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Bose glass andMott glass of quasiparticles
in a doped quantum magnet
Rong Yu1, Liang Yin2, Neil S. Sullivan2, J. S. Xia2, Chao Huan2, Armando Paduan-Filho3, Nei F. Oliveira Jr3, Stephan Haas4,
Alexander Steppke5, Corneliu F. Miclea6,7, Franziska Weickert6, Roman Movshovich6, Eun-Deok Mun6, Brian L. Scott6,
Vivien S. Zapf6 & Tommaso Roscilde8

The low-temperature states of bosonic fluids exhibit fundamental quantum effects at the macroscopic scale: the
best-known examples are Bose–Einstein condensation and superfluidity, which have been tested experimentally in a
variety of different systems. When bosons interact, disorder can destroy condensation, leading to a ‘Bose glass’. This
phase has been very elusive in experiments owing to the absence of any broken symmetry and to the simultaneous
absence of a finite energy gap in the spectrum. Here we report the observation of a Bose glass of field-induced magnetic
quasiparticles in a doped quantum magnet (bromine-doped dichloro-tetrakis-thiourea-nickel, DTN). The physics of
DTN in a magnetic field is equivalent to that of a lattice gas of bosons in the grand canonical ensemble; bromine doping
introduces disorder into the hopping and interaction strength of the bosons, leading to their localization into a Bose glass
down to zero field,where it becomes an incompressibleMott glass. The transition from the Bose glass (corresponding to a
gapless spin liquid) to the Bose–Einstein condensate (corresponding to a magnetically ordered phase) is marked by a
universal exponent that governs the scaling of the critical temperature with the applied field, in excellent agreement
with theoretical predictions. Our study represents a quantitative experimental account of the universal features of
disordered bosons in the grand canonical ensemble.

Disorder can have a very strong effect on quantum fluids. Owing to
their wave-like nature, quantum particles are subject to interference
when scattering against disordered potentials. This leads to their
quantum localization (or Anderson localization), which prevents—
for example—electrons from conducting electrical currents in
strongly disordered metals1, and non-interacting bosons from con-
densing into a zero-momentum state2. Yet interacting bosons repres-
ent a matter wave with arbitrarily strong nonlinearity, whose
localization properties in a random environment cannot be deduced
from the standard theory of Anderson localization. It has been pre-
dicted3,4 that for strongly interacting bosons, Anderson localization
manifests itself in the Bose glass: in this phase, the collective modes of
the system—and not the individual particles—are Anderson-localized
over arbitrarily large regions, leading to a gapless energy spectrum,
and a finite compressibility of the fluid. Moreover, nonlinear bosonic
matter waves should undergo a localization–delocalization quantum
phase transition in any spatial dimension when the interaction
strength is varied3,4; the transition brings the system from a non-
interacting Anderson insulator to an interacting superfluid con-
densate, or from a superfluid to a Bose glass. Such a transition is
relevant for a large variety of physical systems, including superfluid
helium in porous media5, Cooper pairs in disordered superconduc-
tors6,7, and cold atoms in random optical potentials2,8. Despite the
long history of activity on the subject, a quantitative understanding
of the phase diagram of disordered and interacting bosons based on
experiments is still lacking.
Recent experiments have demonstrated the capability of realizing

and controlling novel Bose fluids made of quasiparticles in condensed
matter systems (ref. 9 and 10, and references therein). In this context,
a prominent place is occupied by the equilibriumBose fluid realized in

