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A versatile procedure to build high-symmetry objects and to calculate their

corresponding small-angle scattering intensity is presented. Starting from a set

of vertex positions, available from a large and extensible database, it is possible

to build several types of bodies using spherical subunits. A fast implementation,

based on the Debye formula using a histogram of distance, is then used to

compute the theoretical scattering intensity. Since the model is built from the

definition of a small set of parameters, it is possible to perform an optimization

of structural parameters against experimental data. Finally, affine size

polydispersities can be easily included by the rescaling of the histogram of the

positions used in the calculations. Several examples of the calculations are

presented, demonstrating the method and its applicability.

1. Introduction

Particles with nanoscale dimensions have an enormous range

of applications in almost all areas. From colloidal suspensions

to magnetic materials, nanoparticles play a very important role

since they might control the chemical and physical properties

of such systems (Jones, 2002; Uchida et al., 2007). Therefore,

there is a large group of techniques that are aimed at the

characterization of such systems, providing important and, in

several cases, complementary information. Some of the key

techniques for such studies are the scattering methods. In this

class, small-angle scattering (SAS) can give important infor-

mation about the particle dimensions, shapes, polydispersity,

orientation etc., among several other structural parameters.

Since it is a simple and non-invasive technique, it can be

applied in a broad range of applications, particularly to

investigate colloidal systems directly in solution. A reasonably

large region of the sample is illuminated by the X-ray or

neutron beam and therefore the scattering data are a result of

an ensemble average over a very large number of particles.

Because of these properties the SAS technique is a unique

way to investigate nanoscaled particles.

An interesting example of nanoparticles is the particles

obtained by programmed assembly of DNA structures. With

recent important developments in bioengineering and bioin-

formatics, it is possible to design sequences of DNA that can

assemble in programmed pre-defined shapes. There are

several examples of such constructs in the literature. The first

proposition of DNA self-assembled structures in the literature

was made by Seeman for an assembly with a cubic shape

(Chen & Seeman, 1991), and later for a truncated octahedron

(Zhang & Seeman, 1994). However, those propositions were

only theoretical models. The approach was then successfully

implemented experimentally, providing the self-assembly of

DNA in the form of an octahedron (Shih et al., 2004; Andersen

et al., 2008; Falconi et al., 2009; He et al., 2010), a tetrahedron

(Goodman et al., 2005; He et al., 2008; Kato et al., 2009; Li et al.,

2009), trigonal bipyramids (Erben et al., 2007), a dodecahe-

dron (He et al., 2008), an icosahedron (Zhang et al., 2008;

Bhatia et al., 2009) and a truncated icosahedron (He et al.,

2008). It was also possible to build hybrid structures with

synthetic connections at the vertices (Aldaye & Sleiman, 2007;

Zimmermann et al., 2008; Yang et al., 2009), and large struc-

tures, based on the development of a DNA origami technique

(Rothemund, 2006; Dietz et al., 2009; Douglas et al., 2009;

Endo et al., 2009; Ke et al., 2009). In other applications, it was

shown that it was possible to encapsulate proteins (Erben et

al., 2006) and nanoparticles (Erben et al., 2007; Yang et al.,

2009) inside of a DNA polyhedron. There are several exam-

ples of the assembly of DNA nanostructures with high

symmetry (e.g. Seeman, 2010), and Han et al. (2011) have used

the DNA origami approach to build structures with high

curvature. In all cases, after the experimental assembly, it is

necessary to be able to confirm the formed shape and the

assembly efficiency. One common procedure to check the

assembly formation is gel chromatography (Douglas et al.,

2009), where by the indication of the molecular weight, the

assembly can be inferred. Although this procedure gives a

good indication of the correct assembly, it is not a measure of

it. Electron microscopy techniques permit a direct visualiza-

tion of such structures and can, in several cases, provide a

three-dimensional reconstruction (Kato et al., 2009). Never-

theless, such techniques can have limitations since they might

require quite invasive sample treatment for the experiments,

which can influence the results. Also the information obtained
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about the assembly efficiency on the system is limited because

such methods usually cover a very small volume of the system

(Andersen et al., 2008). Scattering methods, on the other hand,

are non-invasive methods, which can be applied directly in

solution and provide ensemble-averaged results on a very

large number of particles. The main drawback of the scattering

techniques is that they provide information in reciprocal

(Fourier) space. It has been shown that an ideal situation is the

combination of electron microscopy techniques and scattering

methods, since it might enable a better investigation of the

system (Andersen et al., 2009; Oliveira et al., 2010) with direct

visualization of the structure as well as information on the

ensemble-average structure of the particles.

