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A versatile procedure to build high-symmetry objects and to calculate their
corresponding small-angle scattering intensity is presented. Starting from a set
of vertex positions, available from a large and extensible database, it is possible
to build several types of bodies using spherical subunits. A fast implementation,
based on the Debye formula using a histogram of distance, is then used to
compute the theoretical scattering intensity. Since the model is built from the
definition of a small set of parameters, it is possible to perform an optimization
of structural parameters against experimental data. Finally, affine size
polydispersities can be easily included by the rescaling of the histogram of the
positions used in the calculations. Several examples of the calculations are
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1. Introduction

Particles with nanoscale dimensions have an enormous range
of applications in almost all areas. From colloidal suspensions
to magnetic materials, nanoparticles play a very important role
since they might control the chemical and physical properties
of such systems (Jones, 2002; Uchida et al., 2007). Therefore,
there is a large group of techniques that are aimed at the
characterization of such systems, providing important and, in
several cases, complementary information. Some of the key
techniques for such studies are the scattering methods. In this
class, small-angle scattering (SAS) can give important infor-
mation about the particle dimensions, shapes, polydispersity,
orientation efc., among several other structural parameters.
Since it is a simple and non-invasive technique, it can be
applied in a broad range of applications, particularly to
investigate colloidal systems directly in solution. A reasonably
large region of the sample is illuminated by the X-ray or
neutron beam and therefore the scattering data are a result of
an ensemble average over a very large number of particles.
Because of these properties the SAS technique is a unique
way to investigate nanoscaled particles.

An interesting example of nanoparticles is the particles
obtained by programmed assembly of DNA structures. With
recent important developments in bioengineering and bioin-
formatics, it is possible to design sequences of DNA that can
assemble in programmed pre-defined shapes. There are
several examples of such constructs in the literature. The first
proposition of DNA self-assembled structures in the literature
was made by Seeman for an assembly with a cubic shape
(Chen & Seeman, 1991), and later for a truncated octahedron

! This article will form part of a virtual special issue of the journal, presenting
some highlights of the 15th International Small-Angle Scattering Conference
(SAS2012). This special issue will be available in early 2014.

presented, demonstrating the method and its applicability.

(Zhang & Seeman, 1994). However, those propositions were
only theoretical models. The approach was then successfully
implemented experimentally, providing the self-assembly of
DNA in the form of an octahedron (Shih et al., 2004; Andersen
et al., 2008; Falconi et al., 2009; He et al., 2010), a tetrahedron
(Goodman et al., 2005; He et al., 2008; Kato et al., 2009; Li et al.,
2009), trigonal bipyramids (Erben et al., 2007), a dodecahe-
dron (He et al., 2008), an icosahedron (Zhang et al., 2008;
Bhatia et al., 2009) and a truncated icosahedron (He et al.,
2008). It was also possible to build hybrid structures with
synthetic connections at the vertices (Aldaye & Sleiman, 2007;
Zimmermann et al., 2008; Yang et al., 2009), and large struc-
tures, based on the development of a DNA origami technique
(Rothemund, 2006; Dietz et al., 2009; Douglas et al., 2009;
Endo et al., 2009; Ke et al., 2009). In other applications, it was
shown that it was possible to encapsulate proteins (Erben et
al., 2006) and nanoparticles (Erben et al, 2007; Yang et al.,
2009) inside of a DNA polyhedron. There are several exam-
ples of the assembly of DNA nanostructures with high
symmetry (e.g. Seeman, 2010), and Han et al. (2011) have used
the DNA origami approach to build structures with high
curvature. In all cases, after the experimental assembly, it is
necessary to be able to confirm the formed shape and the
assembly efficiency. One common procedure to check the
assembly formation is gel chromatography (Douglas et al.,
2009), where by the indication of the molecular weight, the
assembly can be inferred. Although this procedure gives a
good indication of the correct assembly, it is not a measure of
it. Electron microscopy techniques permit a direct visualiza-
tion of such structures and can, in several cases, provide a
three-dimensional reconstruction (Kato et al., 2009). Never-
theless, such techniques can have limitations since they might
require quite invasive sample treatment for the experiments,
which can influence the results. Also the information obtained
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about the assembly efficiency on the system is limited because
such methods usually cover a very small volume of the system
(Andersen et al., 2008). Scattering methods, on the other hand,
are non-invasive methods, which can be applied directly in
solution and provide ensemble-averaged results on a very
large number of particles. The main drawback of the scattering
techniques is that they provide information in reciprocal
(Fourier) space. It has been shown that an ideal situation is the
combination of electron microscopy techniques and scattering
methods, since it might enable a better investigation of the
system (Andersen et al., 2009; Oliveira et al., 2010) with direct
visualization of the structure as well as information on the
ensemble-average structure of the particles.

