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Abstract: The increasing use of cone beam computed tomography (CBCT) has led to a
growing demand for DICOM software that enables the assessment and measurement of
craniofacial structures. This study aimed to compare the airway volume and the minimum
axial area in patients with cleft lip and palate using five different imaging software pro-
grams: Dolphin3D, InVivo Dental, ITK Snap, InVesalius, and NemoFAB. Initially, 100 CBCT
scans were selected by an examiner, and their corresponding DICOM files were collected.
The oropharyngeal segments were delineated following the manufacturer’s guidelines,
using two different segmentation techniques: interactive and fixed threshold. The results
were analyzed using the Friedman test and Wilcoxon post hoc test, with a 5% significance
level for all statistical tests. The findings for both the minimum axial area and total volume
revealed that the median values across the software groups were higher than expected,
and significant differences were observed when comparing the groups (p < 0.001). All five
software programs showed notable differences in their outputs. Specifically, a statistically
significant difference in volume was found across all groups, except between InVivo and
ITK-Snap. It is recommended that pre- and post-treatment comparisons be performed
using the same software for consistency.

Keywords: airway management; airway remodeling; computer image processing assisted;
three-dimensional imaging

1. Introduction

Individuals with cleft lip and palate (CLP) exhibit a heightened prevalence of skeletal
dentofacial deformities, characterized by a class III profile [1-3]. Typically, the recom-
mended course of treatment involves orthognathic surgery, incorporating maxillary ad-
vancement with or without mandibular retrusion [1,4]. This dentofacial anomaly arises as
a result of primary surgeries conducted during childhood, thereby influencing the growth
patterns in both transversal and sagittal dimensions of the jaws [5,6].

The deformity induces adverse alterations in nasal morphophysiology, including
turbinate hypertrophy, deviated septum, and modifications to the nasal floor [6,7]. These
skeletal transformations adversely impact the anatomy and physiology of the upper air-
ways in approximately 60% of individuals with cleft lip and palate (CLP) [7,8]. Conse-
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quently, these changes detrimentally affect both breathing and speech by diminishing the
configuration of the nasal cavity, thereby elevating airway resistance and contributing to
impairments in craniofacial development [9]. In response to these challenges, surgeons
have increasingly utilized advanced software to assess the upper airway through cone beam
computed tomography (CBCT) in CLP patients. This approach allows for the comprehen-
sive monitoring of patients and facilitates the evaluation of surgical outcomes, ultimately
enhancing the management of these complex cases.

The emergence of new technologies has showcased the efficiency of cone beam com-
puted tomography (CBCT) in assessing upper airway pathways, a fact substantiated by
its accuracy and reliability, as affirmed by numerous studies [10-13]. Furthermore, the
reconstruction and 3D evaluation of the upper airway have proven crucial for compre-
hending issues related to breathing and quality of life, establishing a link to craniofacial
anatomy [14]. The literature indeed emphasizes the advantages of CBCT over other imag-
ing examinations, including a lower radiation dose, high-quality imaging with multiple
slices [15], and enhanced accuracy in delineating soft tissues and empty spaces [16].

CBCT is employed for craniofacial analysis, with valuable data extracted, including
the assessment of upper airway volume and the identification of the minimum axial cross-
sectional area in axial view [17]. Due to alterations in airway morphology associated
with facial and skeletal deformities, there has been a heightened significance placed on
diagnosing sleep-related diseases in modern medicine. This emphasis has resulted in the
integration of such diagnoses into orthodontic and surgical planning. This incorporation
is facilitated by a more thorough analysis of the minimum axial area and its intricate
connection with obstructive sleep apnea syndrome [18].

Due to the widespread adoption of CBCT, there has been an increased demand for
DICOM file software, facilitating the evaluation of the craniofacial area. According to a
previous study [19], several programs, including InVivo Dental, Mimics, Ondemand3D,
OsiriX, Dolphin3D, NemoCeph, ITK Snap and InVesalius, have emerged to address this
demand. However, within the upper airway field, the literature lacks comprehensive
comparisons and analyses of the accuracy of these software applications [20-23].