Although scattering experiments are relatively simple, the

data analysis and interpretation can be quite complicated. The

scattering intensity of a sample is given as the absolute square

of the Fourier transformation of the scattering length density

contrast with additional ensemble-average and orientation-

average operations. Because of this, analytical expressions are

restricted to simple shapes and geometries (Pedersen, 1997).

More complicated shapes cannot be described analytically

and, for such cases, alternative methods are required.

In this work a useful procedure is presented, where models

with a large number of possible geometries can be easily built

and the corresponding scattering intensity calculated. Since

the number of parameters describing the models is very low,

they can be quickly optimized against experimental data. A

special scheme is presented to efficiently model the assembled

DNA structures.

2. Theoretical aspects, methods and results

2.1. Small-angle scattering (SAS) and model calculation

In a typical SAS experiment, the incoming beam passes

through the sample, probing a large number of randomly

oriented particles, which then leads to an ensemble averaging

of the total scattering intensity that also includes averaging

over the orientation of the particles. A general expression for

the measured scattering intensity is given by

I qð Þ ¼ N��2V2P qð ÞSm qð Þ: ð1Þ

In this expression, q is the modulus of the scattering vector

[defined as q = (4�/�)sin�, where 2� is the scattering angle and

� is the wavelength of the monochromatic beam], N is the

average number of particles illuminated by the beam, �� is

the scattering length density contrast between the particles

and the medium in which they are immersed, and V is the

particle volume. P(q) is the normalized particle form factor

[P(0) = 1], which is the squared Fourier transformation of the

particle scattering length density contrast, averaged over all

possible particle orientations:

PðqÞ ¼
AðqÞ

2

Að0Þ2

� �
�

¼

" R
V ��ðrÞ expðiq � rÞdrR

V ��ðrÞdr

#2* +
�

: ð2Þ

Here q is the three-dimensional scattering vector, ��(r) is the

particle scattering length density contrast distribution at

position r and the angle brackets hi indicate an average over

the solid angle �. This equation reflects that the form factor

P(q) is directly related to the particle shape. It is interesting to

note that, for X-rays, the scattering length density contrast is

proportional to the difference in electron density between the

particles and the medium. The term Sm(q) is the (effective)

structure factor, which describes possible particle interactions.

For very dilute systems, the structure factor always approaches

a constant value of unity and, therefore, the expression for this

case reduces to

I qð Þ ¼ N��2V2P qð Þ ¼ NI1ðqÞ; ð3Þ

where the last equal sign is valid for identical particles without

any internal degrees of freedom like flexibility, so that I1(q) is

the scattering intensity of a single particle. Therefore the

measured intensity, which corresponds to the sum of a large

number of scatterers, is a direct representation of the scat-

tering from a single particle and can provide information

about its structure. There are several methods in the literature

for data analysis and modelling of SAS data (Glatter, 1977;

Glatter & Kratky, 1982; Feigin & Svergun, 1987; Semenyuk &

Svergun, 1991; Pedersen, 1997). However, the application of

traditional methods for programmed self-assembly structures

has some intrinsic peculiarities. Even with the loss of infor-

mation related to the ensemble average of the randomly

oriented particles, the so called ab initio methods can provide

reasonable three-dimensional models directly from the one-

dimensional experimental data (Svergun & Stuhrmann, 1991;

Chacón et al., 1998; Svergun, 1999; Walther et al., 2000). These

methods can also be combined with knowledge of the atomic

resolution structure of proteins, DNA and RNA in order to

obtain the overall organization of the complex that fits the

scattering data (Petoukhov & Svergun, 2005). However, the

restored models are not unique and there might be several

possible models that fit the experimental data (Svergun et al.,

1996; Volkov & Svergun, 2003; Petoukhov & Svergun, 2013).

