regularized model of the function f around the iterate xk . For all x̄ ∈ R
n , let

Mx̄ : R
n → R be a “model” of f (x) around x̄ ; and assume that ∇Mx̄ (x) exists for all

x ∈ �. We now present an algorithm that corresponds to a single iteration of the algorithm
introduced in [7].
Algorithm 3.1 Assume that p ∈ {1, 2, 3, . . . }, α > 0, σmin > 0, τ2 ≥ τ1 > 1, θ > 0, and
x̄ ∈ � are given.
Step 1. Set σ ← 0.
Step 2. Compute x trial ∈ � such that

Mx̄ (x
trial) + σ‖x trial − x̄‖p+1 ≤ Mx̄ (x̄) (15)
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and
∥∥P�

[
x trial − ∇ (

Mx̄ (x) + σ‖x − x̄‖p+1)∣∣
x=x trial

] − x trial
∥∥ ≤ θ‖x trial − x̄‖p. (16)

Step 3. If

f (x trial) ≤ f (x̄) − α‖x trial − x̄‖p+1, (17)

then define x+ = x trial and stop returning x+ and σ . Otherwise, update σ ← max{σmin, τσ }
with τ ∈ [τ1, τ2] and go to Step 2.

Remark The trial point x trial computed at Step 2 is intended to be an approximate solution
to the subproblem

Minimize Mx̄ (x) + σ‖x − x̄‖p+1 subject to x ∈ �. (18)

Note that conditions (15) and (16) can always be achieved. In fact, by the compactness of �,
if x trial is a global minimizer of (18), then it satisfies the condition

∥∥P�[x trial − ∇(Mx̄ (x) + σ‖x − x̄‖p+1)
∣∣
x=x trial ] − x trial

∥∥ = 0;
and so (16) takes place. In addition, if x trial is a global minimizer, since x̄ is a feasible point,
(15) must hold as well.

Assumption A1 There exists L > 0 such that, for all x trial computed by Algorithm 3.1,
x = x trial satisfies

∥∥∥g(x) − ∇Mx̄ (x)
∥∥∥ ≤ L‖x − x̄‖p, (19)

Mx̄ (x̄) = f (x̄) and f (x) ≤ Mx̄ (x) + L‖x − x̄‖p+1. (20)

If Mx̄ (x) is the Taylor polynomial of order p of f around x̄ and the pth-order derivatives
of f satisfy a Lipschitz condition with Lipschitz constant L , then Assumption A1 is satisfied.
However, the situations in which Assumption A1 holds are not restricted to the case in which
Mx̄ (x) = T p(x̄, x). For example, we may choose Mx̄ (x) = f (x). (Note that, in this case,
p may be arbitrarily large but only first derivatives of f (x) need to exist.) Although the
results in [7] only mention the choice Mx̄ (x) = T p(x̄, x), these results only depend on
Assumption A1. Thus, they can be trivially extended to the general choice of Mx̄ (x).

Theorem 3.1 Suppose that Assumption A1 holds. If the regularization parameter σ in (15)
satisfies σ ≥ L + α, then the trial point x trial satisfies the sufficient descent condition (17).
Moreover,

∥∥∥g
P
(x+)

∥∥∥ ≤ (L + τ2 (L + α) (p + 1) + θ) ‖x+ − x̄‖p (21)

and

f (x+) ≤ f (x̄) − α

( ‖g
P
(x+)‖

L + τ2 (L + α) (p + 1) + θ

)(p+1)/p

. (22)

Proof This theorem condensates the results in [7, Lemmas 3.2–3.4].

Theorem 3.1 justifies the definition of an algorithm for solving (13) based on repetitive
application of Algorithm 3.1 and shows that such algorithm enjoys good properties in terms
of convergence and complexity. On the one hand, each iteration of the algorithm requires
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O(1) functional evaluations and finishes satisfying a suitable sufficient descent condition.
On the other hand, that condition implies that infinitely many iterations with gradient-norm
bounded away from zero are not possible if the function is bounded below. Moreover, (22)
leads to a complexity bound on the number of iterations based on the norm of the projected
gradient. In the following sections, we prove that, thanks to Theorem 3.1, similar convergence
and evaluation complexity properties hold for a coordinate descent algorithm.

4 High-order coordinate descent algorithm

In this section, we consider the problem

Minimize f (x) subject to x ∈ �, (23)

where � ⊂ R
n is given by

� = {x ∈ R
n | � ≤ x ≤ u} (24)

and �, u ∈ R
n are such that � < u. We assume that f has continuous first derivatives over �.

At each iteration of the coordinate descent method introduced in this section for solv-
ing (23), (i) a nonempty set of indices Ik ⊆ {1, . . . , n} is selected, (ii) coordinates
corresponding to indices that are not in Ik remain fixed, and (iii) Algorithm 3.1 is applied to
the minimization of f over � with respect to the free variables, i.e. variables with indices
in Ik . From now on, given v ∈ R

n , we denote by vI ∈ R
|I | the vector whose components

are the components of v whose indices belong to I ⊆ {1, . . . , n}. For all x ∈ �, we define
gP,I (x) ∈ R

n by

[gP,I (x)]i =
{ [gP (x)]i , if i ∈ I ,
0, if i /∈ I .

Since � is a box, this definition is equivalent to gP,I (x) = P�(x − gI (x)) − x , where

[gI (x)]i =
{ [g(x)]i , if i ∈ I ,
0, if i /∈ I .

This equivalence, that will be used in the theoretical convergence results below, is not true
if � is an arbitrary closed and convex set. This is the reason for which we consider CD
algorithms only with box constraints.
Algorithm 4.1 Assume that p ∈ {1, 2, 3, . . . }, α > 0, σmin > 0, τ2 ≥ τ1 > 1, θ > 0, and
x0 ∈ � are given. Initialize k ← 0.
Step 1. Choose a nonempty set Ik ⊆ {1, . . . , n}.
Step 2. Consider the problem

Minimize f (x) subject to x ∈ � and xi = xki for all i /∈ Ik . (25)

Let x̄ = xkIk . Setting f , �, and Mx̄ properly, apply Algorithm 3.1 to obtain x+ and σk . Step

3. Define xk+1 as xk+1
Ik

= x+ and xk+1
i = xki for all i /∈ Ik , set k ← k + 1, and go to Step 1.

Assumption A2 There exists L > 0 such that for all k, x̄ , f , and Mx̄ set at the kth iteration

of Algorithm 4.1 and for all x trial computed by Algorithm 3.1 when called at the kth iteration
of Algorithm 4.1, (19) and (20) take place with x = x trial.
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If Mx̄ (x) is the Taylor polynomial of order p of f around x̄ and the pth-order derivatives
of f satisfy a Lipschitz condition with Lipschitz constant L , then Assumption A2 is satisfied.

Theorem 4.1 Suppose that Assumption A2 holds. Then, there exists c > 0, which only
depends on L, τ2, α, p, and θ such that, for all k = 0, 1, 2, . . . , the point xk+1 computed by
Algorithm 4.1 is well defined and satisfies

f (xk+1) ≤ f (xk) − α‖xk+1 − xk‖p+1 (26)

and ∥∥∥gP,Ik (x
k+1)

∥∥∥ ≤ c‖xk+1 − xk‖p. (27)

Proof (26) follows from (17), while (27) follows from the application of Theorem 3.1.