Although scattering experiments are relatively simple, the
data analysis and interpretation can be quite complicated. The
scattering intensity of a sample is given as the absolute square
of the Fourier transformation of the scattering length density
contrast with additional ensemble-average and orientation-
average operations. Because of this, analytical expressions are
restricted to simple shapes and geometries (Pedersen, 1997).
More complicated shapes cannot be described analytically
and, for such cases, alternative methods are required.

In this work a useful procedure is presented, where models
with a large number of possible geometries can be easily built
and the corresponding scattering intensity calculated. Since
the number of parameters describing the models is very low,
they can be quickly optimized against experimental data. A
special scheme is presented to efficiently model the assembled
DNA structures.

2. Theoretical aspects, methods and results
2.1. Small-angle scattering (SAS) and model calculation

In a typical SAS experiment, the incoming beam passes
through the sample, probing a large number of randomly
oriented particles, which then leads to an ensemble averaging
of the total scattering intensity that also includes averaging
over the orientation of the particles. A general expression for
the measured scattering intensity is given by

1(q) = NAP V> P(q)S(q). (1)

In this expression, g is the modulus of the scattering vector
[defined as g = (47r/A) sin 6, where 26 is the scattering angle and
A is the wavelength of the monochromatic beam], N is the
average number of particles illuminated by the beam, Ap is
the scattering length density contrast between the particles
and the medium in which they are immersed, and V is the
particle volume. P(q) is the normalized particle form factor
[P(0) = 1], which is the squared Fourier transformation of the
particle scattering length density contrast, averaged over all
possible particle orientations:
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Here q is the three-dimensional scattering vector, Ap(r) is the

particle scattering length density contrast distribution at

position r and the angle brackets () indicate an average over
the solid angle 2. This equation reflects that the form factor
P(qg) is directly related to the particle shape. It is interesting to
note that, for X-rays, the scattering length density contrast is
proportional to the difference in electron density between the
particles and the medium. The term S,,(¢q) is the (effective)
structure factor, which describes possible particle interactions.
For very dilute systems, the structure factor always approaches
a constant value of unity and, therefore, the expression for this
case reduces to

1(q) = NAp*V?P(q) = NI,(q), 3)

where the last equal sign is valid for identical particles without
any internal degrees of freedom like flexibility, so that 1,(q) is
the scattering intensity of a single particle. Therefore the
measured intensity, which corresponds to the sum of a large
number of scatterers, is a direct representation of the scat-
tering from a single particle and can provide information
about its structure. There are several methods in the literature
for data analysis and modelling of SAS data (Glatter, 1977,
Glatter & Kratky, 1982; Feigin & Svergun, 1987; Semenyuk &
Svergun, 1991; Pedersen, 1997). However, the application of
traditional methods for programmed self-assembly structures
has some intrinsic peculiarities. Even with the loss of infor-
mation related to the ensemble average of the randomly
oriented particles, the so called ab initio methods can provide
reasonable three-dimensional models directly from the one-
dimensional experimental data (Svergun & Stuhrmann, 1991;
Chacén et al., 1998; Svergun, 1999; Walther et al., 2000). These
methods can also be combined with knowledge of the atomic
resolution structure of proteins, DNA and RNA in order to
obtain the overall organization of the complex that fits the
scattering data (Petoukhov & Svergun, 2005). However, the
restored models are not unique and there might be several
possible models that fit the experimental data (Svergun et al.,
1996; Volkov & Svergun, 2003; Petoukhov & Svergun, 2013).
In order to increase the reliability of such procedures, the
modelling of the scattering data has been combined with
external information, for example, the inclusion of model
constraints, symmetry conditions and contrast variation data
(mostly available for neutron scattering), and also, in very
recent applications, the inclusion of simultaneous modelling of
scattering and NMR data (Evrard et al., 2011; Wassenaar et al.,
2012). Such procedures and methods constitute a very useful
tool box for modelling structures for biological complexes in a
growing number of applications (Petoukhov & Svergun,
2013). However, there are some cases where such methods can
fit the scattering data but the resulting models are not in
agreement with the known shape. Such a limitation occurs
either from the lack of external information that can be used
or from the lack of the proper symmetry constraint available
in the programs. One example is the case of the programmed
self-assembly of DNA cages, which can adopt highly symme-
trical shapes (Douglas ef al., 2009) on which it might be diffi-
cult to apply ab initio methods in the modelling of the
corresponding scattering data (Andersen et al., 2008; Oliveira
et al., 2010). On the other hand, since the expected shape for
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these cases is known, one could a priori build the scattering
length density profile p(r) and calculate the theoretical
intensity. However, this approach depends on the calculation
of a Fourier integral and the orientation averaging, which can
be solved analytically or semi-analytically only for simple
shapes, like spheres, cylinders and ellipsoids (Pedersen, 1997).
For more complex shapes, equation (2) is not directly applic-
able and alternative methods have to be used. One very
powerful method is the finite element technique, where the
model is built using small subunits like spheres or points
(Glatter, 1972). In the case of spherical subunits, the
normalized scattering intensity can be calculated using of the
Debye formula (Debye, 1915):