quantum magnets subjected to a magnetic field (ref. 10, and refer-
ences therein) inwhich disorder can be introduced in a controlled way
by chemical doping, leading to novel bosonic phases11–15. The ground
state of such systems without disorder and in zero field corresponds to
a gapped bosonicMott insulator. Extra bosons can be injected into the
system by applying a critical magnetic field that overcomes the gap,
and that drives a transition to a superfluid state (a magnetic Bose–
Einstein condensate, BEC). Such a state corresponds to an XY anti-
ferromagnetic state of the spin components transverse to the field.
Here we investigate the Bose fluid of magnetic quasiparticles realized
in the model compound NiCl2?4SC(NH2)2 (DTN)16 with spin S5 1
via experiments (a.c. magnetic susceptibility, d.c. magnetization and
specific heat), and large-scale quantum Monte Carlo (QMC) simula-
tions. Disorder is introduced by ClRBr substitution, which, as we
will see, leads to randomness in the bosonic hoppings and interac-
tions. We select this compound because the parent compound (pure
DTN) has been shown to exhibit Bose–Einstein condensation of the
spin system with high accuracy17. We also select it because it can be
doped very cleanly, which is extremely unusual among similar
quantum magnets. The Cl atom sits in an over-sized cage such that
it can be replaced by a larger Br atomwith veryminimal changes in the
lattice constants and no observable structural distortion (see
Supplementary Information). Thus we can use Br substitution to
modify bosonic parameters (for example, magnetic exchange and
crystalline electric fields) without other unwanted effects, such as local
changes in site symmetry and localmodulations of the lattice constant.
In experiments and QMC simulations, we observe a Bose glass in two
extended regions of the temperature–magnetic field phase diagram of
Br-doped DTN. The gapless nature of the Bose glass manifests itself
in a finite uniform magnetic susceptibility (corresponding to the
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compressibility of the quasiparticles), and in a non-exponential decay
of the specific heat at low temperature, probing the low-energy density
of states. This gapless state extends down to zero field: in this limit the
compressibility/susceptibility vanishes while the spectrum remains
gapless, giving rise to a Mott glass18–21. We investigate the thermodyn-
amic signatures of the Mott and Bose glasses, and the Bose-glass-to-
superfluid transition, which is characterized by a novel universal expo-
nent for the scaling of the condensation temperaturewith applied field.

Magnetic properties of pure DTN
The magnetic properties of pure DTN are those of antiferromagnetic
S5 1 chains of Ni21 ions, oriented along the crystallographic c axis,
and coupled transversely in the a–b plane16,22. (The structure of DTN
is actually that of two interpenetrating tetragonal lattices, which can
be considered effectively as decoupled23). The magnetic Hamiltonian
is given by

H~Jc
X
ijh ic

Si:SjzJab
X
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where Si5 (S i
x, S i

y, S i
z) is the spin operator at site i, Jc5 2.2 K is the

antiferromagnetic coupling for bonds Æijæc along the c axis,
Jab5 0.18 K is the coupling for bonds Ælmæab in the a–b plane, and
D5 8.9 K is the single-ion anisotropy. mB is the Bohr magneton, g is
the gyromagnetic factor along the c axis, andH is the appliedmagnetic
field. Here we use a value g5 2.31which is larger by 2%with respect to
the value quoted in ref. 22. This value allows us to obtain the best
agreement between the experimental and theoretical magnetization
curves. In zero field, the large D forces the system into a quantum
paramagnetic state with each spin close to its jmS5 0æ state (mS being
the Sz eigenvalue). Mapping the S5 1 spin states onto bosonic states
with occupation n5mS1 1, the quantum paramagnet corresponds
to aMott insulator of bosons with n5 1 particles per Ni site, and with
a gapD<D{2Jc{4JabzO J2c

�
D

� �
for the addition of an extra boson.

A magnetic field exceeding the value H 0ð Þ
c1 ~D=gmB<2:1 T is able to

close the spin gap and to create a finite density of excess bosons that
condense into a magnetic BEC (see Fig. 1a). The appearance of excess
bosons translates into a finite magnetization along the field axis; their
long-range phase coherence translates into long-range XY antiferro-
magnetic order transverse to the field. Long-range order persists up to

a critical condensation temperature Tc which, for H>H 0ð Þ
c1 , scales

with the applied field as Tc! H{H 0ð Þ
c1

���
���
w

. Here w5 2/3, as predicted

by mean-field theory for a diluted gas of excess bosons, and as mea-
sured with very high accuracy down to 1mK (ref. 17). When the
magnetic field is increased further, the spins are brought to saturation

for H~H 0ð Þ
c2 ~ Dz4Jcz8Jabð Þ=gmB~12:3 T, and the system transi-

tions from a BEC to a Mott insulator with n5 2 particles per site.
Correspondingly, the BEC critical temperature vanishes as

Tc! H{H 0ð Þ
c2

���
���
w

.