Theorem 4.2 Suppose that Assumption A2 holds. Let {xk} be the sequence generated by
Algorithm 4.1. Then,

lim
k→∞ ‖xk+1 − xk‖ = 0, (28)

lim
k→∞

∥∥∥gP,Ik (x
k+1)

∥∥∥ = 0, (29)

and

lim
k→∞

∥∥∥gP,Ik (x
k)

∥∥∥ = 0. (30)

Proof Since � is compact, we have that f is bounded below onto �. Thus, (28) follows
from (26) and, in consequence, (29) follows from (28) and (27). Let us prove (30). Assume
that I ⊆ {1, . . . , n} is nonempty and arbitrary. By the continuity of the gradient, the function
‖gP,I (x)‖ is continuous for all x ∈ � and, since � is compact, it is uniformly continuous.
Then, given ε > 0, there exists δI > 0 such that, whenever ‖x − y‖ ≤ δI , we have that
‖gP,I (x) − gP,I (y)‖ ≤ ε/2. Since the number of different subsets of {1, . . . , n} is finite,
we have that δ ≡ min{δI | ∅ �= I ⊆ {1, . . . , n}} > 0. Thus, for all I ⊆ {1, . . . , n}, if
‖x − y‖ ≤ δ, we have that ‖gP,I (x) − gP,I (y)‖ ≤ ε/2. Now, by (28), there exists k0 such
that, whenever k ≥ k0, we have that ‖xk+1 − xk‖ ≤ δ. Then, by the definition of δ, if k ≥ k0,
‖gP,I (xk+1) − gP,I (xk)‖ ≤ ε/2 for all nonempty I ⊆ {1, . . . , n}. In particular, taking
I = Ik , if k ≥ k0, we have that ‖gP,Ik (x

k+1) − gP,Ik (x
k)‖ ≤ ε/2. Finally, by (29), there

exists k1 ≥ k0 such that, for all k ≥ k1, ‖gP,Ik (x
k+1)‖ ≤ ε/2. By the triangular inequality,

adding the last two inequalities we have that ‖gP,Ik (x
k)‖ ≤ ε. Since ε > 0 was arbitrary,

this completes the proof of (30).

The following assumption guarantees that all the indices i ∈ {1, . . . , n} belong to some
Ik at least every m̄ iterations. This guarantees that the CDmethod tries to reduce the function
with respect to each variable xi infinitely many times.

Assumption A3 There exists m̄ < +∞ such that, for all i ∈ {1, . . . , n}:
1. There exists k ≤ m̄ such that i ∈ Ik ;
2. For any k ∈ N, if i ∈ Ik , then there exists m ≤ m̄ such that i ∈ Ik+m .

Note that Assumption A3 allows us to use not only cyclic versions, but also random
versions of the CD method. In particular, the block of coordinates chosen at each iteration
can be chosen at random, with the condition that, every m̄ iterations, all blocks are chosen at
least once.
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Theorem 4.3 Suppose Assumptions A2 and A3 hold. Let {xk} be the sequence generated by
Algorithm 4.1. Then,

lim
k→∞ ‖gP (xk)‖ = 0. (31)

Moreover, if x∗ ∈ � is a limit point of {xk}, then we have that ‖gP (x∗)‖ = 0.

Proof Let i ∈ {1, . . . , n}. By Assumption A3, there exists an infinite set of increasing indices
K = {k1, k2, k3, . . . } such that i ∈ Ik�

and k�+1 ≤ k� + m̄ for all � = 1, 2, 3, . . . Then, by
(30) in Theorem 4.2, since, by definition, given I ⊆ {1, . . . , n}, [gP,I (x)]i = [gP (x)]i for
any i ∈ I ,

lim
k∈K [gP (xk)]i = 0. (32)

Let j ∈ {1, 2, . . . } be arbitrary. By (28), the triangular inequality, and the uniform continuity
of gP , we have that

lim
k∈K |[gP (xk+ j )]i − [gP (xk)]i | = 0.

Therefore, by (32),

lim
k∈K [gP (xk+ j )]i = 0. (33)

In particular, (33) holds for all j = 1, . . . , m̄. This implies that

lim
k→∞[gP (xk)]i = 0. (34)

Thus, the thesis is proved.

Theorem 4.3 shows that limit points of sequences generated by Algorithm 4.1 are first-
order stationary. The rest of this section is dedicated to prove that, under suitable conditions,
pth-order stationarity with respect to each variable also holds. More precisely, if the same
nonempty set Ik is repeated infinitely many times, p-stationarity holds in the limit for the
variables xi with i ∈ Ik . For this purpose, we need to define different notions of stationarity.

In Theorem 4.3 we proved that Algorithm 4.1 is satisfactory from the point of view of
first-order stationarity. In the CD approach we cannot advocate for full stationarity of high
order because cross derivatives that involve variables that are never optimized together are
not computed at all. However, if optimization with respect to the same group of variables
occurs at infinitely many iterations, it is reasonable to conjecture that high-order optimality
with respect to those variables would, in the limit, take place. For obtaining such result,
it is not enough to satisfy criteria (15) and (16) when solving subproblems. The reason is
that condition (16) is based on a first-order optimality criterion for problem (18). A stronger
assumption on the subproblem solution is made in the following theorem. Namely, it is
assumed that, instead of requesting (15) and (16), a global solution to subproblem (18) is
computed. This assumption could be rather mild in the case that all the subproblems are
chosen to be small dimensional. In this case, it is possible to prove that, in the limit, suitable
pth-order optimality conditions are satisfied. Observe that partial derivatives that are not
necessary for computing Taylor approximations are not assumed to exist at all, let alone to
be continuous.

Theorem 4.4 Suppose that Assumption A2 holds and the sequence {xk} is generated by
Algorithm 4.1. Suppose that, at iteration k, the function f has as variables xi with i ∈ Ik ,
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� is the box � restricted to the variables i ∈ Ik , Mx̄ (x) is chosen as the pth-order Taylor
polynomial of f defined in (10), the derivatives involved in (10) exist and are continuous for
all x ∈ �, and Algorithm 3.1 computes x+ as a global minimizer of (18). Let K be an infinite
set of indices such that I = Ik for all k ∈ K. Let x∗ be a limit point of the sequence {xk}k∈K .
Then, for all j ≤ p, x∗ is j th-order stationary of problem (13) according to Definition 2.1
and it is also j th-order σ -stationary for some σ ≤ τ2(L + α) according to Definition 2.2 of
problem (13).

Proof Consider the problem

Minimize Tp(x
∗, x) + σ‖x − x∗‖p+1 subject to x ∈ � and xi = x∗

i for all i /∈ I . (35)

By the hypothesis, for all k ∈ K , x+ is obtained as a global minimizer of

Minimize Tp(x
k, x) + σ‖x − xk‖p+1 subject to x ∈ � and xi = xki for all i /∈ I , (36)

for some σ > 0. Then, by Theorem 3.1, xk+1 is a global minimizer of (36) with σ = σk ≤
τ2(L + α). By (28), limk∈K xk+1 = limk∈K xk = x∗. Taking a convenient subsequence,
assume, without loss of generality, that limk∈K σk = σ∗ ≤ τ2(L + α). Let x ∈ � be such
that xi = x∗

i for all i /∈ I . Let zk ∈ � be such that zki = xi for all i ∈ I and zki = xki for all
i /∈ I . Then, by the definition of xk+1, for all k ∈ K ,

Tp(x
k, xk+1) + σk‖xk+1 − xk‖p+1 ≤ Tp(x

k, zk) + σk‖zk − xk‖p+1. (37)

Taking limits for k ∈ K , by the definition of zk , we have that

Tp(x
∗, x∗) + σ∗‖x∗ − x∗‖p+1 ≤ Tp(x

∗, x) + σ∗‖x − x∗‖p+1. (38)

Since x was arbitrary, this implies that x∗ is a global solution of (35). Consequently, x∗ is also
a local solution of (35). Since the Taylor polynomial of order p of Tp(x∗, x)+σ∗‖x−x∗‖p+1

coincides with the Taylor polynomial of order p of f , the thesis is proved.