P
1(q) = (1/Mio) - MOMGDALQ)A (@) sin(gry)/(ary),  (4)
i.j
where A;(q) and M(i) are, respectively, the normalized scat-
tering amplitude and the scattering mass [M(i) = V(i)Ap, the
product of the subunit volume and the scattering length
density contrast] of the ith homogeneous sphere, P is the total
number of subunits in the model, r; is the distance between
the ith and jth sphere, and

,
My (i) = 3. M). 5)
L]

The computation requires prior construction of a model
composed by the known subunits. It should be noted that the
term subunits refers only to the small beads that are used to
build the model. Having the model, the calculation can be very
time consuming for models composed of a large number of
subunits since equation (4) involves a double summation and
the computation time grows with the square of the number of
subunits [O(P?)].

In order to speed up the calculation, it is possible to replace
the double sum by a single sum on the histogram of pair
distances A(r). This histogram is calculated using all the
subunits on the model and it is weighted by the local electron
density of each point (Glatter, 1972; Pantos & Bordas, 1994):

1q) = (1/M%m>[§; 1) +20°) 3 her) sin(qu)/(qu)],
©)

where ny,s is the total number of channels (bins) in the
histogram, A(g) is the normalized form factor amplitude of
the subunit and A(r) is the histogram of pairs of distances. In
this calculation, the approximation is made by the discretiza-
tion of the distances over the histogram channels. This
implementation permits the fast computation of the theore-
tical scattering intensity since the sum is now made over the
histogram channels and, therefore, the computation cost is of
the order of the number of channels O(7,,s). The construction
of the histogram, however, still goes as P* but it is performed
only once for all g values.

If the number of points that composes the model is suffi-
ciently large (typically more than 5000 subunits), it is also
possible to speed up the histogram calculation. This is

performed by the division of the points into several blocks.
The definition of the block size can be coupled to the
maximum value of the scattering vector, gma.x- As a rule of
thumb, the subunit radius has to be smaller than /g, to
eliminate any influence of the subunit size on the calculation
of the scattering intensity (Glatter, 1972). This information
can also be used for an automatic determination of the block
size. For each block the histogram is calculated individually,
and at the end, all the contributions are summed. As also
shown by other authors (Hansen, 1990; Pedersen et al., 2012),
this procedure speeds up the computation of the histogram
since it now runs with N(Pz/nblocks), where npoecs IS the
number of blocks the system is split into. Finally, having the
histogram, one can easily introduce affine polydispersities by
the rescaling of the histogram itself (Pedersen et al., 2012). In
this way the ‘affine polydispersity’ indicates that all dimen-
sions of the model are scaled by the same relative value.
Another very effective procedure for fast computation of
scattering intensities is the use of spherical harmonics as
proposed by Stuhrmann and Svergun (Stuhrmann, 1970;
Svergun & Stuhrmann, 1991; Svergun, 1999), but this
approach is not used in the present work.