Aligned with this context, this study aimed to compare five distinct software programs
by evaluating the airway volume and minimum axial area of the airway in patients with
cleft lip and palate (CLP) undergoing orthognathic surgery. Hence, the primary objective
was to evaluate the accuracy and reproducibility of measurements within each software
program and across different programs. The secondary objective focused on assessing the
user-friendliness of the interface and the time required for reconstructions.

2. Materials and Methods
2.1. Subjects

In this study, among the CBCT images of patients aged 18—40 years at the time of
imaging at the Hospital for Rehabilitation of Craniofacial Anomalies, University of Sao
Paulo, Bauru, Brazil images initially requested for the specific purpose of diagnosing
orthognathic surgery and planning its treatment were selected. The inclusion criteria
comprised patients with complete unilateral cleft lip and palate, without any syndromes,
and possessing CBCT scans of good quality without significant artifacts. Accordingly,
CBCT data of 100 patients were randomly selected. This retrospective study was approved
by the International Review Board of the University of Sao Paulo, Bauru, Sao Paulo, Brazil
(20593219.4.0000.5441).
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2.2. Study Protocol

The CBCTs were acquired using the iCAT scanner (Imaging Sciences International,
Hatfield, PA, USA), following specific technical standards: parameters of 120 kVp, 5 mA,
field of view (FOV) of 16 cm by 21 cm and voxel size of 0.3 mm?, with data exported in
DICOM files.

An examiner (B.E.C), trained and calibrated, independently analyzed all images in a
silent and darkroom setting. For determining the oropharynx volume, three-dimensional
volumetric models were constructed and measured using imaging software 17. The anatom-
ical references for oropharynx segmentation included the anteroinferior border of the fourth
cervical vertebra (C4), the inferior—posterior boundary of the hyoid bone, the anterior and
basal pharyngeal wall, and the upper anterior limit of the palatal bone, forming a rectangle
(Figure 1) [21]

.
-3 |

Figure 1. The polygon used for the selection of the region of interest on Dolphin Imaging software
(Source: Own authorship, 2022).

Five imaging software programs, each specified in Table 3, were employed to segment
and compute volumes from CBCT images. Analyses were conducted using InVivoDental
systems (version 5.4, Anatomage, Santa Clara, USA), Dolphin 3D (version 11.7; Dolphin
Imaging Systems, CA, USA), ITK (version 3.8.0,18 InVesalius (version 3.1.1, Renato Archer
(CTI), Brazil), and NemoCeph 3D-OS (Digital Orthognathic Surgery From Planning to The
Surgical Stent, Software Nemotec, Madrid, Spain). Intra-examiner concordance, assessed by
repeating CBCT evaluation within a 15-day interval, demonstrated an ICC exceeding 0.8.

Oropharynx segments were delineated following manufacturer’s references, utilizing
two segmentation techniques: adjustable threshold range and constant threshold range.
Interactive thresholding involved finding the optimal interval based on a visual analysis of
oropharynx anatomical limits in axial, sagittal, and coronal sections. The fixed threshold
range was set at —1000 to —587 gray levels to assess variability between software programs.
Interactive testing segmentation was performed with Dolphin3D, while fixed testing was
executed with ITK-Snap, InVivoDental, and InVesalius [20]

Minimum cross-sectional area calculation was automated by Dolphin3D, InVivoDental,
and NemoFab v. 2022 (Nemotec, Madrid, Spain) software. ITK-Snap and InVesalius
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segmentations were exported to free external software, SlicerCMF with the SPHARMPDM
module, for determining mCSA (Figure 2) [21].

Figure 2. Segmentation from SPHARMPDM module (Source: Own authorship, 2022).

2.3. Error Analysis

For the calibration process, 30 CBCT images were randomly selected, and the examiner
independently conducted measurements of interest using the five programs. The minimum
sectional area and upper airway volume were measured, and these measurements were
repeated at least 15 days apart. During the second measurement session, all CBCT datasets
were analyzed randomly to facilitate a blind assessment, with the observer having no access
to previous results. The reliability of the first and second measures was evaluated using
the intraclass correlation coefficient (ICC), categorized as poor (ICC < 0.40), fair to good
(0.40 < ICC < 0.75), and excellent (ICC > 0.75) following the classification by Walter et al.
in 1998 [24].