In order to increase the reliability of such procedures, the

modelling of the scattering data has been combined with

external information, for example, the inclusion of model

constraints, symmetry conditions and contrast variation data

(mostly available for neutron scattering), and also, in very

recent applications, the inclusion of simultaneous modelling of

scattering and NMR data (Evrard et al., 2011; Wassenaar et al.,

2012). Such procedures and methods constitute a very useful

tool box for modelling structures for biological complexes in a

growing number of applications (Petoukhov & Svergun,

2013). However, there are some cases where such methods can

fit the scattering data but the resulting models are not in

agreement with the known shape. Such a limitation occurs

either from the lack of external information that can be used

or from the lack of the proper symmetry constraint available

in the programs. One example is the case of the programmed

self-assembly of DNA cages, which can adopt highly symme-

trical shapes (Douglas et al., 2009) on which it might be diffi-

cult to apply ab initio methods in the modelling of the

corresponding scattering data (Andersen et al., 2008; Oliveira

et al., 2010). On the other hand, since the expected shape for
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these cases is known, one could a priori build the scattering

length density profile �(r) and calculate the theoretical

intensity. However, this approach depends on the calculation

of a Fourier integral and the orientation averaging, which can

be solved analytically or semi-analytically only for simple

shapes, like spheres, cylinders and ellipsoids (Pedersen, 1997).

For more complex shapes, equation (2) is not directly applic-

able and alternative methods have to be used. One very

powerful method is the finite element technique, where the

model is built using small subunits like spheres or points

(Glatter, 1972). In the case of spherical subunits, the

normalized scattering intensity can be calculated using of the

Debye formula (Debye, 1915):

IðqÞ ¼ ð1=M2
TotÞ

PP
i;j

MðiÞMðjÞAiðqÞAjðqÞ sinðqrijÞ=ðqrijÞ; ð4Þ

where Ai(q) and M(i) are, respectively, the normalized scat-

tering amplitude and the scattering mass [M(i) = V(i)��, the

product of the subunit volume and the scattering length

density contrast] of the ith homogeneous sphere, P is the total

number of subunits in the model, rij is the distance between

the ith and jth sphere, and

MTot ið Þ ¼
PP
i;j

MðiÞ: ð5Þ

The computation requires prior construction of a model

composed by the known subunits. It should be noted that the

term subunits refers only to the small beads that are used to

build the model. Having the model, the calculation can be very

time consuming for models composed of a large number of

subunits since equation (4) involves a double summation and

the computation time grows with the square of the number of

subunits [O(P2)].

In order to speed up the calculation, it is possible to replace

the double sum by a single sum on the histogram of pair

distances h(r). This histogram is calculated using all the

subunits on the model and it is weighted by the local electron

density of each point (Glatter, 1972; Pantos & Bordas, 1994):

IðqÞ ¼ ð1=M2
TotÞ

PP
i¼1

IðqÞ þ 2A2ðqÞ
Pnbins

k¼1

hðrkÞ sinðqrkÞ=ðqrkÞ

� �
;

ð6Þ

where nbins is the total number of channels (bins) in the

histogram, A(q) is the normalized form factor amplitude of

the subunit and h(r) is the histogram of pairs of distances. In

this calculation, the approximation is made by the discretiza-

tion of the distances over the histogram channels. This

implementation permits the fast computation of the theore-

tical scattering intensity since the sum is now made over the

histogram channels and, therefore, the computation cost is of

the order of the number of channels O(nbins). The construction

of the histogram, however, still goes as P2 but it is performed

only once for all q values.

If the number of points that composes the model is suffi-

ciently large (typically more than 5000 subunits), it is also

possible to speed up the histogram calculation. This is

performed by the division of the points into several blocks.

The definition of the block size can be coupled to the

maximum value of the scattering vector, qmax. As a rule of

thumb, the subunit radius has to be smaller than �/qmax to

eliminate any influence of the subunit size on the calculation

of the scattering intensity (Glatter, 1972). This information

can also be used for an automatic determination of the block

size. For each block the histogram is calculated individually,

and at the end, all the contributions are summed. As also

shown by other authors (Hansen, 1990; Pedersen et al., 2012),

this procedure speeds up the computation of the histogram

since it now runs with �(P2/nblocks), where nblocks is the

number of blocks the system is split into. Finally, having the

histogram, one can easily introduce affine polydispersities by

the rescaling of the histogram itself (Pedersen et al., 2012). In

this way the ‘affine polydispersity’ indicates that all dimen-

sions of the model are scaled by the same relative value.

Another very effective procedure for fast computation of

scattering intensities is the use of spherical harmonics as

proposed by Stuhrmann and Svergun (Stuhrmann, 1970;

Svergun & Stuhrmann, 1991; Svergun, 1999), but this

approach is not used in the present work.