Remark 1 Theorem 4.4 shows that the convergence of our CD method is related to the inclu-
sive optimality condition given in Definition 2.2, which, as stated in the last two paragraphs
of Sect. 2, is stronger than every possible exclusive optimality condition.

Remark 2 Note that the hypothesis of Theorem 4.4 implies a stronger thesis than the one
stated. In fact, we proved that, in the limit, each partial Taylor polynomial has a global
minimizer. This is interesting because that fact is not a necessary optimality condition, as it
has been shown in the counterexample exhibited in Sect. 2. However, since C3 implies C4
andC5, it turns out that x∗ certainly satisfies the inclusive optimality conditionC5 according
to Definition 2.3.

Corollary 4.1 Consider the assumptions of Theorem 4.4 and assume that, for all k,

Ik = {mod(k, n) + 1}.
If x∗ is a limit point of the sequence generated by Algorithm 4.1, then for all i = 1, . . . , n,
x∗
i is a j th-order stationary point of the problem

Minimize f (x∗
1 , . . . , x

∗
i−1, xi , x

∗
i+1, . . . , x

∗
n ) subject to �i ≤ xi ≤ ui (39)

for all j ≤ p.

Proof The proof is a direct application of Theorem 4.4.
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5 Complexity

Given a tolerance ε > 0, we wish to know the worst possible computer effort that we need
to obtain an iterate x at which the objective function is smaller than a given target or the
projected gradient norm ‖gP (x)‖ is smaller than ε. We show that the number of iterations
that are needed to obtain |[gP (xk+1)]i | ≤ ε for all i ∈ Ik is, at most, a constant times
ε−(p+1)/p as in typical high-order methods. However, obtaining |[gP (xk+1)]i | ≤ ε for all
i /∈ Ik is harder as, for this purpose, we need that consecutive iterations be close enough. This
difficulty is intrinsic to coordinate descent methods. Powell’s example of non-convergence of
CD methods [49] satisfies the requirement |[gP (xk+1)]i | ≤ ε for all i ∈ Ik at every iteration
but never satisfies |[gP (xk+1)]i | ≤ ε for i /∈ Ik . Our method converges even in Powell’s
example because we require sufficient descent based on regularization but it is affected by
Powell’s effect because the number of iterations at which the distance between consecutive
iterates is bigger than a fixed distance grows with the order p. Then, it is not surprising that
our worst-case complexity bound is significantly worse than O(ε−(p+1)/p). These results are
rigorously proved in this section and discussed in Sect. 6.

Theorem 5.1 Suppose that Assumption A2 holds. Let ftarget ≤ f (x0) and ε > 0 be given.
Then, the quantity of iterations k such that

(i) f (xk+1) > ftarget and
(ii) |[gP (xk+1)]i | > ε for some i ∈ Ik

is bounded by

f (x0) − ftarget
c ε(p+1)/p

, (40)

where c only depends on α, τ2, L, p, and θ .

Proof By (22) in Theorem 3.1,

f (xk+1) ≤ f (xk) − c‖gP,Ik (x
k+1)‖(p+1)/p,

where c = (α/(L + τ2(L + α)(p + 1) + θ))(p+1)/p . Therefore, if i ∈ Ik ,

f (xk+1) ≤ f (xk) − c
∣∣∣[gP (xk+1)]i

∣∣∣
(p+1)/p

.

So, if
∣∣[gP (xk+1)]i

∣∣ > ε,

f (xk+1) ≤ f (xk) − cε(p+1)/p. (41)

Since the sequence { f (xk)} decreases monotonically, the number of iterations at which (41)
occurs together with f (xk+1) > ftarget cannot exceed ( f (x0) − ftarget)/(cε(p+1)/p). This
completes the proof.

Theorem 5.2 Suppose that Assumption A2 holds. Let ftarget ≤ f (x0) and δ > 0 be given.
Then, the quantity of iterations k such that f (xk) > ftarget and ‖xk+1 − xk‖ > δ is bounded
by

f (x0) − ftarget
α δ p+1 . (42)

Proof The proof follows directly from (26) in Theorem 4.1.
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Theorem 5.3 Suppose that Assumption A2 holds. Let ftarget ≤ f (x0), ε > 0, and δ > 0 be
given. Then, the quantity of iterations k such that

(i) f (xk+1) > ftarget and
(ii) ‖xk+1 − xk‖ > δ or |[gP (xk+1)]i | > ε for some i ∈ Ik

is bounded by

f (x0) − ftarget
c ε(p+1)/p

+ f (x0) − ftarget
α δ p+1 , (43)

where c only depends on α, τ2, L, p, and θ .

Proof The proof follows directly from Theorems 5.1 and 5.2.

We now divide the iterations of Algorithm 4.1 in cycles. Each cycle is composed by m̄
iterations, where m̄ is the one assumed to exist in Assumption A3. Therefore, the successive
cycles start at iterations x0, xm̄, x2m̄, . . . , x�m̄, . . . The iterates x�m̄+1, . . . , x�m̄+m̄ are said
to be produced at cycle �. Iterations k = �m̄, . . . , �m̄ + m̄ − 1, at which these iterates were
produced, are said to be internal iterations of cycle �. Each iteration k is associated with
a set of indices Ik . Due to Assumption A3, for every coordinate i = 1, . . . , n and every
cycle � ≥ 0, there is at least an iteration k internal to cycle � such that i ∈ Ik . In other words,
all coordinates are considered in at least an iteration of every cycle. With the notion of cycle
at hand, we can now restate Theorems 5.1, 5.2, and 5.3 as follows.

Theorem 5.4 Suppose that Assumptions A2 and A3 hold. Let ftarget ≤ f (x0) and ε > 0 be
given. Then, the quantity of cycles � that contain an internal iteration k such that

(i) f (xk+1) > ftarget and
(ii) |[gP (xk+1)]i | > ε for some i ∈ Ik

is not bigger than

f (x0) − ftarget
c ε(p+1)/p

, (44)

where c only depends on α, τ2, L, p, and θ .

Proof Let � be a cycle that contains an internal iteration k satisfying (i) and (ii). By The-
orem 5.1, the quantity of this type of iteration is bounded by (44); and so the same bound
applies to the quantity of cycles containing an iteration with these properties. This completes
the proof.

Theorem 5.5 Suppose that Assumptions A2 and A3 hold. Let ftarget ≤ f (x0) and ε > 0 be
given. Then, the quantity of cycles � that contain an internal iteration k such that f (xk) >

ftarget and ‖xk+1 − xk‖ > δ is bounded by

f (x0) − ftarget
α δ p+1 . (45)

Proof Let � be a cycle that contains an internal iteration k such that f (xk) > ftarget and
‖xk+1 − xk‖ > δ. By Theorem 5.2, the quantity of this type of iteration is bounded by (45);
and so the same bound applies to the quantity of cycles containing an iteration with these
properties. This completes the proof.
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Theorem 5.6 Suppose that Assumptions A2 and A3 hold. Let ftarget ≤ f (x0), ε > 0, and
δ > 0 be given. Then, the quantity of cycles � that contain an internal iteration k such that

(i) f (xk+1) > ftarget and
(ii) ‖xk+1 − xk‖ > δ or |[gP (xk+1)]i | > ε for some i ∈ Ik

is bounded by

f (x0) − ftarget
c ε(p+1)/p

+ f (x0) − ftarget
α δ p+1 , (46)

where c only depends on α, τ2, L, p, and θ .

Proof The proof follows directly from Theorems 5.4 and 5.5.

The following assumption guarantees that small increments cause small differences on
the projected gradients.