2.2. Short program description

The procedures presented in this work enable the model-
ling, simulation and optimization of bodies with different
geometries and shapes. A database with more than 100
different shapes (see the complete list in Table 1) containing
information of vertex position and edge connectivity for the
structures is used. There is also an implementation that allows
the automatic connectivity of any set of points in a three-
dimensional arrangement. Such large feasibility is to our
knowledge not available in any of the procedures present in
the literature (Zhou et al., 2005). With this information
different types of models can be built: solid, shell-like and
edge-like structures. The models are represented by the use of
spherical subunits, which allows the precise computation of
the theoretical intensity. The main advantage of this approach
is that the model construction only requires a very low number
of parameters for its description, even for very complicated
geometrical bodies. This enables an easy optimization of the
model against experimental data. The optimization is
performed by the use of standard least-squares methods
(Press, 1992; Pedersen, 1997). The routines were written in
Fortran90. Images of the models were built using the programs
MolMol (Koradi et al., 1996), the UCSF Chimera package
(Pettersen et al., 2004) and the PyMOL Molecular Graphics
System (Schrodinger LLC, Version 1.3, 2010; http:/www.

pymol.org).

2.3. Procedures to create models composed of subunits

In the present work, two general strategies were used to
build the models composed of subunits. In one case, the
subunits with a given radius form a compact set with well
defined positions to build up the model. This approach, which
will be called the finite element (FE) method, is used for the
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Table 1

Structures with high symmetry.

0 Tetrahedron

1 Cube

2 Octahedron

3 Dodecahedron

4 Icosahedron

5 Small stellated dodecahedron
6

7

8

Pentagonal dipyramid (J13)
Elongated triangular dipyramid (J14)
Elongated square dipyramid (J15)
Elongated pentagonal dipyramid (J16)
Gyroelongated square dipyramid (J17)
Elongated triangular cupola (J18)

100
101
102
103
104
105

Metabiaugmented hexagonal prism (J56)
Triaugmented hexagonal prism (J57)
Augmented dodecahedron (J58)
Parabiaugmented dodecahedron (J59)
Metabiaugmented dodecahedron (J60)
Triaugmented dodecahedron (J61)

Great dodecahedron 63 Elongated square cupola (J19) 106 Metabidiminished icosahedron (J62)
Great stellated dodecahedron 64 Elongated pentagonal cupola (J20) 107 Tridiminished icosahedron (J63)
Great icosahedron 65 Elongated pentagonal rotunda (J21) 108 Augmented tridiminished icosahedron (J64)
22 Triangular prism 66 Gyroelongated triangular cupola (J22) 109 Augmented truncated tetrahedron (J65)
23 Pentagonal prism 67 Gyroelongated square cupola (J23) 110 Augmented truncated cube (J66)
24 Hexagonal prism 68 Gyroelongated pentagonalcupola (J24) 111 Biaugmented truncated cube (J67)
25 Octagonal prism 69 Gyroelongated pentagonal rotunda (J25) 112 Augmented truncated dodecahedron (J68)
26 Decagonal prism 70 Gyrobifastigium (J26) 113 Parabiaugmented truncated dodecahedron (J69)
27 Square antiprism 71 Triangular orthobicupola (J27) 114 Metabiaugmented truncated dodecahedron (J70)
28 Pentagonal antiprism 72 Square orthobicupola (J28) 115 Triaugmented truncated dodecahedron (J71)
29 Hexagonal antiprism 73 Square gyrobicupola (J29) 116 Gyraterhombicosidodecahedron (J72)
30 Octagonal antiprism 74 Pentagonal orthobicupola (J30) 117 Parabigyraterhombicosidodecahedron (J73)
31 Decagonal antiprism 75 Pentagonal gyrobicupola (J31) 118 Metabigyraterhombicosidodecahedron (J74)
33 Rhombic dodecahedron 76 Pentagonal orthocupolarontunda (J32) 119 Trigyraterhombicosidodecahedron (J75)
34 Triakis octahedron 77 Pentagonal gyrocupolarotunda (J33) 120 Diminished rhombicosidodecahedron (J76)
35 Tetrakis hexahedron 78 Pentagonal orthobirotunda (J34) 121 Paragyrate diminished rhombicosidodecahedron (J77)
36 Trapezoidal icositetrahedron 79 Elongated triangular orthobicupola (J35) 122 Metagyrate diminished rhombicosidodecahedron (J78)
37 Hexakis octahedron 80 Elongated triangular gyrobicupola (J36) 123 Bigyrate diminished rhombicosidodecahedron (J79)
38 Pentagonal icositetrahedron (dextro) 81 Elongated square gyrobicupola (J37) 124 Parabidiminishedrhombicosidodecahedron (J80)
39 Rhombic triacontahedron 82 Elongated pentagonal orthobicupola (J38) 125 Metabidiminishedrhombicosidodecahedron (J81)
40 Triakis icosahedron 83 Elongated pentagonal gyrobicupola (J39) 126 Gyrate bidiminished rhombicosidodecahedron (J82)
41 Pentakis dodecahedron 84 Elongated pentagonal orthocupolarotunda (J40) 127 Tridiminished rhombicosidodecahedron (J83)
42 Trapezoidal hexecontahedron 85 Elongated pentagonal gyrocupolarotunda (J41) 128 Snub disphenoid (J84)
43 Hexakis icosahedron 86 Elongated pentagonal orthobirotunda (J42) 129 Snub square antiprism (J85)
44 Pentagonal hexecontahedron (dextro) 87 Elongated pentagonal gyrobirotunda (J43) 130 Sphenocorona (J86)
45 Square pyramid (J1) 88 Gyroelongated triangular bicupola (J44) 131 Augmented sphenocorona (J87)
46 Pentagonal pyramid (J2) 89 Gyroelongated square bicupola (J45) 132 Sphenomegacorona (J88)
47 Triangular cupola (J3) 90 Gyroelongated pentagonal bicupola (J46) 133 Hebesphenomegacorona (J89)
48 Square cupola (J4) 91 Gyroelongated pentagonal cupolarotunda (J47) 134 Disphenocingulum (J90)
49 Pentagonal cupola (J5) 92 Gyroelongated pentagonalbirotunda (J48) 135 Bilunabirotunda (J91)
50 Pentagonal rotunda (J6) 93 Augmented triangular prism (J49) 136 Triangular hebesphenorotunda (J92)
51 Elongated triangular pyramid (J7) 94 Biaugmented triangularprism (J50) 137 Tetrahemihexahedron
52 Elongated square pyramid (J8) 95 Triaugmented triangular prism (J51) 138 Octahemioctahedron
53 Elongated pentagonal pyramid (J9) 96 Augmented pentagonal prism (J52) 139 Small ditrigonal icosidodecahedron
54 Gyroelongated square pyramid (J10) 97 Biaugmented pentagonal prism (J53) 140 Dodecadodecahedron
55 Gyroelongated pentagonal pyramid (J11) 98 Augmented hexagonal prism (J54) 141 Echidnahedron
56 Triangular dipyramid (J12) 99 Parabiaugmented hexagonal prism (J55)
construction of models with a relatively small number of [ ) Y
subunits. In the other case, the model is built by the use of a o L
large number of points, which are randomly distributed within
the structure. This approach, which will be called the Monte
Carlo (MC) method, usually uses a larger number of subunits.
Depending on the application, one method might be more ° [ ® @

