

RT-MAT 2008 - 06

ENTIRE FUNCTIONS ON BANACH
SPACES WITH U PROPERTY

Humberto D. Carrión V.

Outubro 2008

Esta é uma publicação preliminar (“preprint”).

ENTIRE FUNCTIONS ON BANACH SPACES WITH U PROPERTY.

HUMBERTO D. CARRIÓN V.

ABSTRACT. Let E and F be complex Banach spaces. We show that if E has U property and contains no subspace isomorphic to l_1 , then every holomorphic functions from E into F which is bounded on weakly compact sets of E , is bounded on bounded sets. In particular, this is true in the Banach spaces that are M -ideal in their bi-dual

1. INTRODUCTION

Let E and F be complex Banach spaces. We denote by $C_w(E, F)$ and $C_{wu}(E, F)$ the spaces of functions from E into F that are weakly continuous and weakly uniformly continuous respectively, on bounded subsets of E . Valdivia showed in [16] that $C_{wu}(E, F) = C_w(E, F)$ if and only if the space E is reflexive. Afterwards Aron, Hervés and Valdivia show in [1] that for every Banach space E and every polynomial $P \in C_w(E, F)$ we have always that $P \in C_{wu}(E, F)$ and raised the following question: Does is every holomorphic $f \in C_w(E, F)$, weakly uniformly continuous on bounded sets?. This problem today is known as l_1 -problem ([5]) because in [1] it also is shown that a positive answer for l_1 implies a positive answer in the general case.

Obviously the problem l_1 has an affirmative answer when E is a reflexive space, however, no positive answer is well known for a Banach space arbitrary and for a long time the only example of a non-reflexive Banach space that answered affirmatively to the problem was c_0 , the Banach space of sequences tending to zero, under the sup norm. This example was given by Dineen in [6].

By adapting Dineen's techniques we generalize the result obtained for c_0 and show that the l_1 -problem has a positive answer when E is a Banach space with the U property and contains no subspace isomorphic to l_1 . Examples of these spaces are the spaces with shrinking and unconditional basis or more generally Banach spaces that are M -ideal in their bidual.

2. NOTATION AND BASIC DEFINITIONS

The letters E, F always denote complex Banach spaces and E' denotes the dual topological of E . Also $S(E) = \{x \in E : \|x\| = 1\}$ denotes the unity sphere of E .

If $f : E \rightarrow F$ is a function and $A \subset E$ we denote by

$$\|f\|_A := \sup_{x \in A} \|f(x)\|.$$

In this article, we denote by $P(^n E, F)$ the space of all n -homogeneous from E into F . For each polynomial $P_n \in P(^n E, F)$ we denote by \hat{P}_n the n -linear symmetric form associate, that is $\hat{P}_n(x) = \sum_{i=1}^n P_n(x, \dots, x)$ for every $x \in E$. We also denote by $H(E, F)$ the space of all holomorphic functions from E into F . When $F = \mathbb{C}$ we denote $P(^n E) := P(^n E, \mathbb{C})$ and $H(E) := H(E, \mathbb{C})$. We refer to [10] or [5] for the properties of polynomials and holomorphic functions in infinite dimensional spaces.

Let $(y_i) \subset E$ be a sequence in E and consider a formal series $y = \sum_{i=1}^{\infty} y_i$. For m, n integers positive numbers with $0 = m < n$, we define $q^n(y) := \sum_{i=1}^n y_i$ and $q_m^n(y) := \sum_{i=m+1}^n y_i$. Let (P_n) be a sequence

of n -homogeneous polynomials $n \geq 1$, and a sequence $m_1 < m_2 < m_3 < \dots$ of integers positive. Then by Leibniz formula [10, thm 1.8]

$$\begin{aligned} \|P_n(q^n(y))\| &= \left\| \sum_{j=0}^n \frac{n!}{j!(n-j)!} \overset{\vee}{P}_n(q^{m_1}(y))^j (q_{m_1}^n(y))^{n-j} \right\| \\ &\leq (n+1) \frac{n!}{j_{n,m_1}!(n-j_{n,m_1})!} \left\| \overset{\vee}{P}_n(q^{m_1}(y))^{j_{n,m_1}} (q_{m_1}^n(y))^{n-j_{n,m_1}} \right\| \end{aligned}$$