Assumption A4 There exists Lg > 0 such that for all i = 1, . . . , n and x, z ∈ �,

|[gP (x)]i − [gP (z)]i | ≤ Lg‖x − z‖. (47)

By the non-expansiveness property of projections, Assumption A4 is satisfied if the gra-
dient of f satisfies a Lipschitz condition with constant Lg .

With the tools given by Assumption A4 and Theorem 5.6, we are now able to establish a
bound on the number of cycles at which the whole projected gradient is bigger than a given
tolerance.

Theorem 5.7 Suppose that Assumptions A2, A3, and A4 hold. Let ftarget ≤ f (x0), ε > 0,
and δ > 0 be given. Then, there exists a cycle �, with � exceeding (46) by one in the worst
case, such that either

(i) for some iteration k internal to cycle �, we have that f (xk) ≤ ftarget or
(ii) for all the iterations k internal to cycle � we have that

∣∣∣[gP (xk+1)]i
∣∣∣ ≤ ε + m̄Lgδ for all i = 1, . . . , n. (48)

Proof By Theorem 5.6, there exists a cycle � that does not exceeds (46) by more than one
such that, for each iterations k internal to cycle �, either f (xk+1) ≤ ftarget or

‖xk+1 − xk‖ ≤ δ and |[gP (xk+1)]i | ≤ ε for all i ∈ Ik . (49)

If there exists an iteration k internal to cycle � such that f (xk+1) ≤ ftarget, then we are done.
So, we assume that, for all iterations k internal to cycle �, (49) holds. Let i ∈ {1, . . . , n}
be arbitrary. Assumption A3 implies that there is an iteration k internal to cycle � such that
i ∈ Ik and, thus, by (49), |[gP (xk+1)]i | ≤ ε. For any other iterate z produced at cycle �, by
Assumption A4, the triangle inequality, and the first inequality in (49), we have that

|[gP (z)]i − [gP (xk+1)]i | ≤ Lg‖z − xk+1‖ ≤ m̄Lgδ.

Thus,

|[gP (z)]i | ≤ ε + m̄Lgδ,

as we wanted to prove.
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Theorem 5.8 Suppose that Assumptions A2, A3, and A4 hold. Let ftarget ≤ f (x0), ε > 0,
and δ > 0 be given. Then, there exists a cycle � of index not larger than

f (x0) − ftarget
c (ε/2)(p+1)/p

+ f (x0) − ftarget
α (ε/(2m̄Lg))p+1 + 1, (50)

where c only depends on α, τ2, L, p, and θ , such that, in its first internal iteration k, either
f (xk) ≤ ftarget or

∣∣∣[gP (xk+1)]i
∣∣∣ ≤ ε for all i = 1, . . . , n. (51)

Proof The proof follows fromTheorem 5.7 replacing εwith ε/2 and defining δ = ε/(2m̄Lg).
Note that the thesis holds for the first iteration of the cycle because, in fact, due toTheorem5.7,
it holds for all its iterations.

The impact of m̄ on the complexity limit is expressed in formula (50). Note that the
second term of (50) grows proportionally to m̄ p+1. If n increases and the size of the sub-
problems remains bounded, then m̄ grows proportionately to n. Under these conditions, an
increase in the number of iterations proportional to n p+1 is expected. Theorems 5.1–5.8
give upper bounds on the number of iterations of Algorithm 4.1. (Bounds on the number
of cycles translate into bounds on the number of iterations if multiplied by m̄.) The first
term of the sequence of regularization parameters used in Algorithm 3.1 is 0. If the corre-
sponding trial point is rejected, the second term is σmin. Then, each time that σ needs to be
increased, it is multiplied by a number larger than or equal to τ1. Therefore, by definition,
the sequence of σ ’s generated by Algorithm 3.1 is bounded from below by the sequence
0, τ 01 σmin, τ 11 σmin, τ 21 σmin, τ 31 σmin, . . . Thus, by Theorem 3.1, the number of functional
evaluations per call to Algorithm 3.1 at Step 2 of Algorithm 4.1 is bounded by

logτ1
((L + α)/σmin) + 2.

This establishes analogous bounds on the number of functional evaluations of Algorithm 4.1.

6 Discussion

Theorems 5.4 and 5.5 are complementary for showing that, eventually, Algorithm 4.1 com-
putes an iterate xk such that ‖g

P
(xk)‖ is smaller than a given tolerance; and that this task

employs an amount of computer time that depends on tolerances and problem parameters.
In Theorem 5.4, we proved that within O(ε−(p+1)/p) iterations Algorithm 4.1 computes a
sequence (cycle) of m̄ iterates such that, for each i = 1, . . . , n, there is at least one k such
that |[gP (xk+1)]i | ≤ ε. The number of required iterations for this purpose decreases with p
and tends to O(1/ε) when p tends to infinity. However, this result does not guarantee that
the projected gradient norm is smaller than ε at a single iterate. For this purpose, we need
the different iterates within a cycle to be clustered in a ball of small size. Unfortunately, in
order to guarantee that this happens with tolerance δ, we need, according to Theorem 5.5,
O(1/δ p+1) iterations. This quantity increases with p, which seems to indicate that, in the
worst case, high-order coordinate descent is less efficient than low-order coordinate descent.

Examples given by Powell in [49] indicate that, in fact, this may be the case. In these
examples, if coordinate descent is employed with exact coordinate minimization and cyclic
coordinate descent, the generated sequence has more than one limit point. So, the distance
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between consecutive iterations does not tend to zero. This behavior is not observed if Algo-
rithm 4.1 is applied because the descent condition (17) implies that lim ‖xk+1 − xk‖ = 0.
However, exact minimization at each iteration evokes the case p = ∞ of Algorithm 4.1
in the sense that the trial point computed as an exact minimizer satisfies the conditions for
accepting the trial steps for any p. So, the conjecture arises that if one applies Algorithm 4.1
to Powell’s examples with different values of p, the resulting sequence, although convergent
to a solution, stays an increasing number of iterations oscillating around Powell’s limiting
cycle.

This conjecture is not easy to verify because, except one, Powell’s examples are unstable
in the sense that small perturbations cause convergence to the true minimizers far from the
limit spurious cycle. In any case, we can emulate the application of Algorithm 4.1 to the most
famous of Powell’s examples (slightly modified here):

Minimize f (x1, x2, x3) ≡ −(x1x2 + x1x3 + x2x3) +
3∑

i=1

(|xi | − 0.1)2+. (52)

If coordinate descentmethod employing exact coordinateminimization and cyclic coordinate
descent is applied to problem (52) starting from

x0 = (−0.1 − ε, 0.1 + ε/2,−0.1 − ε/4),

it generates, after six iterations, an iterate x6 that corresponds to x0 with ε substituted with
ε/64, i.e.

x6 = (−0.1 − ε/64, 0.1 + ε/128,−0.1 − ε/256);
and, in general, for all k,

x6k = (−0.1 − ε/64k, 0.1 + ε/(2 × 64k),−0.1 − ε/(4 × 64k)).

In the intermediate iterations, that are not multiples of 6, one has that

x6k+ j = (±0.1 ± ε/νk, j ,±0.1 ± ε/ × νk, j ,±0.1 ± ε/νk, j )

where νk, j ≤ 4 × 64k+1 for all k, j .
Now, we wish to show that this sequence could be generated by Algorithm 4.1. Moreover,

for any given p, we wish to know how many iterations are necessary to obtain consecutive
iterations such that ‖xk+1 − xk‖ ≤ 0.01. Let

x0 = (−0.1 − ε, 0.1 + ε/2,−0.1 − ε/4).

The global minimizer of f (x1, x2, x3) subject to x2 = x02 and x3 = x03 is

z0 = (0.1 + ε/8, 0.1 + ε/2,−0.1 − ε/4).