Experimental phase diagram of Br-doped DTN
We have measured the critical temperatures and fields for magnetic
Bose–Einstein condensation in Ni(Cl1–xBrx)2?4SC(NH2)2 (referred to
as Br-DTN) with x5 0.086 0.005 bymeasuring the a.c. susceptibility
at low frequencies and the specific heat (see Supplementary
Information). Measurements of a.c. and d.c. susceptibility were per-
formed at fixed temperature and varying fields, and they show a
step-like increase/decrease corresponding to the critical field for
Bose–Einstein condensation, similar to the pure sample17,24 (see
Fig. 2a and b). The main difference compared to pure DTN is
that—at low temperatures—the upper and lower edge of the steps

are rounded by disorder; as we will see below, this rounding is a
fundamental indication of the nature of the phases connected by
the transition. An independent estimate of the critical Bose–
Einstein condensation temperature as a function of the field is
obtained by the location of a sharp l-peak in the specific heat
(Fig. 2c). The remarkable sharpness of the features in the specific heat
corresponding to the BEC transition supports the fact that true
long-range order persists despite the strong doping introduced in
the system. Moreover, for temperatures below the l-peak the specific
heat clearly follows a T3 behaviour, consistent with long-range XY
antiferromagnetic order in three dimensions.
Figure 3 summarizes the experimental phase diagram of Br-DTN.

Br doping has a profound affect on the phase diagram of DTN: in
particular both the lower and upper critical fields for the onset of
magnetic Bose–Einstein condensation at TR 0 are found to shift to
lower values, Hc15 1.07(1) T and Hc25 12.16(1) T, as shown in
Fig. 3. But most importantly the magnetic behaviour of Br-DTN
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Figure 1 | Sketch of the bosonic phases of DTN and Br-doped DTN. In the
undoped case, an increasing magnetic field along the c axis (purple arrow)
drives the system from a Mott insulating phase (a) to a BEC phase (b) by
injecting delocalized excess bosons (indicated in cyan) on top of the Mott
insulating background at density n5 1. In the doped case, an arbitrarily weak
magnetic field can inject extra bosons in the rare Br-rich regions (indicated by
the orange bonds) which are localized and incoherent in the (low-field) Bose
glass phase (c)—their localized wavefunction is sketched by the light-blue lines,
and the corresponding local orientations of the spins are sketched by the arrows
(the darker the arrow, the larger the fluctuating transverse moment induced by
the field). Further increasing themagnetic field leads to the percolation of phase
coherence via coherent tunnelling of the excess bosons between the localized
regions, giving rise to an inhomogeneous BEC (d). For strong magnetic fields
H=Hc2 the spins away from the Br-bonds are close to saturation/double
occupancy (represented in dark blue), and unpolarized spins/singly occupied
sites, corresponding to bosonic holes, only survive in the Br-rich regions
(e). These holes are localized into disconnected, mutually incoherent states
when entering the high-field Bose glass (f).
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outside the BEC region is completely different to that of the pure
system. In the pure system, the ground state outside the magnetic
BEC is a Mott insulator with a large spin gap D away from the critical
fields. This leads to an exponential suppression of the specific heat CV

at low temperatures kBT=D as CV / exp[2D/(kBT)], as shown in
Fig. 2d, and to a similarly vanishing susceptibility for TR 0. On the
contrary, for x5 0.08, we observe that the susceptibility is finite for
H$Hc2, and it even exhibits a strong satellite peak for H< 13.5 T.
The susceptibility vanishes only for H5Hs< 17 T, corresponding to
the saturation field of the entire sample, which is pushed to a much
higher value than in the pure sample (where Hs~H 0ð Þ

c2 ~12:6 T). In
the region H#Hc1 we observe that the specific heat exhibits a non-
exponential decay, down to zero field (Fig. 2d). Therefore we can
conclude that the non-magnetic phases for 0#H#Hs correspond
to gapless bosonic insulators, which, as we will see, can be identified
with a compressible Bose glass (for H. 0) and an incompressible
Mott glass (for H5 0).

Modelling Br doping
Br-DTN can be successfully modelled theoretically by considering
that Br substitution for Cl affects the super-exchange paths associated
with the Jc couplings, and it also affects the crystal field locally owing
to the larger atomic radius of Br with respect to Cl. The disappearance
of the spin gap down to H5 0 and the upward shift of the saturation
field suggests that Br doping locally strengthens the magnetic coup-
ling Jc and lowers the anisotropy D. For simplicity, we only consider
that Ni–Cl–Cl–Ni bonds in DTN can be turned into Ni–Cl–Br–Ni or
Ni–Br–Cl–Ni, andwe neglect Ni–Br–Br–Ni bonds that represent only
0.6% of the total bonds for x5 0.08.
We assign a J 0c value to the magnetic exchange coupling of the Br-