Only when the intra-examiner agreement exceeded 0.8 were all images analyzed (Table 1).

Additionally, inter-rater reliability between different measurement methods (soft-
ware) was assessed using ICC. The ICC was calculated for the minimum cross-sectional
area (mCSA) and volume measurements across all software analyzed (Dolphin, InVivo,
InVesalius, ITK-Snap, NemoCeph).

2.4. Statistical Analysis

The data were organized in an Excel spreadsheet (Microsoft, Redmond, Wash), and the
normal distribution for the two variables (volume and minimum sectional area) across the
five groups (Dolphin, InVivo, ITK-Snap, InVesalius, and NemoCeph) was assessed using the
Shapiro-Wilk test. Given the non-parametric nature of the data and the repeated measures
design, multiple comparisons were conducted using the Friedman test. A significance level
of 5% was employed for statistical significance.

Pairwise comparisons were performed using the Wilcoxon signed-rank test, with
Bonferroni correction applied to adjust for multiple comparisons (Table 2).
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3. Results

In the present study, the intra-examiner error was higher than 0.8 (Table 1).

Table 1. Intra-examiner.

ICC (Intra)
Software Minimum Axial Area (mm?) Vol (cm®)
Dolphin 0.96 0.96
InVivo 1.00 0.98
InVesalius 0.92 0.92
ITK-Snap 0.81 0.98
NemoCeph 1.00 0.96

ICC, intraclass correlation coefficient.

In the minimum axial area, all software demonstrated statistically significant differ-
ences. On the subject of volume, statistically significant differences were observed across
all groups, except between the In VIVO and ITK-Snap software. (Table 2)

Table 2. Pairwise comparisons using Wilcoxon signed-rank test.

Minimum Axial Area Volume

Comparison p-Value p-Value
Dolphin vs. InVivo 6.93 x 10717 7.25 x 10716
Dolphin vs. InVesalius 1.20 x 1071° 2.74 x 1071
Dolphin vs. ITK-Snap 2.26 x 10712 6.63 x 10715
Dolphin vs. NemoCeph 2.01 x 10714 6.90 x 1074
InVivo vs. InVesalius 4.96 x 10718 6.20 x 1073

InVivo vs. ITK-Snap 1.37 x 107V 0.462

InVivo vs. NemoCeph 5.87 x 10714 7.55 x 1077
InVesalius vs. ITK-Snap 5.14 x 108 1.08 x 1074
InVesalius vs. NemoCeph 221 x 107V 1.21 x 1074
ITK-Snap vs. NemoCeph 410 x 1077 5.98 x 10712

In this work, five different programs were used to assess the volume of the oropharynx
through the segmentation and reconstruction of virtual 3D models. The five programs use
semi-automatic and/or automatic segmentation but have different tools and mechanisms
for the airway modeling. Amongst the five applications compared in this study, some

technical differences were found. (Table 3).

Table 3. Technical differences found when using these five applications.

Software Dolphin3D InVivoDental InVesalius ITK-Snap NemoFAB
Files DICOM DICOM DICOM MULTIPLE DICOM
Quick upper airwa Segmentation can be
pper @ y Quick upper airwa checked in 2D
segmentation pp Y
: segmentation. . slices (axial, coronal, Threshold interval
Good segmentation Threshold i 1 Segmentation can be d saeittal . level
sitivity reshold interva hecked in 2D and sagittal). units (gray levels)
Segmentation SCNSHIVILY: units (gray levels) . : Threshold interval compatible
& gray P
Segmentation can be . slices (axial, coronal, R . . .
- compatible : units (gray levels) with other imaging
checked in 2D . . . and sagittal). bl ¢
lices (axial, coronal with other imaging compatible software.
S and sagi ttal) ! software. with other imaging

software.
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Table 3. Cont.
Software Dolphin3D InVivoDental InVesalius ITK-Snap NemoFAB
Automatically Automatically
calculates volume. To  calculates volume. To
determine area and determine area and
Automatically Automatically mCSA, mCSA, Automatically
Measurements calculates volume, calculates volume, it has to export the it has to export the calculates volume,
area, and mCSA of area, and mCSA of file to SlicerCMF in file to SlicerCMF in area, and mCSA of

the segmentation.

the segmentation.

order to create a 3D

surface model using

the SPHARM-PDM
module.

order to create a 3D

surface model using

the SPHARM-PDM
module.

the segmentation.