(The iterate x1 in the Powell’s sequence is given by x1 = z0, but we preserve the notation z0

for the sake of simplicity.) On the one hand,

f (x0) = −(x01 x
0
2 + x01 x

0
3 + x02 x

0
3 ) +

3∑

i=1

(|x0i | − 0.1)2+.

On the other hand, since z02 = x02 and z03 = x03 ,

f (z0) = −(z01x
0
2 + z01x

0
3 + x02 x

0
3 ) + (|z01| − 0.1)2+ +

3∑

i=2

(|x0i | − 0.1)2+.
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Therefore,

f (x0) − f (z0) = (z01 − x01 )(x
2
0 + x30 ) + (|x01 | − 0.1)2+ − (|z01| − 0.1)2+.

Thus,

f (x0) − f (z0) = ((0.1 + ε/8) − (−0.1 − ε))(ε/2 − ε/4) + (| − 0.1 − ε| − 0.1)2+
−(|0.1 + ε/8| − 0.1)2+

= (0.2 + 9ε/8)ε/4 + ε2 − ε2/64 = 0.2ε/4 + 9ε2/32 + ε2 − ε2/64
= 0.2ε/4 + 9ε2/32 + ε2 − ε2/64 = 0.2ε/4 + 81ε2/64 ≥ ε/20.

Consider Algorithm 4.1 using f (x) as the model of the objective function.Wemust verify
whether (15), (16), and (17) are satisfied with x trial = z0. Trivially, for σ = 0, (15) and (16)
hold by the definition of the model and the fact that z0 is a global minimizer. In order to show
that (17) also holds, let as assume that ε < 0.1 and 2p+1 ≥ 20α/ε, i.e. α/2p+1 ≤ ε/20. So,
by the calculations above,

f (x0) − f (x trial) ≥ α/2p+1.

Since ε < 0.1, we have that ‖x trial − x0‖ ≤ 0.5. Thus,

f (x0) − f (x trial) ≥ α‖x trial − x0‖p+1.

This implies (17). Therefore, a sufficient condition for the acceptance of x1 = z0 as an iterate
of Algorithm 4.1 is

α/2p+1 ≤ ε

20 × 4 × 64k
.

In other words,

20 × 4 × 64kα ≤ ε2p+1.

Taking logarithms, this condition is

log2 80 + 6k + log2 α ≤ p + 1.

That is, if

k0 ≤ (p + 1 − log2 80 − log2 α)/6,

the first k0 iterations of Algorithm 4.1 will reproduce the cycling example of Powell. In all
these iterations we have that ‖xk+1 − xk‖ ≥ 0.1. Note that k0 tends to infinity as p tends to
infinite, as we wanted to show. In addition, note also that k0 tends to infinity as α tends to
zero, which reflects the obvious fact that, if we are more tolerant with the acceptance of the
trial point, the probability of staying around Powell’s six-points cycle increases.

It is not sensible to decide about usefulness of algorithms based only on theoretical conver-
gence or complexity results. Since these results deal with worst-case behavior the possibility
exists that a class of problems in which practitioners are interested always exhibit charac-
teristics that exclude extreme unfortunate cases. However, it is pertinent to examine pure
mathematical properties in order to foster unexpected good or bad computer behaviors.

1. Many optimization users believe that if a smooth function has a minimizer at a point x∗,
then this point is a local minimizer of all its Taylor polynomials. This is true only if the
dimension n is equal to 1. For arbitrary n, it is true only up to second order polynomials.
Examples that illustrates this phenomenon have been given in this paper with the purpose
of justifying adequate high-order optimality conditions (for example, f (x1, x2) = x22 −
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x21 x2 + x41 ). This fact implies that, in the vicinity of a global minimizer, a high-order
algorithm may try to find improvements far from the current point, being subject to a
painful sequence of “backtrackings" before obtaining descent. Does this imply that only
quadratic approximations are useful in the minimization context? It is too soon to give a
definite response to this question.

2. Our regularization approach for CD-algorithms makes it impossible to exhibit the cyclic
behavior of Powell’s examples [49]. The reason is that, under regularization descent
algorithms, the difference between consecutive iterates tends to zero. However, it seems
to be possible that convergence to zero of consecutive iterates could be very slow, as
predicted by complexity results. Is this an argument for discarding high-order CD algo-
rithms?We believe that the answer is no, as far as the use of CD algorithms is, in general,
motivated by the structure of the problems, which in some sense should evoke some
degree of separability. Moreover, since high-order models are also low-order models one
can use high-order associated with a small p in (15), (16), and (17). In other words, if
1 ≤ q < p, then the conditions that define a model of order q are satisfied by models
of order p. Therefore, we may use models of order p associated with the regulariza-
tion required by models of order q . For example, we may use a second-order model
associated to quadratic regularization preserving first-order convergence results and the
corresponding complexity.

3. It is interesting to consider the case in which we use f (x) as a model for f (x). In this
case, high-order analysis makes a lot of sense. In fact, efficient algorithms for finding
global minimizers of functions of one variable exist, a possibility that decreases very
fast as the number of variables grow. Moreover high-order one-dimensional models are
certainly affordable and many numerical analysis papers handle efficiently the problem
ofminimizing or finding roots of univariate polynomials [48]. Recall that, in this case, the
model satisfies the approximation requirements for every value of p. Therefore we may
choose the value of p that promises better efficiency, which, according to Theorem 5.8,
should be p = 1 giving complexity O(ε−2) as gradient-like methods.

4. Inmost practical situations one is interested in finding globalminimizers or, at least, feasi-
ble points at which the objective function value is smaller than a given ftarget. Complexity
and convergence analyses in the nonconvex world concern only the approximation to sta-
tionary points although every practical algorithm must be devised taking into account
the global implicit goal. It turns out that low coordinate global strategies for finding
initial points are available in many real-life problems. These strategies fit well with CD
algorithms as we will illustrate in Sect. 7.

5. The reader will observe that in our experiments we used p = 2, in spite that, according
to the complexity results, the optimal p should be 1. The reason is that, as we stated in
the convergence section, the employment of p = 2 guarantees convergence to points that
satisfy second order conditions that are not guaranteed by p = 1.Moreover, subproblems
with p = 2 are computationally affordable in the applications considered. Summing up,
we could say that making an informal balance regarding theoretical results, using p = 2
should be the default choice for practical applications.

7 Implementation and experiments

This section illustrates with numerical experiments the applicability of Algorithm 4.1. The
Multidimensional Scaling (MS) problem [28, 45, 50] adopted for the experiments is described
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in Sect. 7.1. Implementation details of Algorithms 3.1 and 4.1 are described in Sect. 7.2.
Problem-dependent strategies for generating an initial point and for generating a sequence
of improved initial points are described in Sect. 7.3. The computational results are shown in
Sect. 7.4.