suitable than the other, as will be demonstrated by the
examples below. In general, the MC method can be used to
build complex models, either solid or shell-like, since the large
number of subunits can be combined to describe the inter-
faces. On the other hand, the FE method uses a small number
of subunits and is suitable for cases where the subunit itself
can be seen as an important model element. For example, for
the cases of DNA-like structures or protein-like structures, the
subunits can describe the backbone of such structures. Also,
the two approaches can be combined, permitting a more
flexible procedure. One example of such an application is
shown in Fig. 1, where a cube is built. The corners constitute
the vertices and a model can be generated by placing an array
of small subunits along the edges of the cubes. The construc-
tion of other polyhedron types is very easy if information

Figure 1

Construction of the model. Starting from the set of vertex positions (a),
the skeleton of the model can be built by just connecting the vertices (b).
In order to enable an easy computation of the intensity the vertices can be
represented using spherical subunits (c). The vertices can be connected
using more elaborate edges like ones with DNA-like double helices (d).

J. Appl. Cryst. (2014). 47, 84-94
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(a) ()

Figure 2

Considerations about positions and planes. The vector n is the normal to
the plane defined by the vectors v, and v,. Also, the vector v; connects the
reference point p,.¢ on the plane to a given point py. (a) If v3 - n =0, py is in
the plane. If v - n < 0, p, is on the negative semi-space of the plane, and if
v3 - n > 0, po is on the positive semi-space of the plane. (b) py is inside of
the tetrahedron when v; - n < O for all vectors n = v; X v, built with the
vectors vy, v, oriented in a counterclockwise direction on the faces.

about the positions of the vertices and faces is available. Such
information on Cartesian coordinates of the vertices as well as
the connectivity between them is indeed available in the
literature (Coxeter, 1973) and on the web (Andrew Hume’s
Polyhedron Database; http://www.netlib.org/polyhedra/). An
automatic procedure was developed in the present work for
reading this information and building several types of models
from the vertices. It is possible to construct the skeleton of the
polyhedron, placing spheres at the edge positions (Fig. 1¢). It

is also possible to place DNA-like structures at the edges and
connect the double strands at a given corner in an appropriate
way (Fig. 1d). The latter approach uses the FE method and it
has already been successfully applied for the study of trun-
cated octahedron systems (Oliveira et al., 2010).