3D visualization

Shows an automatic
3D rendering from
the CBCT.

Shows an automatic
3D rendering from
the CBCT.

Shows volumetric
models only from the
segmented
structures.

Shows volumetric
models only from the
segmented
structures.

Shows an automatic
3D rendering from
the CBCT.

Saving methods

Saves the volumetric
models in the
software. Not

possible to export
data.

Saves the volumetric
models in the
software. Not

possible to export
data.

Volumetric models
can be saved as
independent files and
exported to different
software.

Volumetric models
can be saved as
independent files and
exported to different
software.

Saves the volumetric
models in the
software. Not

possible to export
data.

4. Discussion

This study aimed to evaluate and compare five different software programs by an-
alyzing the airway volume and the minimum axial area in patients with cleft lip and
palate (CLP) undergoing orthognathic surgery. Statistically significant differences were
observed in the results of airway volume and the smaller axial area across the programs.
Comparing the results obtained in a single program, all the different software showed a
good reproducibility and accuracy of measurements. On the other hand, comparisons of
results across different software programs were not reliable.

Regarding the minimum axial area, all five software programs showed statistically
significant differences. For volume, statistically significant differences were observed across
all programs, except between InVivo and ITK-Snap in this analysis. The manipulation of
Hounsfield Units (HU) in reconstructions appears to strongly impact the results, indicating
the necessity for further studies to elucidate the appropriate HU range when analyzing
upper airways.

For a correct assessment of the upper airway, the image segmentation process needs
to be performed with great accuracy and a correct selection of the grayscale, thereby
providing better image quality [21]. Factors such as tomograph configurations, radiographic
management, positioning in the radiographic take, and the entire process of reconstruction
and export of the DICOM files directly affect the final quality of the CBCT exam [25,26].
In the present study, the CBCT was performed with the i-CAT scanner, utilizing specific
configurations (Imaging Sciences International, Hatfield, PA, USA) under the following
technical standards: parameters of 120 kVp, 5 mA, field of view (FOV) 16 cm by 21 cm,
and 0.3 mm? voxel, with data exported in DICOM files. It is important to note that
certain artifacts can be produced during the tomographic examination, influencing the
segmentation process and its precision [21].

Airway segmentation in Dolphin 3D is executed in an objective, simple, and rapid
manner, enabling the analysis of the minimum sectional area. The segmentation process
involves the addition of initial points that disperse and diffuse within the space predefined
by the grayscale. Precise control of this scale is maintained, and once determined, the
area is uniformly filled across all planes (axial, sagittal, and coronal). However, it is worth
noting that in this segmentation and filling process, there is a potential for exaggeration,
leading to exceeding established limits, particularly in morphologically complex areas. A
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notable drawback with Dolphin is the display of grayscale in its own units, which differ
and are incompatible with software using Hounsfield units. An essential improvement for
this program involves an update to enhance the entire segmentation process, especially by
adapting the grayscale units to be compatible with other tomography analysis programs.

The assessment of upper airways in InVivo Dental is executed with simplicity and
efficiency; however, the region of interest is outlined based on the gray scale, which
introduces a potential limitation. This approach does not facilitate a comprehensive review
of anatomical boundaries, posing challenges in verifying the accuracy of segmentation, as
highlighted in a separate study [21]. In contrast, ITK-Snap, available at no cost, exhibits a
steeper learning curve compared to Dolphin3D, InVivo Dental, and Nemocph. It is notably
adept at constructing 3D models and employs semi-automated segmentation utilizing
gray scale. During the filling of the area pre-established by the gray scale, ITK-Snap
demonstrates commendable sensitivity, effectively filling even intricate regions [25]

Extensive documentation supports the software’s utility, accuracy, and segmentation
capabilities [25]. However, while ITK-Snap generates tomography volume and segmenta-
tion information, it relies on other software to obtain the minimum sectional area, which
significantly extends the time and complexity involved in acquiring this supplementary
information [22]. Furthermore, the three-dimensional model’s surfaces maintain a realistic
appearance devoid of automatic smoothing, necessitating refinement if a smoother outcome
is desired.