doped bonds, and a D9 value to the single-ion anisotropies of the Ni

ion adjacent to the Br dopant. Note that for a doping concentration x,
we have a fraction 2x of doped bonds, given that each bond can
accommodate a Br dopant on two different Cl sites. We then use J 0c
and D9 as fitting parameters of the full low-temperature magnetiza-
tion curve in Fig. 2a, which is calculated using QMC simulations (see
Supplementary Information). We find an extremely good agreement
between experimental data and simulation for J 0c<2:35Jc and
D9<D/2, giving us confidence that we are able to quantitatively
model the fundamental microscopic effects of doping in Br-DTN.
Indeed, the critical temperature for Bose–Einstein condensation,
extracted from a finite-size scaling analysis of the simulation data
with doping x5 0.075 (see Supplementary Information), is in
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Figure 3 | Phase diagrams in the field–temperature plane. a, Experimental
phase diagram of Br-doped DTN from specific heat and susceptometry,
compared to QMC data. The following phases are represented: Bose-Einstein
condensate (BEC), Bose glass (BG) and Mott glass (MG). The lilac regions
represent the magnitude of the spin gap in the Mott insulating (MI) phase.
b, Experimental phase diagram of pure DTN (based on specific heat and the
magnetocaloric effect22).
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Figure 2 | Thermodynamic properties of the magnetic Bose glass and BEC
phases. a, Magnetization curve of Br-DTN at T5 19mK, compared to QMC
results, and to pure DTN magnetization (measured at T5 16mK). Inset, the
d.c. susceptibility curve, obtained by differentiating the magnetization. b, a.c.
susceptibility of Br-DTN at frequency f5 88.7Hz close to the lower and upper
critical fields. The curves have been shifted with respect to one another for
readability purposes. The arrows indicate the appearance of sharp kinks at
higher temperatures. c, Specific heat of Br-DTN from H5 0 T to H5 2 T.

d, Specific heat of Br-DTN in the Mott glass and Bose glass phases for
H#Hc1< 1T, showing a non-exponential decay as TR 0; a comparison is
made to the predictions of theory based on the local-gap model (LGM), and to
the data for pureDTN; in the upper-left and lower-right panels, the blue dashed
line is a fit of the pure-DTN data to Aexp(–D(H)/kBT), where A is a constant
and D Hð Þ

.
kB~gmB H 0ð Þ

c1 {H
� �.

kB~3:16 K for H5 0 and 1.64K for
H5 1T. Error bars, 1 s.d.
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remarkable quantitative agreement with the experiment, as shown in
Fig. 3a. The critical fields estimated from simulations are
Hc15 1.172(5) T and Hc25 12.302(5) T, slightly larger (by ,0.1 T
and 0.14 T, respectively) than the experimental values. However the
large downward shift of Hc1 (by about 1 T) with respect to the pure
system is correctly captured. In the following we discuss the main
features of the Bose glass andMott glass phases expected for themodel
of Br-DTN, and corroborate such expectations quantitatively with the
experimental data.

Bose and Mott glasses
The results of our experiments on Br-DTN are consistent with a Bose
glass for certain applied magnetic fields, and also with aMott glass for
H5 0 (see Fig. 3). A Mott glass has the peculiar property of being
incompressible—that is, it has a vanishing susceptibility at T5 0,
despite being gapless19–21 (see also Supplementary Information). Br-
DTN represents to our knowledge the first experimental realization of
a Mott glass. To understand how the Mott glass applies to Br-DTN,
consider that a compound in which all c-axis bonds contain a Br
dopant (leading to couplings J 0c everywhere, and to an anisotropy D9
on one of the two sites connected by the bond) will be a BEC even
in zero field (see Supplementary Information). This means that rare
Br-rich regions in Br-DTN behave locally as mini-BECs, and hence
they are locally gapless. Strictly speaking, Br-rich regions will have a
residual gap owing to their finite size. However, the statistical distri-
bution of sizes has no upper bound, so that the distribution of local
gaps has no lower bound, and consequently Br-DTN is globally gap-
less even in zero field. The corresponding bosonic phase is therefore a
gapless insulator with spin inversion symmetry along the field axis, a
commensurate boson density n5 1, and a vanishing compressibility
resulting from the above symmetry25. As soon as a magnetic field is
applied to this Mott glass, excess bosons are injected, which
Anderson-localize around the rare Br-rich regions, resulting in a
Bose glass (Fig. 1c). In the spin language, spins in the Br-rich regions
acquire a finite magnetization along the field, and their transverse
components correlate antiferromagnetically over a finite range, but
the local phase of the antiferromagnetic order is different from region
to region so that the system remains globally paramagnetic. Long-
range phase coherence of the local order parameters—corresponding
to the local phases of the bosonic wavefunction—is established only
when the localized states of the bosons grow enough under the action
of the applied field to overlap, leading to coherent tunnelling of
bosons between neighbouring localized states (Fig. 1d). The resulting
phase is a highly inhomogeneous BEC26.
We can quantitatively test the picture of bosons localized in rare Br-