For some $j_{n,m_1} \in \mathbb{N}$ with $0 \leq j_{n,m_1} \leq n$, again using the Leibniz formula

$$\begin{aligned} &\frac{n!}{j_{n,m_1}!(n-j_{n,m_1})!} \left\| \overset{\vee}{P}_n(q^{m_1}(y))^{j_{n,m_1}} (q_{m_1}^n(y))^{n-j_{n,m_1}} \right\| = \\ &= (n+1) \frac{n!}{j_{n,m_1}!(n-j_{n,m_1})!} \left\| \sum_{j=0}^{n-j_{n,m_1}} \frac{(n-j_{n,m_1})!}{j(n-j_{n,m_1}-j)!} \overset{\vee}{P}_n \left((q^{m_1}(y))^{j_{n,m_1}} (q_{m_1}^{m_2}(y))^j (q_{m_2}^n(y))^{n-j_{n,m_1}-j} \right) \right\| \\ &\leq (n+1)(n-j_{n,m_1}+1) \frac{n!}{j_{n,m_1}!j_{n,m_2}!(n-j_{n,m_1}-j_{n,m_2})!} \times \\ &\quad \times \left\| \overset{\vee}{P}_n(q^{m_1}(y))^{j_{n,m_1}} (q_{m_1}^{m_2}(y))^{j_{n,m_2}} (q_{m_2}^n(y))^{n-j_{n,m_1}-j_{n,m_2}} \right\| \\ &= (d_{n,0}+1)(d_{n,1}+1) \frac{n!}{j_{n,m_1}!j_{n,m_2}!d_{n,2}!} \left\| \overset{\vee}{P}_n \left((q^{m_1}(y))^{j_{n,m_1}} (q_{m_1}^{m_2}(y))^{j_{n,m_2}} (q_{m_2}^n(y))^{d_{n,2}} \right) \right\| \end{aligned}$$

where $d_{n,0} := n$, e $d_{n,1} := n - j_{n,m_1}$, e $d_{n,2} := n - j_{n,m_1} - j_{n,m_2}$. Proceeding inductively we obtain

$$\|P_n(q^n(y))\| \leq \prod_{s=0}^r (d_{n,s}+1) \frac{n!}{\prod_{s=1}^r j_{n,m_s}!d_{n,k}!} \left\| \overset{\vee}{P}_n \left(\prod_{s=1}^k (q_{m_{s-1}}^{m_s}(y))^{j_{n,m_s}} \cdot (q_{m_k}^n(y))^{d_{n,k}} \right) \right\|$$

where $0 \leq \sum_{s=1}^r j_{n,m_s} \leq n$, e $d_{n,r} = n - \sum_{s=0}^r j_{n,m_s}$; ($m_0 = 0$; $j_{n,m_0} := 0$). And by the inequalities of Cauchy we also have

$$\begin{aligned} \|P_n(q^n(y))\| &\leq \prod_{s=0}^k (d_{n,s}+1) \frac{n!}{\prod_{s=1}^k j_{n,m_s}!d_{n,k}!} \left\| \overset{\vee}{P}_n \left(\prod_{s=1}^k (q_{m_{s-1}}^{m_s}(y))^{j_{n,m_s}} \cdot (q_{m_k}^n(y))^{d_{n,k}} \right) \right\| \\ &\leq \prod_{s=0}^k (d_{n,s}+1) \sup_{|\theta_s|=1} \left\| P_n \left(\sum_{s=1}^k \theta_s q_{m_{s-1}}^{m_s}(y) + \theta_{k+1} \cdot (q_{m_k}^n(y)) \right) \right\| \end{aligned}$$

These inequalities will be used extensively in this article without further commentaries.

Let $H_{bk}(E, F)$ be the space of the entire functions which are bounded in weakly compact sets of E , and $H_b(E, F)$ the space of the entire functions which are bounded in the bounded sets of E . The following result is well known [6].

Lemma 2.1. *Let (P_n) be a sequence of n -homogeneous polynomials from E into F . Then*

- (1) $f = \sum_n P_n \in H(E, F)$ if and only if for every compact subset $K \subset E$ we have $\limsup_n \|P_n\|_K^{1/n} = 0$.
- (2) $f \in H_{bk}(E, F)$ if and only if for every weakly compact subset $W \subset E$, we have $\limsup_n \|P_n\|_W^{1/n} = 0$.
- (3) $f = \sum_n P_n \in H_b(E, F)$ if and only if $\limsup_n \|P_n\|_{S(E)}^{1/n} = 0$.