2.2. Short program description

The procedures presented in this work enable the model-

ling, simulation and optimization of bodies with different

geometries and shapes. A database with more than 100

different shapes (see the complete list in Table 1) containing

information of vertex position and edge connectivity for the

structures is used. There is also an implementation that allows

the automatic connectivity of any set of points in a three-

dimensional arrangement. Such large feasibility is to our

knowledge not available in any of the procedures present in

the literature (Zhou et al., 2005). With this information

different types of models can be built: solid, shell-like and

edge-like structures. The models are represented by the use of

spherical subunits, which allows the precise computation of

the theoretical intensity. The main advantage of this approach

is that the model construction only requires a very low number

of parameters for its description, even for very complicated

geometrical bodies. This enables an easy optimization of the

model against experimental data. The optimization is

performed by the use of standard least-squares methods

(Press, 1992; Pedersen, 1997). The routines were written in

Fortran90. Images of the models were built using the programs

MolMol (Koradi et al., 1996), the UCSF Chimera package

(Pettersen et al., 2004) and the PyMOL Molecular Graphics

System (Schrödinger LLC, Version 1.3, 2010; http://www.

pymol.org).

2.3. Procedures to create models composed of subunits

In the present work, two general strategies were used to

build the models composed of subunits. In one case, the

subunits with a given radius form a compact set with well

defined positions to build up the model. This approach, which

will be called the finite element (FE) method, is used for the
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construction of models with a relatively small number of

subunits. In the other case, the model is built by the use of a

large number of points, which are randomly distributed within

the structure. This approach, which will be called the Monte

Carlo (MC) method, usually uses a larger number of subunits.

Depending on the application, one method might be more

suitable than the other, as will be demonstrated by the

examples below. In general, the MC method can be used to

build complex models, either solid or shell-like, since the large

number of subunits can be combined to describe the inter-

faces. On the other hand, the FE method uses a small number

of subunits and is suitable for cases where the subunit itself

can be seen as an important model element. For example, for

the cases of DNA-like structures or protein-like structures, the

subunits can describe the backbone of such structures. Also,

the two approaches can be combined, permitting a more

flexible procedure. One example of such an application is

shown in Fig. 1, where a cube is built. The corners constitute

the vertices and a model can be generated by placing an array

of small subunits along the edges of the cubes. The construc-

tion of other polyhedron types is very easy if information
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Figure 1
Construction of the model. Starting from the set of vertex positions (a),
the skeleton of the model can be built by just connecting the vertices (b).
In order to enable an easy computation of the intensity the vertices can be
represented using spherical subunits (c). The vertices can be connected
using more elaborate edges like ones with DNA-like double helices (d).

Table 1
Structures with high symmetry.