7.1 Multidimensional scaling problem

Multidimensional Scaling methods emerged as statistical tools in Psychophysics and sensory
analysis. The MS problem considered in this section may be described in the following
way: Let x1, . . . , xnp ∈ R

d be a set of unknown points. Let D = (di j ) ∈ R
n p×n p be

such that di j = ‖xi − x j‖; and assume that only entries {di j | (i, j) ∈ S} for a given
S ⊂ {1, . . . , n p}×{1, . . . , n p} are known. (Of course, D is symmetric, dii = 0, and (i, j) ∈ S
if and only if ( j, i) ∈ S.) Then the MS problem consists of finding x1, . . . , xnp such that
‖xi − x j‖ = di j for all (i, j) ∈ S. Glunt, Hayden, and Raydan [33] were the first to apply
unconstrained continuous optimization tools to the nowadays called Molecular Distance
Geometry Problem (MDGP), as defined in [38, 39] in a Multidimensional Scaling context.
This problem appears when points x1, . . . , xnp correspond to the positions of atoms in a
molecule and distances not larger than 6 Angstroms (i.e. 6 × 10−10 meters) are obtained
via nuclear magnetic resonance (NMR) [1]. This problem can be modeled as the following
unconstrained nonlinear optimization problem

Minimize
x1,...,xn p∈Rd

f (x1, . . . , xnp ) := 1

|S|
∑

(i, j)∈S

(
‖xi − x j‖22 − d2i j

)2
. (53)

7.2 Implementation details

If we wish to apply Algorithm 4.1 to theMDGP problem, it arises quite naturally to associate
at iteration k the set Ik with the components of a point x�(k) ∈ R

d for some �(k) between 1 and
n p . Specifically, if we define x = (xT1 , . . . , xTnp

)T ∈ R
n with n := d n p , then at iteration k

we can define

Ik = {(�(k) − 1)d + 1, . . . , (�(k) − 1)d + d} with �(k) = mod(k, n p) + 1, (54)

or any alternative choice of �(k) ∈ {1, . . . , n p}. This is equivalent to say that, at iteration k,
the subproblem considered at Step 2 of Algorithm 4.1 is given by

Minimize
z∈Rd

f (z), (55)

where f : Rd → R is defined as

f (z) := 1

|S|

⎡

⎣
∑

(i, j)∈S\S(�(k))

(
‖xi − x j‖22 − d2i j

)2 + 2
∑

(i,�(k))∈S

(
‖xi − z‖22 − d2i,�(k)

)2
⎤

⎦ ,

(56)

S(�(k)) := {(i, j) ∈ S | i = �(k) or j = �(k)}, and �(k) is given by (54). Note that the time
complexity for evaluating f is O(d|S|); while, since the first summation in (56) does not
depend on z, the time complexity for evaluating f is, in average O(d|S|/n p).
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For approximately solving (55) in Algorithm 3.1, we consider a second-order Taylor
expansion of f at x̄ = xk�(k) ∈ R

d , i.e.

Mx̄ (z) := f (x̄) + ∇ f (x̄)T (z − x̄) + (z − x̄)T∇2 f (x̄)T (z − x̄). (57)

This means that the underlying model-based subproblem, when Algorithm 3.1 is used at
Step 2 of the kth iteration of Algorithm 4.1 is given by

Minimize
z∈Rd

Mx̄ (z) + σ‖z − x̄‖3. (58)

Since problem (53) is unconstrained, i.e. � = R
n , subproblems (55) and model-based sub-

problems (58) are unconstrained as well. Thus, if in (58) and, in consequence, in (17), for
x ∈ R

d , we consider ‖x‖ as ‖x‖3 := (
∑d

i=1 |xi |3)1/3, then the global minimizer of (58) can
be easily obtained at the expense of a single factorization of ∇2 f (x̄) ∈ R

d×d , see [8, 18,
43, 44]. (When σ = 0, (58) may have no solution. This case can be detected with the same
cost as well.) Since the exact global minimizer x trial of (58) is being computed at Step 2 of
Algorithm 3.1, (15) and (16) always hold, for any θ > 0; thus, in the implementation, their
verification can be ignored.

7.3 Initial guess andmultistart strategy

As shown in Sect. 4, Algorithm 4.1 has convergence properties towards stationary points
which, probably, are local minimizers. Obviously, as we are interested in finding global
minimizers of MDGP, we need suitable strategies for choosing initial approximations. We
employed the combination of two different strategies for this purpose. On the one hand, an
initial guess suggested in [32] was adopted. On the other hand, we devised a new coordinate
descent procedure based on the structure of MDGP. The Fang-O’Leary strategy [32], based
on shortest paths over an underlying graph, is a strategy for computing a single initial solu-
tion. Starting from that solution, our new coordinate descent procedure is used iteratively
to make successive improvements on the Fang–O’Leary initial point. At each improvement,
Algorithm 4.1 is run to find a local solution.

In order to describe the Fang-O’Leary strategy [32], consider the weighted graph G =
({1, . . . , n p}, S) in which the weight of an edge (i, j) is given by di j . We assume this graph
is connected. Otherwise, the molecule’s structure can not be recovered; and problem (53) can
be decomposed in as many independent problems as connected components of the graphG in
order to recover partial structures. Let S̄ = {1, . . . , n p}× {1, . . . , n p} \ S, i.e. S̄ corresponds
to themissing arcs inG or, equivalently, the unknown entries of D. For each (i, j) ∈ S, define
d̃i j = di j ; and for each (i, j) ∈ S̄, define d̃i j as the weight of the shortest path between i and
j in G. Matrix D̃ = (d̃i j ) is a distance matrix that completes D; but with high probability
it is not an Euclidean distance matrix. Computing D̃ requires O(n2p) space and has time
complexity O(n3p) (using the Floyd–Warshall algorithm as suggested in [32]), which can be

an issue for instances with large n p . Obtaining points x01 , . . . , x
0
n p

∈ R
d from D̃ requires to

compute the d largest positive eigenvalues of the matrix T (D̃) given by T (D̃) := − 1
2 J D̃ J ,

where J := I − 1
n ee

T and e = (1, . . . , 1)T . If the truncated spectral decomposition of

T (D̃) is given by U�dUT then the initial point x0 = ((x01 )
T , . . . , (x0n p

)T )T is given by

X = (x01 , . . . , x
0
n p

) = U�
1/2
d . If the matrix T (D̃) has only d < d positive eigenvalues, then

computed points are in Rd and their last d − d components can be completed with zeros. In
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[32], alternative initial guesses are obtained by perturbations of matrix D̃ and/or by stretching
the computed points x01 , . . . , x

0
n p
.

Our coordinate-descent strategy for choosing the initial approximation to the solution of
MDGP is inspired on the structure of local solutions. Consider a point p ∈ R

3 and three
other points q1, q2, q3 ∈ R

3 such that the distances from p to qi , i = 1, 2, 3, are known, i.e.,
(p, qi ) ∈ S for i = 1, 2, 3. Assume, in addition, that the required distances are satisfied, i.e.,
that ‖p−qi‖ is equal to the corresponding value inmatrix D for i = 1, 2, 3.Assume that there
is an additional point q4 for which its known distance d(p, q4) to p is not satisfied. Assume,
in addition, that (‖r(p) − q4‖22 − d(p, q4)2)2 < (‖p − q4‖22 − d(p, q4)2)2, where r(p) is
the reflection of p on the plane determined by qi , i = 1, 2, 3. If there were no more points in
the problem, replacing p by r(p), would produce a reduction in the objective function. Our
coordinate descent algorithm with a coordinate-descent strategy for choosing initial points
is described in Algorithm 7.1. The coordinate-descent strategy for initial approximations,
based on this intuition, is described at Step 4 of Algorithm 7.1.

Algorithm 7.1. Assume x̂ is a given arbitrary initial point (that might be obtained using the
Fang-O’Leary technique described above).

Step 1. Using x̂ as initial guess, run Algorithm 4.1 until the obtention of an iterate x̃ such
that f (x̃) ≤ ftarget or such that its projected gradient is small enough according to
criteria given below.

Step 2. If f (x̃) ≤ ftarget then stop declaring that x̃ is a global minimizer up to the precision
given by ftarget. Otherwise, update x̂ by means of the coordinate-descent strategy
in Step 3 below.

Step 3. For j = 1, . . . , n p execute Steps 3.1–3.2.
Step 3.1. Let f̂ j := ∑

(i, j)∈S(‖x̂i − x̂ j‖22 − d2i j )
2.