If the information about the connectivity between the edges
is not known, a prior procedure for generating this is required.
Given a set of coordinates representing the polyhedron
vertices, is possible to use an adaptation of the Chand &
Kapur (1970) algorithm and the Jarvis (1973) algorithm for
generating the skeleton of the polyhedron. The data structure
used in this case assumes that the polyhedron is convex, i.e.
each edge divides no more than two faces and each face
divides the semi-space into semi-regions, and that each semi-
region starts at the corresponding side of this face. In
summary, the program searches for the first three vertices in a
certain direction and makes a triangular face. Starting from
this first triangular face, the other triangular faces are
constructed by the proper selection of vertices, in such a way
that the new triangles have a common edge with a previous
one. The correct face is chosen in order to have the minimum
angle between the current and the new face. The process is
repeated until all the most peripheral points are considered.
By the use of the Euler relation [equation (7)], the poly-
hedrons can be built automatically using the three-dimen-
sional Gift Wrap (GW) (Preparata & Shamos, 1985)
algorithm. A relation exists between the number of vertices, v,

the number of faces, f, and the
number of edges, e,

V4 f=e+2. 7)

Information about the position of a
given point (inside or outside the
object) can easily be obtained by
simple scalar products. For a given
face plane, the vector normal to this
face can be found with three points
at the plane face, n = v; X v,

T T
] plate R =100.0 L = 30.0 1
1 rod R =30.0 L =100.0 1
T cube R =100.0 a1
2 =
=
5 5
S o]
S = .
S 8 1 —Theoretical
] S plate
= =
< 1 rod
1 1 cube
E 1
0 102

10 (Fig. 2a), where v, and v, connect
q(A) the points pairwise. With the normal
vector n it is possible to determine at

which side of the plane a given point

T T
o sphere R=90.0p=1.0
> shell spheric R =90.0 R_,=100.0 p=-1.0

1 <« core-shell spheric 1
R, =900 p =10 R ,=1000p,,=~1.0

h(r) (arb. units)
1(qg) (arb. units)

——Theoretical
sphere
shell spheric
core-shell spheric

Po(x, y, z) is located. Let v3 be a
vector starting on the plane face and
ending at the position py. If the
scalar product between the normal
vector n and vector vz is v3 - n <0, py
is placed at the internal side (nega-
tive semi-space) of the plane. If
vs;-n > 0, po is placed on the
external side (positive semi-space).

0 50 100 150 200 102

®

Figure 3

Computation of test examples for simple bodies. The calculation for solid spheres, spherical shells,
spherical core—shell structures (@) and cubes, short rods and plates (b), compared with theoretical
intensities. The very good agreement between the curves demonstrates an accurate calculation of the

scattering intensity by the use of the Debye formula.

10"

q(A)

Finally, if v3-n = 0, po lies on the
plane of the face. If we extrapolate
this procedure to all polyhedral
faces, it is possible to determine if pg
is inside or outside the body
(Fig. 2b).
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This definition of internal and external regions of a given
object can be applied in several model strategies. If one
considers only the edges, a skeleton-like model can easily be

constructed. By the use of the above method, solid or shell-
like models are easily built. This approach is the basis for the
construction of more sophisticated models, as shown in the
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Computation of affine polydispersity by rescaling the histogram of distances. The simulated

intensities are compared with the theoretical curves obtained from equation (8).

next section.

2.4. Test examples

In order to test the whole procedure,
bodies with simple geometries were built
to enable a comparison with the known
analytic expressions (Pedersen, 1997).
These results provide the necessary
validation before the computation of the
scattering for more sophisticated
models. Fig. 3 shows the computation for
spheres, spherical shells and core—shell
models with negative/positive contrasts,
as well as for cubes, rods and plates.