InVesalius and NemoCeph are the two other programs that were used in this study,
and they cater to the needs of researchers and clinicians in the field of airway volume
assessment, each with its distinct features and usability. InVesalius is a freely available
program, albeit challenging to navigate when contrasted with Dolphin3D, InVivo Dental,
ITK-Snap, and NemoCeph. It provides the researcher with enhanced control, enabling
precise sculpting of the desired airway volume from surrounding 3D structures. Users
can adjust brightness and opacity values to effectively remove unwanted voxels before
calculating the final airway volume. Additionally, InVesalius enables the modification of
limit values to define the range of displayed density values, resulting in a solid volume
representation of the airways.

On the other hand, NemoCeph is a paid program known for its user-friendly interface,
which simplifies the process for operators. Users can easily mark specific points within the
image to define the area of interest, prompting the program to highlight the selected region.
Once the airspace is delineated, NemoCeph efficiently calculates both the airway volume
and the minimum sectional area [27].

The accuracy of upper airway volume analysis relies on precise segmentation, and
its reliability is contingent on the correct acquisition of cone beam computed tomography
(CBCT) images, particularly the selection of the gray scale. Achieving a high-quality image
depends on the tomograph’s accurate settings, as well as the radiologist’s expertise in
patient positioning, volume reconstruction, voxel size, and DICOM file exportation [18].
Several studies highlight that image quality can be affected by factors such as average voxel
density, noise, and artifacts that impact tissue density [28-31].

Notably, CBCT does not adhere to the standard use of Hounsfield units (HU). Its values
are influenced by the type of device, the method of image acquisition, and the patient’s
positioning [32]. A previous study underscored the need for a meticulous assessment of
CBCT, revealing higher Hounsfield coefficient values in CBCT compared to multi-slice CT
scans [33]. These factors imply potential influences on the divergent results observed in
our research.

In light of the statistical findings in this study, the primary null hypothesis was rejected.
A significant limitation emerged in the analysis of both airway volume and the minimum
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axial area, aligning with this outcome. This limitation underscores the dependence on the
accurate segmentation of CBCTs in the presented programs, a concern that resonates with
observations in the existing literature [21]. The application of this methodology revealed
a noteworthy discrepancy, with variations of up to 16% in the measurement of volume
for identical images and up to 53% in the minimum sectional area. This discrepancy is
attributed solely to the choice of software utilized.

Additionally, determining the value and position of the minimum cross-sectional
area is notably more complex when using open-source software such as ITK-Snap and
InVesalius with the SPHARM-PDM module, compared to Dolphin3D and InVivo software.
This increased complexity significantly impacts the clinical usability of these programs,
particularly given the importance of time as a critical factor for maxillofacial surgeons.

Given the disparities observed among various software programs, as well as the
reproducibility within the same software measurements, the authors strongly recommend
that comparisons for pre- and post-treatment follow-up be conducted using the same
software. This approach helps mitigate potential errors, such as the magnification or
minimization of surgical outcomes, ensuring a more accurate assessment.

5. Conclusions

When evaluating results within a single software program, all analyzed options
demonstrated high reliability and reproducibility, as indicated by the intraclass correlation
coefficient (ICC). Conversely, comparisons of results across different software programs
lacked reliability. Each software program has its merits and drawbacks. However, consider-
ing the parameters utilized in this study, it is incumbent upon the operator, in collaboration
with the clinical team, to assess the most suitable software program for the surgical evalua-
tions. Emphasis is placed on the necessity of employing a singular program for both pre-
and post-operative assessments.

Each software program has its strengths and limitations, and the choice of the most
appropriate tool should be made collaboratively between the operator and the clinical
team, considering the specific requirements of surgical evaluations. Importantly, to main-
tain consistency in pre- and post-operative assessments, using the same software for all
measurements is recommended.

A key strength of this study is its inclusion of five different software programs, in-
cluding cost-effective options, thereby expanding accessibility for clinical and research
applications. This demonstrates that a careful selection of tools, combined with proper
training and clear communication among the surgical team, can ensure reliable use of these
software programs in clinical practice.
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