Step 3.2. For every triplet (i1, i2, i3) such that (i1, j), (i2, j), (i3, j) ∈ S, in an arbitrary
order, if

∑

(i, j)∈S
(‖x̂i − r(x̂ j )‖22 − d2i j )

2 < f̂ j ,

where r(x̂ j ) is the reflection of x̂ j on the plane determined by x̂i1 , x̂i2 , and x̂i3 ,
then update x̂ j ← r(x̂ j ). (Note that f̂ j is not updated at this point. This means
that a sequence of reflections can be applied to x̂ j , with a non-monotone behavior
of f , provided it improves the “reference value” f̂ j .)

Step 4. If x̂ was not updated at Step 3, then stop returning x̃ . (Note that ftarget was not
reached in this case.) Otherwise, go to Step 1.

At Step 1 of Algorithm 7.1, we consider that “the projected gradient is small enough” if,
during n p consecutive iterations of Algorithm 4.1, we have that “the final σ” of Algorithm 3.1
is larger than 1020 or f (xk+1) �≤ f (xk) − 10−8 min{1, | f (xk)|}. By (26), (27) and the
boundedness of σ , these are practical symptoms of stationarity.

7.4 Computational results

We implemented Algorithms 3.1, 4.1, and 7.1 in Fortran. In the numerical experiments, we
considered, α = 10−8, σmin = 10−8, and τ1 = τ2 = 100, and ftarget = 10−10. All tests
were conducted on a computer with a 3.5 GHz Intel Core i7 processor and 16GB 1600 MHz
DDR3 RAMmemory, running macOS High Sierra (version 10.13.6). Code was compiled by
the GFortran compiler of GCC (version 8.2.0) with the -O3 optimization directive enabled.
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Table 1 Description of the instances built with the molecules considered in [1] or [32]

Molecule n n p |S| Time x0

Points may correspond to protein atoms (ATOM) only or to protein
atoms plus atoms in small molecules (HETATM)

ATOM only

1ptq 1206 402 14,176 (8.79%) 0.21

1hoe 1674 558 20,356 (6.55%) 0.49

1lfb 1923 641 22,870 (5.57%) 0.70

1pht 2433 811 35,268 (5.37%) 1.41

1poa 2742 914 33,966 (4.07%) 2.03

2igg 2919 973 62,574 (6.62%) 2.54

1ax8 3009 1003 37,590 (3.74%) 2.76

1rml 6192 2064 153,660 (3.61%) 24.14

1ak6 8214 2738 224,568 (3.00%) 52.04

1a24 8856 2952 212,364 (2.44%) 64.90

3msp 11,940 3980 262,876 (1.66%) 157.90

3eza 15,441 5147 356,544 (1.35%) 335.84

ATOM + HETATM

1ptq 1212 404 14,370 (8.83%) 0.21

1hoe 1743 581 21,422 (6.36%) 0.55

1pht 2964 988 44,542 (4.57%) 2.59

1poa 3201 1067 41,034 (3.61%) 3.23

1ax8 3222 1074 40,866 (3.55%) 3.29

1rml 6273 2091 156,550 (3.58%) 23.90

TheResearchCollaboratory for Structural Bioinformatics (RCSB) ProteinData Bank [52]
is an open access repository that provides access to 3D structure data for large biological
molecules (proteins, DNA, and RNA). There are more than 167,000 molecules available.
In [32], where Newton and quasi-Newton methods are applied to problem (53), six protein
molecules are considered, namely, 2IGG, 1RML, 1AK6, 1A24, 3MSP, and 3EZA (see [32,
Table 6.9, p.20]); while in [1], where the Douglas-Rachford method is applied, other six
protein molecules are considered, namely, 1PTQ, 1HOE, 1LFB, 1PHT, 1POA, and 1AX8
(see [1, Table 1, p.313]). In the first work, only protein atoms (identified with ATOM in the
molecule file) were considered; while in the secondwork therewere considered protein atoms
plus atoms in small molecules (identified with HETATM in the protein molecule file). In the
current work, both options were considered. Following [32], for each protein molecule, when
multiple structures are available, only the first one was considered. Each molecule is given
as the set of 3D coordinates of its atoms. An instance of problem (53) is built by computing a
complete Euclidean distance matrix and then eliminating distances larger than 6 Angstroms.
Since not all molecules have atoms in small molecules, we arrived to eighteen different
instances. Table 1 shows, for each instance, the number of variables n of the optimization
problem (53), the number of atoms n p , the number of distances considered to be known |S|,
and the CPU time in seconds required to construct the initial guess x0 using the Fang-O’Leary
strategy [32].
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Note that considered instances are gedanken in the sense that points x̄1, . . . , x̄n p ∈ R
3 such

that f (x̄) = 0 with x̄ T = (x̄ T1 , . . . , x̄ Tn p
)T are known. Thus, given x∗ such that f (x∗) ≈ 0,

we may wonder whether x∗ is close to x̄ . The answer to this question is “Not necessarily.”
since any rotation or translation of x̄ also annihilates f . So the question would be “How close
is x∗ to x̄ after performing the appropriate rotations and translations?”. The answer to this
question is obtained by solving an orthogonal Procrustes problem. Let X̄ = (x̄1, . . . , x̄n p ) and
X∗ = (x∗

1 , . . . , x
∗
n p

) ∈ R
3×n p . It is easy to see that matrices X̄ J and X∗ J have their centroid

at the origin, since X̄ Je = X∗ Je = 0. (Recall that J = I − 1
n p
eeT and e = (1, . . . , 1)T .)

The orthogonal Procrustes problem consists in finding an orthogonalmatrix Q ∈ R
3×3 which

most closely maps X∗ J to X̄ J , i.e.

Q = argmin
R∈R3×3

‖RX∗ J − X̄ J‖2F subject to RRT = I .

This problem has a closed form solution given by Q = VUT , where U�V T is the singular
value decomposition of the matrix C := X∗ J (X̄ J )T . Thus, the measure we were looking
for is given by

E(x∗) := max{ j=1,...,n p}

{
E(x∗

j )
}

,

where

E(x∗
j ) := ‖[QX∗ J − X̄ J ] j‖∞

max{1, ‖[X̄ J ] j‖∞} , (59)

and [A] j denotes the j th column of matrix A.
Table 2 shows the performance of Coordinate Descent, the Spectral Projected Gradient

(SPG) method [10–13], and Gencan [6, 9]. In all cases, the initial point given by the Fang-
O’Leary techniquewas used. Since problem (53) is unconstrained, applying SPGcorresponds
to applying the Spectral Gradient methods as proposed in [33]; while applying Gencan
corresponds to applying a line search Newton’s method as considered in [32]. All three
methods used as stopping criterion f (xk) ≤ ftarget := 10−10. In addition, SPG and Gencan
also stopped if‖∇ f (xk)‖∞ ≤ εopt := 10−8. For all threemethods the table shows the number
of iterations (#iter), the CPU time in seconds (Time), the value of the objective function at the
final iterate ( f (x∗)), and the error with respect to the known solution (E(x∗)). In addition,
the table shows, for the coordinate descent method the number of evaluations of f ; while it
shows for the other two methods, the number of evaluations of f and ‖∇ f (x∗)‖∞. In the
table, underlined figures in column f (x∗) are the ones that correspond to local minimizers.
Underlined figures in column E(x∗) correspond to final iterates that are far from the known
solution. Inmost cases, this fact is associatedwith having found a localminimizer.However, in
some cases, it corresponds to an alternative globalminimizer.Wemay observe that coordinate
descent stands out as the only method to have found a global minimizer in all the eighteen
considered instances. Figures 2 and 3 illustrate three molecules in which the coordinate
descent method found a global solution while SPG and Gencan found local non-global
minimizers. It is worth mentioning that the numerical experiments reported in [1] show that
the Douglas-Rachford method, that requires an SVD decomposition of a n p × n p matrix per
iteration, with a limit of 5,000 iterations, was able to reconstruct the two smallest molecules
(1PTQ and 1HOE) only. As reported in [1], the reconstruction of molecules 1LFB and 1PHT
was “satisfactory”; while the reconstruction of molecules 1POA and 1AX8 was “poor”.
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1POA1PHT1AK6