Affine polydispersities can be intro-
duced in the models by the rescaling of
the histogram as described by Pedersen
et al. (2012). Briefly summarized, the bin
size of the histogram is kept fixed and
the original histogram is expanded or
shrunk according to a given distribution.
The rescaled histograms are weighted by
the distribution function and the square
of the scattering mass, and then
projected onto the bins. As mentioned
above, with this procedure all dimen-
sions of the model are scaled by the
same relative value. As a result, the final
histogram can be used in the calculation
of the intensity. The precision of such an
approach can be confirmed by the
calculation of simple geometrical bodies
for which the theoretical intensity can be
computed. A general expression for
polydisperse systems is given by

[ Dy(RM?(R)P(q, R)dR
ﬂ)oo D\(R)M?(R)dR

I(q) =

’

®)

where Dy(R) is the number distribution,
M(R) = V(R)Ap is the scattering mass
given by the product of the particle
volume and the scattering length density
contrast, and P(q, R) is the normalized
form factor. It is possible to have
different types of distributions by a
combination of the number weight and
the volume factor. For the volume
weighted  distribution  [Dy(R) =
Dn(R)M(R)], the scattering mass term is
combined with the number distribution
and for the intensity weighted distribu-
tion [Dy(R) = Dn(R)M?(R)] the square
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of the scattering mass is combined with the number distribu-
tion. These variations are very useful when comparing the
model with real experimental data.

Fig. 4 shows the intensity with the polydispersity calculated
by the use of the histogram rescaling and the theoretical
computation using the full analytical calculation [equation
(8)]- In all cases, the polydispersity was assumed to have
Gaussian form. One can clearly see that the affine poly-
dispersity calculations applied on the histogram are in very
good agreement with the theoretical curves. Altogether, these
simulated tests give the necessary support for the application
of the method to the computation of intensities of any
proposed shape.

2.5. SAXS simulation of polyhedron shapes

The applicability of the method is demonstrated on the
computation of scattering intensities from geometrical bodies.
Starting from a set of vertices, solid, shell-like and skeleton-
like bodies were built and the intensities were calculated using
the above-mentioned methods.

Several examples are shown in Fig. 5. Using the same
geometries (cube, octahedron, icosahedron, triangular prism
and hexagonal prism), a set of constructions is shown with the
respective histograms and theoretical scattering intensity. It is
interesting to note that the obtained histograms and intensities
are remarkably different between those bodies, indicating that
the small-angle scattering technique is capable of distin-
guishing between them. There are also large differences
between solid and shell-like structures.

As mentioned above, by the use of specially designed oligo
sequences, it is possible to assemble DNA structures into
specific predefined shapes. In the majority of the examples
available in the literature, the structure resembles the
skeleton-like structure that is shown in Fig. 5(a). However, the
edges in this case are built by DNA strands and therefore the
use of a simple array of spheres to represent the DNA helix
can be a too crude approximation, as already demonstrated in
the literature (Oliveira et al., 2010), and which is also clearly
evident from the above simulations. For modelling such
structures the edges can be built using DNA-like double
helices as building blocks. Those parts can be obtained from
known atomic resolution structures available for DNA mol-
ecules and, in order to speed up the calculations, one can use
coarse grain models by only considering the positions of the
C* atoms (or any other that is selected by the user) and
placing spherical subunits at these positions. In this way, the
edges can be built by the double helix and the termini
connected by single strands. Starting from the information on
the vertices and connections (Polyhedron Database; Preparata
& Shamos, 1985) an automatic procedure has been imple-
mented, which builds the whole structure with DNA double
helices and the connections with single linkers (Fig. 5b).

The affine polydispersities can also be included for the
DNA-like structures by the use of the rescaling of the histo-
gram. An example of such an application is shown in Fig. 6
where a polydispersity of 20% in number is included. As a

result, intensity with less pronounced oscillations averaged
over the distribution of sizes is obtained. This approach is not
entirely correct for DNA-like structures since the number of
nucleotides is fixed. As mentioned above, the affine poly-
dispersity assumes that the model keeps its original shape but
varies its size, according to some distribution function. For
DNA-like structures it is known that, owing to some degree of
flexibility in its structure, the particle shape can fluctuate and a
more correct approach would be to create an ensemble of
shapes and take averages over it. Since the correct creation of
such an ensemble may demand molecular dynamics simula-
tions, this procedure can be a very complicated and cumber-
some task (Falconi et al., 2009; Oteri et al., 2011). Nevertheless,
because of the low resolution of the SAS data, affine poly-
dispersity might provide similar results to the ensemble
average over different shapes, principally for not too large
variations in shape.