0 Tetrahedron 57 Pentagonal dipyramid (J13) 100 Metabiaugmented hexagonal prism (J56)
1 Cube 58 Elongated triangular dipyramid (J14) 101 Triaugmented hexagonal prism (J57)
2 Octahedron 59 Elongated square dipyramid (J15) 102 Augmented dodecahedron (J58)
3 Dodecahedron 60 Elongated pentagonal dipyramid (J16) 103 Parabiaugmented dodecahedron (J59)
4 Icosahedron 61 Gyroelongated square dipyramid (J17) 104 Metabiaugmented dodecahedron (J60)
5 Small stellated dodecahedron 62 Elongated triangular cupola (J18) 105 Triaugmented dodecahedron (J61)
6 Great dodecahedron 63 Elongated square cupola (J19) 106 Metabidiminished icosahedron (J62)
7 Great stellated dodecahedron 64 Elongated pentagonal cupola (J20) 107 Tridiminished icosahedron (J63)
8 Great icosahedron 65 Elongated pentagonal rotunda (J21) 108 Augmented tridiminished icosahedron (J64)
22 Triangular prism 66 Gyroelongated triangular cupola (J22) 109 Augmented truncated tetrahedron (J65)
23 Pentagonal prism 67 Gyroelongated square cupola (J23) 110 Augmented truncated cube (J66)
24 Hexagonal prism 68 Gyroelongated pentagonalcupola (J24) 111 Biaugmented truncated cube (J67)
25 Octagonal prism 69 Gyroelongated pentagonal rotunda (J25) 112 Augmented truncated dodecahedron (J68)
26 Decagonal prism 70 Gyrobifastigium (J26) 113 Parabiaugmented truncated dodecahedron (J69)
27 Square antiprism 71 Triangular orthobicupola (J27) 114 Metabiaugmented truncated dodecahedron (J70)
28 Pentagonal antiprism 72 Square orthobicupola (J28) 115 Triaugmented truncated dodecahedron (J71)
29 Hexagonal antiprism 73 Square gyrobicupola (J29) 116 Gyraterhombicosidodecahedron (J72)
30 Octagonal antiprism 74 Pentagonal orthobicupola (J30) 117 Parabigyraterhombicosidodecahedron (J73)
31 Decagonal antiprism 75 Pentagonal gyrobicupola (J31) 118 Metabigyraterhombicosidodecahedron (J74)
33 Rhombic dodecahedron 76 Pentagonal orthocupolarontunda (J32) 119 Trigyraterhombicosidodecahedron (J75)
34 Triakis octahedron 77 Pentagonal gyrocupolarotunda (J33) 120 Diminished rhombicosidodecahedron (J76)
35 Tetrakis hexahedron 78 Pentagonal orthobirotunda (J34) 121 Paragyrate diminished rhombicosidodecahedron (J77)
36 Trapezoidal icositetrahedron 79 Elongated triangular orthobicupola (J35) 122 Metagyrate diminished rhombicosidodecahedron (J78)
37 Hexakis octahedron 80 Elongated triangular gyrobicupola (J36) 123 Bigyrate diminished rhombicosidodecahedron (J79)
38 Pentagonal icositetrahedron (dextro) 81 Elongated square gyrobicupola (J37) 124 Parabidiminishedrhombicosidodecahedron (J80)
39 Rhombic triacontahedron 82 Elongated pentagonal orthobicupola (J38) 125 Metabidiminishedrhombicosidodecahedron (J81)
40 Triakis icosahedron 83 Elongated pentagonal gyrobicupola (J39) 126 Gyrate bidiminished rhombicosidodecahedron (J82)
41 Pentakis dodecahedron 84 Elongated pentagonal orthocupolarotunda (J40) 127 Tridiminished rhombicosidodecahedron (J83)
42 Trapezoidal hexecontahedron 85 Elongated pentagonal gyrocupolarotunda (J41) 128 Snub disphenoid (J84)
43 Hexakis icosahedron 86 Elongated pentagonal orthobirotunda (J42) 129 Snub square antiprism (J85)
44 Pentagonal hexecontahedron (dextro) 87 Elongated pentagonal gyrobirotunda (J43) 130 Sphenocorona (J86)
45 Square pyramid (J1) 88 Gyroelongated triangular bicupola (J44) 131 Augmented sphenocorona (J87)
46 Pentagonal pyramid (J2) 89 Gyroelongated square bicupola (J45) 132 Sphenomegacorona (J88)
47 Triangular cupola (J3) 90 Gyroelongated pentagonal bicupola (J46) 133 Hebesphenomegacorona (J89)
48 Square cupola (J4) 91 Gyroelongated pentagonal cupolarotunda (J47) 134 Disphenocingulum (J90)
49 Pentagonal cupola (J5) 92 Gyroelongated pentagonalbirotunda (J48) 135 Bilunabirotunda (J91)
50 Pentagonal rotunda (J6) 93 Augmented triangular prism (J49) 136 Triangular hebesphenorotunda (J92)
51 Elongated triangular pyramid (J7) 94 Biaugmented triangularprism (J50) 137 Tetrahemihexahedron
52 Elongated square pyramid (J8) 95 Triaugmented triangular prism (J51) 138 Octahemioctahedron
53 Elongated pentagonal pyramid (J9) 96 Augmented pentagonal prism (J52) 139 Small ditrigonal icosidodecahedron
54 Gyroelongated square pyramid (J10) 97 Biaugmented pentagonal prism (J53) 140 Dodecadodecahedron
55 Gyroelongated pentagonal pyramid (J11) 98 Augmented hexagonal prism (J54) 141 Echidnahedron
56 Triangular dipyramid (J12) 99 Parabiaugmented hexagonal prism (J55)



about the positions of the vertices and faces is available. Such

information on Cartesian coordinates of the vertices as well as

the connectivity between them is indeed available in the

literature (Coxeter, 1973) and on the web (Andrew Hume’s

Polyhedron Database; http://www.netlib.org/polyhedra/). An

automatic procedure was developed in the present work for

reading this information and building several types of models

from the vertices. It is possible to construct the skeleton of the

polyhedron, placing spheres at the edge positions (Fig. 1c). It

is also possible to place DNA-like structures at the edges and

connect the double strands at a given corner in an appropriate

way (Fig. 1d). The latter approach uses the FE method and it

has already been successfully applied for the study of trun-

cated octahedron systems (Oliveira et al., 2010).