Fig. 2 Representation of molecules 1AK6, 1PHT, and 1POA for which Coordinate Descent found a global
minimizer; while SPG and Gencan found a local minimizer
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Fig. 3 Molecules 1AK6, 1PHT, and 1POA for which Coordinate Descent found a global minimizer; while
SPG and Gencan found a local minimizer. To the naked eye, solutions would appear to be indistinguishable.
Therefore, the figures show, for each point x∗

1 , . . . , x∗
n p , the value of E(x∗

j ) as defined in (59)

At this point the following question arises: how does solving the subproblems with
cubically-regularized second-order models affect the performance of the CD method? To
answer this question, we solved the same 18 problems tackling the subproblems with
quadratically-regularized linear models. This means that, to approximately solve (55) with
Algorithm 3.1, we considered p = 1. In other words, instead of (57,58), (a) we con-
sidered the first-order Taylor expansion of f at x̄ = xk�(k) ∈ R

d given by Mx̄ (z) :=
f (x̄) + ∇ f (x̄)T (z − x̄), and (b) we computed x trial as the global minimizer of
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Table 3 Performance of coordinate descent with p = 1, i.e. considering quadratically-regularized linear
models for solving subproblems, applied to the same instances already shown in Table 2

Molecule Coordinate descent with p = 1
#iter # f Time f (x∗) E(x∗)

ATOM only

1ptq 1,115,103 1,672,658 1.97 9.99e−11 3.98e−05

1hoe 1,862,919 2,794,382 3.10 9.99e−11 2.04e−06

1lfb 7,059,295 10,588,949 9.50 9.99e−11 7.52e−06

1pht 21,056,147 31,584,233 38.52 9.99e−11 2.73e−04

1poa 107,284,920 160,927,383 105.32 9.99e−11 5.85e−04

2igg 3,602,906 5,404,362 30.38 9.99e−11 8.43e−06

1ax8 2,059,932 3,089,901 4.56 9.99e−11 4.05e−06

1rml 9,186,681 13,780,025 98.21 9.99e−11 3.23e−06

1ak6 160,256,027 240,384,044 465.43 9.99e−11 1.62e−05

1a24 79,008,635 118,512,956 238.59 9.99e−11 1.40e−05

3msp 236,434,288 354,651,435 458.60 9.99e−11 1.61e−05

3eza 34,134,889 51,202,336 216.98 9.99e−11 1.07e−05

ATOM+HETATM

1ptq 1,466,069 2,199,107 2.30 9.97e−11 4.26e−05

1hoe 683,645 1025,474 3.53 9.99e−11 1.98e−06

1pht 16,112,116 24168,177 23.29 9.99e−11 3.38e−05

1poa 32,496,533 48744,802 34.40 9.99e−11 1.46e−02

1ax8 6,829,569 10244,357 9.37 9.99e−11 2.47e−06

1rml 2,302,956 3454,437 87.64 9.99e−11 1.99e−06

Minimize
z∈Rd

Mx̄ (z) + σ‖z − x̄‖2. (60)

Since (60) has no solutionwhen∇ f (x̄) �= 0 andσ = 0,we skip the caseσ = 0by substituting
σ ← 0 with σ ← σmin at Step 1 of Algorithm 3.1. Apart from this, the settings for the case
p = 1 were identical to those already described for the case p = 2. Table 3 shows the results.
The numbers in the table show that the method found a global solution in all instances, a
feature shared with its counterpart with p = 2. (Only in one instance an alternative global
minimizer was found.) The numbers in the table also show that, on average, the method does
1.0001 function evaluations per iteration when p = 2, while that same amount is 1.5000
when p = 1. This means that, on the one hand, in the case p = 1, half of the times the
solution of the regularized model is discarded for not satisfying the descent condition and
the regularization parameter must be increased. On the other hand, this situation is extremely
rare (once every ten thousand iterations) when p = 2. Moreover, the method with p = 1
uses, on average, 26 times more iterations, 39 times more function evaluations and 22 times
more time than the case p = 2. The conclusion is that using quadratic models with cubic
regularization whose global solution can be calculated using the method introduced in [8],
greatly improves the performance of the proposed method.

Another natural question that arises is whether the tendency of the coordinate descent
method in finding global minimizers could be observed in a larger set of instances. To check
this hypothesis, we downloaded 64 additional random molecules with no more than 6,000
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atoms from the ones that were uploaded in 2020; 56 of which have, other than protein atoms,
atoms in small molecules. However there were 19 molecules for which, considering protein
atoms only or protein atoms plus atoms in small molecules, the graph associated with the
incomplete Euclidean matrix obtained by eliminating distances larger than 6 Angstroms is
disconnected. Therefore, we were left with 45 and 37 molecules in each set, totalizing 82
new instances. Table 4 shows the performance of Coordinate Descent and SPG when applied
to the 45 instances that consider protein atoms only; while Table 5 shows the performance of
bothmethodswhen applied to the 37 instances that consider protein atoms plus atoms in small
molecules. In the 45 instances in Table 4, Coordinate Descent found 37 global minimizers;
while SPG found 30 global minimizers. In the 37 instances in Table 5, Coordinate Descent
found 30 global minimizers; while SPG found 26 global minimizers.

8 Conclusions

Methods based on high-order models for optimization are difficult to implement due to the
necessity of computing and storing high-order derivatives and the complexity of solving the
subproblems. These difficulties are not so serious if the subproblems are low-dimensional,
which is the most frequent situation in the case of CD methods. In the extreme case, in
which one solves only univariate problems, the number of high-order partial derivatives
that are necessary is a small multiple of the number of variables. Therefore, the theory that
shows that CD algorithms with high-order models enjoy good convergence and complexity
properties seems to be useful to support the efficiency of practical implementations. In this
context, higher-order techniques allow to escape from attraction points that tend to satisfy
lower-order optimality conditions; see [43].

Sometimes the fulfillment of a necessary high-order optimality condition can be expressed
as fulfillment of �(x) = 0, where � is a continuous nonnegative function. In this case,
it makes sense to say that �(x) ≤ ε is an approximate high-order optimality condition.
Moreover, instead of requiring globality for the solution to the regularized model-based
subproblem (18), we may require only that �(xk+1) → 0 when k → +∞, where �

corresponds to the high-order optimality condition of (18). Careful choices of � and the
subproblems’ stopping criterion may give rise to complexity results associated with the
attainment of these high-order optimality conditions, see [24–26]. This will be the subject of
future research.

In this paper the defined algorithms were applied to the identification of proteins under
NMR data. Moreover, we extended the CD approach to the computation of a suitable initial
approximation that avoids, in many cases, the convergence to local non-global minimizers.
Our choice of the most adequate parameter p, that defines the approximating models, and
the strategy for choosing the groups of variables were dictated by theoretical considerations
discussed in Sect. 6 and by the specific characteristics of the problem. Our computing results
are fully reproducible and the codes are available in http://www.ime.usp.br/~egbirgin/.

In future works we will apply the new CD techniques to the case in which data uncertainty
is present and outliers are likely to occur. Possible improvements also include the choice of
different models at each iteration or at each group of variables with the aim of making a
better use of current information.

Data availability: The datasets generated during and/or analyzed during the current study are available in the
corresponding author web page, http://www.ime.usp.br/\protect\unhbox\voidb@x\penalty\@M\egbirgin/.
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