There are several routes to design nanomaterials to work as
nanocapsules or nanocages. Beyond the design of nanocages
using DNA and blending of DNA with organic and inorganic
molecules (Sleiman et al., 2011), other materials can be used
such as metal-organic polyhedrons (Seidel & Stang, 2002;
Hamilton & MacGillivray, 2004; Perry et al., 2009), viral
capsids and other protein cages (Uchida et al., 2007) which
have also presented the possibility of use as nanocontainers or
nanocapsules. In this approach, it was demonstrated that it is
possible to transport different kinds of molecules inside or

T T
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Figure 6
The influence of affine polydispersity for DNA cages. (a) Histogram of
pair of distances. (b) Calculated scattering intensity. The polydispersity
smears out the oscillations in the scattering intensity.
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attached to the nanocapsules (Uchida et al., 2007; Bhatia et al.,
2009; Walsh et al., 2011). Inspired by these experiments, an
example of the combination of shapes is presented in Fig. 7,
where an icosahedral shell-like structure with a DNA cage in
its interior is simulated. In this simulation the initial model of
the DNA cage, built by the use of the FE approach, provided
the arrangement of spheres in a well defined way. This
arrangement is later replaced by random points in an MC box
in such a way that the DNA cage has the same density of
points as the icosahedral shell. This step is necessary to ensure
the correct relative electron density values. The procedure
enables an easy construction and calculation of the scattering
intensity for the composed model.

As a final example, the construction of a model for a given
set of points is shown in Fig. 8. In this case a set of points is
selected and the GW algorithm creates the connectivity of
such points by the definition of triangular faces. The points
may correspond to regular polyhedra or to any random
arrangement of points (Chand & Kapur, 1970; Jarvis, 1973;
Preparata & Shamos, 1985). Having this information about
faces and edges, all of the modelling approaches mentioned
before can be applied. In the example shown in Fig. 8, two
random sets of vertices are created, one with five vertices and
other with nine vertices. The GW algorithm defines the outer
faces of the polyhedra as triangles and, as an example of
application, builds them with DNA double helices (Fig. 8b).
The corresponding histogram and scattering intensity are
shown for the case of thin edges and DNA-like edges (Figs. 8a
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Figure 7 9(X)
Composition of a shell-like structure with a DNA cage in its interior. (a)
Models assumed. (b) Histograms of pairs of distances for each model. (c)
Calculated scattering intensities. The assumed sizes and relative electron
densities for each object are given on the figure. The procedure enables
an easy construction and calculation of the scattering intensity for the
composed model.

and 8c¢). This procedure can be used as a general framework
for modelling scattering data. The selection of random points
can be combined with an heuristic procedure in order to
enable the optimization of the shape against experimental
data. This procedure has not yet been implemented but it
might be a potential ab initio modelling method for SAS data.

3. Conclusions

A useful method for the fast construction of high-symmetry
objects and the computation of scattering intensity is
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Figure 8

Example of the model construction based on a set of random points. (a)
Histograms of pairs of distances for each model. (b) The obtained model
for five and nine random points composed of linear arrays of spheres and
DNA-like strands, respectively. The superposition of such models is just
for comparison. The points were randomly generated on a surface of a
sphere and the GW algorithm was used to build the object, as described in
§2.3. (c) Calculated scattering intensities.
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presented. Starting from a set of vertex positions, different
types of models, such as solids, shell-like, edge-like and DNA-
like models, can be built. Also, as presented in the results, the
methods can be combined, permitting a versatile toolbox for
the calculation of the small-angle scattering from complicated
models.

By the use of a large and expandable database of shapes, it
is possible to have access to a large number of shapes of
regular polyhedra. Also, by the use of the GW method, it is
possible to build polyhedrons from any collection of points
defining a convex solid.

A specific procedure was developed permitting the
construction of DNA-like structures for any geometry. This
procedure fills an existing gap in the literature where several
DNA cage-like structures have already been assembled but
the major experimental technique used to investigate the
structure has been that of microscopy. As demonstrated in
several works (Andersen et al., 2008, 2009; Oliveira et al.,
2010), the use of scattering methods permits a direct access to
the ensemble-average structure and, therefore, also gives
information on the assembly efficiency.

The possibility of combining several types of models,
including also models with different electron densities for each
component with a low number of parameters describing the
system, provides a powerful tool for modelling and analysing
scattering data.

The procedure is implemented in a program called
POLYGEN, which is available upon request to the corre-
sponding author.

CLPO was supported by FAPESP, CNPq and INCT(Fcx).
CA was supported by CAPES, CNPq and INCT(Fcx).
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