If the information about the connectivity between the edges

is not known, a prior procedure for generating this is required.

Given a set of coordinates representing the polyhedron

vertices, is possible to use an adaptation of the Chand &

Kapur (1970) algorithm and the Jarvis (1973) algorithm for

generating the skeleton of the polyhedron. The data structure

used in this case assumes that the polyhedron is convex, i.e.

each edge divides no more than two faces and each face

divides the semi-space into semi-regions, and that each semi-

region starts at the corresponding side of this face. In

summary, the program searches for the first three vertices in a

certain direction and makes a triangular face. Starting from

this first triangular face, the other triangular faces are

constructed by the proper selection of vertices, in such a way

that the new triangles have a common edge with a previous

one. The correct face is chosen in order to have the minimum

angle between the current and the new face. The process is

repeated until all the most peripheral points are considered.

By the use of the Euler relation [equation (7)], the poly-

hedrons can be built automatically using the three-dimen-

sional Gift Wrap (GW) (Preparata & Shamos, 1985)

algorithm. A relation exists between the number of vertices, v,

the number of faces, f, and the

number of edges, e,

vþ f ¼ eþ 2: ð7Þ

Information about the position of a

given point (inside or outside the

object) can easily be obtained by

simple scalar products. For a given

face plane, the vector normal to this

face can be found with three points

at the plane face, n = v1 � v2

(Fig. 2a), where v1 and v2 connect

the points pairwise. With the normal

vector n it is possible to determine at

which side of the plane a given point

p0(x, y, z) is located. Let v3 be a

vector starting on the plane face and

ending at the position p0. If the

scalar product between the normal

vector n and vector v3 is v3 � n < 0, p0

is placed at the internal side (nega-

tive semi-space) of the plane. If

v3 � n > 0, p0 is placed on the

external side (positive semi-space).

Finally, if v3 � n = 0, p0 lies on the

plane of the face. If we extrapolate

this procedure to all polyhedral

faces, it is possible to determine if p0

is inside or outside the body

(Fig. 2b).
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Figure 3
Computation of test examples for simple bodies. The calculation for solid spheres, spherical shells,
spherical core–shell structures (a) and cubes, short rods and plates (b), compared with theoretical
intensities. The very good agreement between the curves demonstrates an accurate calculation of the
scattering intensity by the use of the Debye formula.

Figure 2
Considerations about positions and planes. The vector n is the normal to
the plane defined by the vectors v1 and v2. Also, the vector v3 connects the
reference point pref on the plane to a given point p0. (a) If v3 � n = 0, p0 is in
the plane. If v3 � n < 0, p0 is on the negative semi-space of the plane, and if
v3 � n > 0, p0 is on the positive semi-space of the plane. (b) p0 is inside of
the tetrahedron when v3 � n < 0 for all vectors n = v1 � v2 built with the
vectors v1, v2 oriented in a counterclockwise direction on the faces.



This definition of internal and external regions of a given

object can be applied in several model strategies. If one

considers only the edges, a skeleton-like model can easily be

constructed. By the use of the above method, solid or shell-

like models are easily built. This approach is the basis for the

construction of more sophisticated models, as shown in the

next section.

2.4. Test examples

In order to test the whole procedure,

bodies with simple geometries were built

to enable a comparison with the known

analytic expressions (Pedersen, 1997).

These results provide the necessary

validation before the computation of the

scattering for more sophisticated

models. Fig. 3 shows the computation for

spheres, spherical shells and core–shell

models with negative/positive contrasts,

as well as for cubes, rods and plates.

Affine polydispersities can be intro-

duced in the models by the rescaling of

the histogram as described by Pedersen

et al. (2012). Briefly summarized, the bin

size of the histogram is kept fixed and

the original histogram is expanded or

shrunk according to a given distribution.