Lemma 2.2. *Let $(P_n)_{n \geq 1}$ be a sequence of d_n -homogeneous polynomials from E into F with $d_n \leq n$ for every n , such that for every weakly compact subset $W \subset E$ the $\limsup_n \|P_n\|_W^{1/n} = 0$. Let*

- (1) $(j_{n,1}), (j_{n,2}), \dots, (j_{n,i}) \subset \mathbb{N}$ be sequences such that $0 \leq \sum_{k=1}^i j_{n,k} \leq d_n$ for every $n \in \mathbb{N}$,
- (2) $(y_{n,1}), (y_{n,2}), \dots, (y_{n,i}) \subset E$ be sequences weakly convergent to $y_k \in E$, $k = 1, 2, \dots, i$,

(3) (Q_n) be a sequence of homogeneous polynomials with degree $\deg(Q_n) := d_{n,i} := d_n - \sum_{k=0}^i j_{n,k}$ ($j_{n,0} := 0$) defined by

$$Q_n(x) = \prod_{k=0}^i (d_{n,k} + 1) \frac{d_n!}{\prod_{k=1}^i j_{n,k}! \cdot d_{n,i}!} P_n \left(\prod_{k=1}^i (y_{n,k} - y_k)^{j_{n,k}} x^{d_{n,i}} \right)$$

Then for every weakly compact set $W \subset E$ we have that $\limsup \|Q_n\|_W^{1/n} = 0$.

Proof. Let $W \subset E$ a weakly compact set. Using the theorem of Eberlein Smulian it is not difficult to verify that the subset

$$\Theta \otimes W = \left\{ \sum_{k=1}^i \theta_k (y_{n,k} - y_k) + \theta_{i+1} x : n \geq 1, |\theta_k| = 1, k = 1, 2, \dots, i+1, x \in W \right\}$$

is relatively weakly compact. Let $x \in W$ arbitrary. We observe that $d_{n,k} \leq n$ implies $(d_{n,k} + 1)^{1/n} \leq (d_n + 1)^{1/n}$ and by the inequalities of Cauchy we have that

$$\begin{aligned} \|Q_n(x)\|^{1/n} &= \prod_{k=0}^i (d_{n,k} + 1)^{1/n} \left\| \frac{d_n!}{\prod_{k=1}^i j_{n,k}! \cdot d_{n,i}!} P_n \left(\prod_{k=1}^i (y_{n,k} - y_k)^{j_{n,k}} x^{d_{n,i}} \right) \right\|^{1/n} \\ &\leq (d_n + 1)^{i/n} \sup_{|\theta_k|=1} \left\| P_n \left(\sum_{k=1}^i \theta_k (y_{n,k} - y_k) + \theta_{i+1} x \right) \right\|^{1/n} \\ &\leq (d_n + 1)^{i/n} \|P_n\|_{\Theta \otimes W}^{1/n} \leq (d_n + 1)^{i/n} \|P_n\|_{\Theta \otimes W}^{1/n} \end{aligned}$$

where $\overline{\Theta \otimes W}$ is a the closure of $\Theta \otimes W$ in the weak topology of E . Being that $x \in W$ arbitrary it follows that $\|Q_n\|_W^{1/n} \leq (d_n + 1)^{i/n} \|P_n\|_{\Theta \otimes W}^{1/n}$. By hypothesis we have $\limsup_n \|P_n\|_{\Theta \otimes W}^{1/n} = 0$. The affirmation follows. \square

3. THE MAIN RESULT AND CONSEQUENCES.

In 1983 Dineen showed that if $E = c_0$, the space of the null sequences, then

$$H_{b_k}(c_0) = H_b(c_0)$$

We will extend this result of Dineen, obtained for c_0 , for Banach spaces with the U property and contains no subspace isomorphic to l_1 . Firstly, we remember that a series $\sum_{i=1}^{\infty} y_i$ is called weakly unconditional Cauchy (wuC) if for every $\rho \in E'$ we have $\sum_{i=1}^{\infty} |\rho(x_i)| < \infty$. If the series $\sum_{i=1}^{\infty} y_i$ is wuC then for every increasing sequences of integer positive $(n_k), (m_k)$ with $m_k < n_k$ the sequence $(\sum_{i=m_k}^{n_k} y_i)_k$ weakly converges to zero. Also, if (α_i) is a sequence of scalars with the $\lim \alpha_k = 0$ then $\sum_{k=1}^{\infty} \alpha_k y_k$ converges unconditionally in norm (to see [9],[3]).