rich regions against the thermodynamic behaviour of Br-DTN by
using a simplified local-gap model (LGM). Within this model (see
Supplementary Information), the low-temperature and low-field
behaviour of the system is reduced to that of a collection of three-
level systems, corresponding to a local longitudinal magnetization
mS,tot5 0, 61 for each localized state. There is a finite-size gap
DN< c/N (for zero field) between the mS,tot5 0 ground state and
the mS,tot56 1 excited states, where N is the number of sites in the
Br-rich cluster and c is a fitting parameter. The low-temperature
specific heat in zero field can then be predicted analytically to be

CV Tð Þ!t{5=4 exp {2
ffiffiffiffiffiffiffiffiffiffi
cx0=t

p� �
ð2Þ

where t5 kBT/Jc and x05 log(2x); this expression displays a stretched
exponential behaviour that uniquely characterizes the Mott glass21.
The c parameter, and an overall prefactor, are used as fitting para-
meters of the experimental data in zero field, leading to an extremely
good fit, as shown in Figs 2d and 4. Notably, no further adjustable
parameters are necessary to fit the finite-field data, displayed in
Fig. 2d, which also show a remarkable agreement with the theory
prediction up to H<Hc1.

High-field Bose glass
For HRHc2 the magnetization approaches the value mx5 12 2x<
0.84, where all spins not connected to a Br-doped bond are polarized—
and indeedHc2 lies very close to the polarization fieldH

0ð Þ
c2 of pureDTN.

The full polarization of the Br-poor regions leads to a pseudo-plateau in
the magnetization at m<mx (pseudo because it still exhibits a small
finite slope—a similar feature has also been observed in a Br-doped spin
ladder at high field14). We interpret this feature as corresponding to the
high-fieldBose glass,which is characterizedby the localizationofbosonic
holes, or singly occupied sites with mS5 0, in a background of doubly
occupied sites withmS5 1 (Fig. 1f). The magnetically disordered nature
of the high-field Bose glass phase could only be inferred from the sus-
ceptibility data and from our numerics. Indeed, in the experiments we
could not determine unambiguously the absence of a l-anomaly in the
specific heat at low temperatures for H<Hc2, given that at such high
fields the low-temperature specific heat of DTN is dominated by a
Schottky anomaly whose origin can be ascribed to nuclear spins27. The
localized bosonic holes persist up to the saturation field Hs, which is
roughly the field necessary to fully polarize a homogeneous system with
J 0c couplings andD9 anisotropies everywhere. The step-like feature in the
magnetization at the upper bound of the pseudo-plateau is therefore
induced by the saturation of the Br-rich clusters, and it is smeared owing
to the fact that such clusters have random geometries and therefore a
distribution of local saturation fields, with an upper bound of Hs. One
might suspect that the peak anomaly in the susceptibility corresponding
to the step feature in the magnetization is associated with a further
transition, but the numerical data, showing the same anomaly, allow
us to conclude that the ground state is disordered in that field range.

Thermal percolation crossover
The physics described so far is valid only for very low temperatures. As
the temperature is increased (above ,200mK, as we will see below),
the bosons that were localized in the Bose glass state are expected to
thermally delocalize andproliferate.This leads to a thermal percolation
of their density profile (corresponding to the longitudinal magnetiza-
tion profile) throughout the sample26. Thus amore ordinary paramag-
netic state is expected to appear at higher temperatures, and the nature
of the field-driven transition into the BEC phase should also change
fundamentally. Indeed, at temperatures below the thermal percolation
crossover, the BEC transition should occur as sketched in Fig. 1c–f, by
coherent tunnelling of bosons between localized states, resulting in a
highly inhomogeneous BEC phase. This picture changes above the
thermal percolation crossover. Now in the normal phase, the bosons
move incoherently on a pre-percolated network of magnetized sites,
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Figure 4 | Specific heat scaling andMott glass. The specific heat in zero field
is seen to display the characteristic Mott glass scaling at low temperatures,
exp(2T21/2). The solid lines are theoretical predictions based on the numerical
solution of the local gap model (LGM) and its approximate analytical solution
given by equation (2), with parameter c5 3.02. Error bars, 1 s.d.
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and their BEC transition upon increasing the field corresponds
therefore to condensation on a random three-dimensional percolated
lattice, which is fully analogous to condensation on a regular three-
dimensional lattice. Signatures of the thermal percolation crossover
can be found in the critical behaviour of the a.c. susceptibility: at low
temperatures (T=200 mK) it exhibits a rounded shoulder forH>Hc1