The rescaled histograms are weighted by

the distribution function and the square

of the scattering mass, and then

projected onto the bins. As mentioned

above, with this procedure all dimen-

sions of the model are scaled by the

same relative value. As a result, the final

histogram can be used in the calculation

of the intensity. The precision of such an

approach can be confirmed by the

calculation of simple geometrical bodies

for which the theoretical intensity can be

computed. A general expression for

polydisperse systems is given by

IðqÞ ¼

R1
0 DNðRÞM

2ðRÞPðq;RÞ dRR1
0 DNðRÞM

2ðRÞ dR
;

ð8Þ

where DN(R) is the number distribution,

M(R) = V(R)�� is the scattering mass

given by the product of the particle

volume and the scattering length density

contrast, and P(q, R) is the normalized

form factor. It is possible to have

different types of distributions by a

combination of the number weight and

the volume factor. For the volume

weighted distribution [DV(R) =

DN(R)M(R)], the scattering mass term is

combined with the number distribution

and for the intensity weighted distribu-

tion [DI(R) = DN(R)M2(R)] the square
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Figure 4
Computation of affine polydispersity by rescaling the histogram of distances. The simulated
intensities are compared with the theoretical curves obtained from equation (8).
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Figure 5
Calculation of theoretical intensities for several geometrical bodies. Edge-like bodies (a), DNA-like bodies (b), shell-like bodies (c) and solid bodies (d)
were built and their respective histograms and theoretical intensities were computed. In all cases, the bodies were confined within a sphere of radius
100 Å.



of the scattering mass is combined with the number distribu-

tion. These variations are very useful when comparing the

model with real experimental data.

Fig. 4 shows the intensity with the polydispersity calculated

by the use of the histogram rescaling and the theoretical

computation using the full analytical calculation [equation

(8)]. In all cases, the polydispersity was assumed to have

Gaussian form. One can clearly see that the affine poly-

dispersity calculations applied on the histogram are in very

good agreement with the theoretical curves. Altogether, these

simulated tests give the necessary support for the application

of the method to the computation of intensities of any

proposed shape.

2.5. SAXS simulation of polyhedron shapes

The applicability of the method is demonstrated on the

computation of scattering intensities from geometrical bodies.

Starting from a set of vertices, solid, shell-like and skeleton-

like bodies were built and the intensities were calculated using

the above-mentioned methods.

Several examples are shown in Fig. 5. Using the same

geometries (cube, octahedron, icosahedron, triangular prism

and hexagonal prism), a set of constructions is shown with the

respective histograms and theoretical scattering intensity. It is

interesting to note that the obtained histograms and intensities

are remarkably different between those bodies, indicating that

the small-angle scattering technique is capable of distin-

guishing between them. There are also large differences

between solid and shell-like structures.

As mentioned above, by the use of specially designed oligo

sequences, it is possible to assemble DNA structures into

specific predefined shapes. In the majority of the examples

available in the literature, the structure resembles the

skeleton-like structure that is shown in Fig. 5(a). However, the

edges in this case are built by DNA strands and therefore the

use of a simple array of spheres to represent the DNA helix

can be a too crude approximation, as already demonstrated in

the literature (Oliveira et al., 2010), and which is also clearly

evident from the above simulations. For modelling such

structures the edges can be built using DNA-like double

helices as building blocks. Those parts can be obtained from

known atomic resolution structures available for DNA mol-

ecules and, in order to speed up the calculations, one can use

coarse grain models by only considering the positions of the

C* atoms (or any other that is selected by the user) and

placing spherical subunits at these positions. In this way, the

edges can be built by the double helix and the termini

connected by single strands. Starting from the information on

the vertices and connections (Polyhedron Database; Preparata

& Shamos, 1985) an automatic procedure has been imple-

mented, which builds the whole structure with DNA double

helices and the connections with single linkers (Fig. 5b).

The affine polydispersities can also be included for the

DNA-like structures by the use of the rescaling of the histo-

gram. An example of such an application is shown in Fig. 6

where a polydispersity of 20% in number is included. As a

result, intensity with less pronounced oscillations averaged

over the distribution of sizes is obtained. This approach is not

entirely correct for DNA-like structures since the number of

nucleotides is fixed. As mentioned above, the affine poly-

dispersity assumes that the model keeps its original shape but

varies its size, according to some distribution function. For

DNA-like structures it is known that, owing to some degree of

flexibility in its structure, the particle shape can fluctuate and a

more correct approach would be to create an ensemble of

shapes and take averages over it. Since the correct creation of

such an ensemble may demand molecular dynamics simula-

tions, this procedure can be a very complicated and cumber-

some task (Falconi et al., 2009; Oteri et al., 2011). Nevertheless,

because of the low resolution of the SAS data, affine poly-

dispersity might provide similar results to the ensemble

average over different shapes, principally for not too large

variations in shape.

There are several routes to design nanomaterials to work as

nanocapsules or nanocages. Beyond the design of nanocages

using DNA and blending of DNA with organic and inorganic

molecules (Sleiman et al., 2011), other materials can be used

such as metal–organic polyhedrons (Seidel & Stang, 2002;

Hamilton & MacGillivray, 2004; Perry et al., 2009), viral

capsids and other protein cages (Uchida et al., 2007) which

have also presented the possibility of use as nanocontainers or

nanocapsules. In this approach, it was demonstrated that it is

possible to transport different kinds of molecules inside or
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Figure 6
The influence of affine polydispersity for DNA cages. (a) Histogram of
pair of distances. (b) Calculated scattering intensity. The polydispersity
smears out the oscillations in the scattering intensity.



attached to the nanocapsules (Uchida et al., 2007; Bhatia et al.,

2009; Walsh et al., 2011). Inspired by these experiments, an

example of the combination of shapes is presented in Fig. 7,

where an icosahedral shell-like structure with a DNA cage in

its interior is simulated. In this simulation the initial model of

the DNA cage, built by the use of the FE approach, provided

the arrangement of spheres in a well defined way. This

arrangement is later replaced by random points in an MC box

in such a way that the DNA cage has the same density of

points as the icosahedral shell. This step is necessary to ensure

the correct relative electron density values. The procedure

enables an easy construction and calculation of the scattering

intensity for the composed model.

As a final example, the construction of a model for a given

set of points is shown in Fig. 8. In this case a set of points is

selected and the GW algorithm creates the connectivity of

such points by the definition of triangular faces. The points

may correspond to regular polyhedra or to any random

arrangement of points (Chand & Kapur, 1970; Jarvis, 1973;

Preparata & Shamos, 1985). Having this information about

faces and edges, all of the modelling approaches mentioned

before can be applied. In the example shown in Fig. 8, two

random sets of vertices are created, one with five vertices and

other with nine vertices. The GW algorithm defines the outer

faces of the polyhedra as triangles and, as an example of

application, builds them with DNA double helices (Fig. 8b).

The corresponding histogram and scattering intensity are

shown for the case of thin edges and DNA-like edges (Figs. 8a

and 8c). This procedure can be used as a general framework

for modelling scattering data. The selection of random points

can be combined with an heuristic procedure in order to

enable the optimization of the shape against experimental

data. This procedure has not yet been implemented but it

might be a potential ab initio modelling method for SAS data.

3. Conclusions

A useful method for the fast construction of high-symmetry

objects and the computation of scattering intensity is
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Figure 7
Composition of a shell-like structure with a DNA cage in its interior. (a)
Models assumed. (b) Histograms of pairs of distances for each model. (c)
Calculated scattering intensities. The assumed sizes and relative electron
densities for each object are given on the figure. The procedure enables
an easy construction and calculation of the scattering intensity for the
composed model.

Figure 8
Example of the model construction based on a set of random points. (a)
Histograms of pairs of distances for each model. (b) The obtained model
for five and nine random points composed of linear arrays of spheres and
DNA-like strands, respectively. The superposition of such models is just
for comparison. The points were randomly generated on a surface of a
sphere and the GW algorithm was used to build the object, as described in
x2.3. (c) Calculated scattering intensities.



presented. Starting from a set of vertex positions, different

types of models, such as solids, shell-like, edge-like and DNA-

like models, can be built. Also, as presented in the results, the

methods can be combined, permitting a versatile toolbox for

the calculation of the small-angle scattering from complicated

models.

By the use of a large and expandable database of shapes, it

is possible to have access to a large number of shapes of

regular polyhedra. Also, by the use of the GW method, it is

possible to build polyhedrons from any collection of points

defining a convex solid.

A specific procedure was developed permitting the

construction of DNA-like structures for any geometry. This

procedure fills an existing gap in the literature where several

DNA cage-like structures have already been assembled but

the major experimental technique used to investigate the

structure has been that of microscopy. As demonstrated in

several works (Andersen et al., 2008, 2009; Oliveira et al.,

2010), the use of scattering methods permits a direct access to

the ensemble-average structure and, therefore, also gives

information on the assembly efficiency.

The possibility of combining several types of models,

including also models with different electron densities for each

component with a low number of parameters describing the

system, provides a powerful tool for modelling and analysing

scattering data.

The procedure is implemented in a program called

POLYGEN, which is available upon request to the corre-

sponding author.
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