and H=Hc2, and at higher temperatures it shows a sharp kink—
analogous to what is observed in the pure system17,24 (see Fig. 2b).
But the most marked signature of the thermal percolation crossover

is observed in the scaling of the critical temperature with the applied
field, shown in Fig. 5. Plotting Tc versus jH2Hc1(2)j on a log–log
scale (Fig. 5a, b), we clearly observe a kink separating two different
scaling regimes. At high temperatures, (T>200{300 mK) the field-
dependence of Tc is essentially consistent with a pure-system scaling
for low temperatures,Tc / jH2Hc1(2)jwwith w5 2/3, or with a pure-
system scaling for intermediate temperatureswithw< 1/2, as observed
in other magnetic BEC systems28. At low temperatures, the scaling
exponent crosses over to novel values, w5 1.1(2) (close to Hc1) and
w5 1.1(1) (close to Hc2), which are consistent within the error (see
Supplementary Information for a discussion of the estimate of w).
Moreover, these scaling exponents are also consistent with the values
extracted fromourQMCsimulations (Fig. 5c, d;w5 1.06(9) and 1.2(1)
close to Hc1 and Hc2 respectively). Simulations also show a rough
quantitative agreement for the crossover temperature range. Most
remarkably, a consistent value of the exponent w at low temperature
is also observed theoretically for the magnetic Hamiltonian of DTN
subject to a different type of disorder, namely site dilution26. We can
therefore conclude that the low-temperature scaling of Tc exhibits an
exponent w< 1–1.1 which is a universal feature of the Bose glass–BEC
transition. Its value deviates from the predictionw. 2 of ref. 4, but this
prediction is based on a scaling Ansatz for the free energy close to the
quantum critical point which is found to be inconsistent with other
observations on Br-DTN, as well as with numerical simulations29.
Therefore we conclude that our results call for a generalization of the
scaling assumptions for the disordered-boson quantum critical point.

Conclusions
We have performed a comprehensive experimental and theoretical
study of the disordered and strongly interacting Bose fluid realized in
a doped quantum magnet (Br-DTN) under application of a magnetic

field. We provide substantial evidence for the existence of gapless
insulating phases of the bosons—the Mott glass and the Bose
glass—and we investigate the quantitative features associated with
their thermodynamic behaviour. These phases can be quantitatively
described as a Bose fluid fragmented over an extensive number of
localized states with variable local gaps, dominating the response of
the system. The presence of a Bose glass leads to a novel and seemingly
universal exponent governing the scaling of the critical temperature
for the transition from Bose glass to BEC. The remarkable agreement
between theory and experiment shows that Br-DTN is an extremely
well controlled realization of a disordered Bose fluid, which allows
a detailed experimental study of the thermal phase diagram of
disordered bosons in the grand-canonical ensemble.

METHODS SUMMARY
Br-DTN crystals were prepared at the University of São Paulo, and their X-ray
analysis was performed at the Los Alamos National Laboratories. The same
crystal was used for a.c. susceptibility and specific heat measurements—the spe-
cific heat sample was a small slice of the a.c. susceptibility sample. All measure-
ments weremade with themagnetic field applied along the tetragonal axis (c axis)
of the sample. The a.c. susceptibilitymeasurements were carried out using a PrNi5
nuclear refrigerator (down to 1mK) and a 15 Tmagnet at the High B/T facility of
theNational HighMagnetic Field Laboratory in Gainesville. The field sweep rates
were adjusted to values as low as 1023 Tmin21 to guarantee the full relaxation of
the sample at the lowest temperatures probed. The d.c. magnetization was mea-
sured at the University of São Paulo by using a dilution refrigerator at 19mK.
Specific heat was measured in a Quantum Design 3He/4He dilution refrigerator
down to 50mK using the thermal relaxation method. The numerical simulations
were based on the stochastic series expansion approach with directed-loop
updates, and they were performed on the Jaguar cluster of the National Center
for Computational Sciences (Oak Ridge National Laboratories).
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