A Banach space E has U property if for every weak Cauchy sequence $(x_n) \subset E$ there exists a series wuC , $\sum y_i$, so that a sequence $(x_n - \sum_{i=1}^n y_i)_{n \geq 1}$ converges to zero in a weak topology. This property was introduced by Pełczyński in [12].

Lemma 3.1. *Let (P_n) be a sequence of d_n -homogeneous polynomials from E into F , with $d_n \leq n$ for every n and $\sum_{i \geq 1} y_i$ a serie wuC ; such that for every weakly compact set $W \subset E$ the $\limsup_n \|P_n\|_W^{1/n} = 0$, and*

$$\limsup_n \left\| P_n \left(\sum_{s=1}^n y_s \right) \right\|^{1/n} > 2\rho > 0$$

Then, there exist a positive integer m and a sequence $(j_{n,m})_{n \geq 1} \subset \mathbb{N}$ with $0 \leq j_{n,m} \leq d_n$ for every n , such that

i)

$$\rho \leq (d_n + 1)^{1/n} \left(\left(\frac{d_n}{j_{n,m}} \right) \left\| \overset{\vee}{P}_n \left(\sum_{s=1}^m y_s \right)^{j_{n,m}} \left(\sum_{s=m+1}^n y_s \right)^{d_n - j_{n,m}} \right\| \right)^{1/n}$$

ii)

$$0 < \liminf_n \frac{j_{n,m}}{n} < 1.$$

Proof. Taking a subsequence of (P_n) if it is necessary we can suppose that $\|P_n(\sum_{i=1}^n y_i)\| > \rho$ for every $n \geq 1$. For each $m \in \mathbb{N}$ we have

$$(1) \quad \rho \leq \left\| P_n \left(\sum_{s=1}^n y_s \right) \right\| \leq (d_n + 1) \frac{d_n!}{j_{n,m}! (d_n - j_{n,m})!} \left\| \overset{\vee}{P}_n \left(\sum_{s=1}^m y_s \right)^{j_{n,m}} \left(\sum_{s=m+1}^n y_s \right)^{d_n - j_{n,m}} \right\|$$

for some $j_{n,m} \in \mathbb{N}$ with $0 \leq j_{n,m} \leq d_n$. We will show that there exists an m such that

$$(2) \quad 0 < \liminf_n \frac{j_{n,m}}{n}.$$

Fact: If $\liminf_n \frac{j_{n,m}}{n} = 0$ for every m , then given m there exist $n_m > m$ such that

$$\frac{j_{n_m, m}}{n_m} < \frac{1}{m}$$

Let

$$\alpha_m = \begin{cases} e^{-\sqrt{\frac{n_m}{j_{n_m, m}}}} & \text{if } j_{n_m, m} \neq 0 \\ 1/m & \text{if } j_{n_m, m} = 0 \end{cases}$$

then $\lim \alpha_m = 0$, and $\lim_m (\alpha_m)^{\frac{j_{n_m, m}}{n_m}} = \lim_m e^{-\sqrt{\frac{j_{n_m, m}}{n_m}}} = 1$.

Since the sequence $(\sum_{s=m+1}^n y_s)_m$ converges weakly to zero and $\lim_m \alpha_m (\sum_{i=1}^m y_i) = 0$, the lemma 2.2 implies that

$$\limsup (d_{n_m} + 1)^{\frac{1}{n_m}} \left(\frac{d_{n_m}!}{j_{n_m, m}! (d_{n_m} - j_{n_m, m})!} \left\| \overset{\vee}{P}_{n_m} \left(\alpha_m \sum_{s=1}^m y_s \right)^{j_{n_m, m}} \left(\sum_{s=m+1}^{n_m} y_s \right)^{d_{n_m} - j_{n_m, m}} \right\| \right)^{\frac{1}{n_m}} = 0$$

On the other hand, by the inequality 1 we have that

$$\begin{aligned} & (d_{n_m} + 1)^{\frac{1}{n_m}} \left(\frac{d_{n_m}!}{j_{n_m, m}! (d_{n_m} - j_{n_m, m})!} \left\| \overset{\vee}{P}_{n_m} \left(\alpha_m \sum_{s=1}^m y_s \right)^{j_{n_m, m}} \left(\sum_{s=m+1}^{n_m} y_s \right)^{d_{n_m} - j_{n_m, m}} \right\| \right)^{\frac{1}{n_m}} \\ &= (\alpha_m)^{\frac{j_{n_m, m}}{n_m}} (d_{n_m} + 1)^{\frac{1}{n_m}} \left(\frac{d_{n_m}!}{j_{n_m, m}! (d_{n_m} - j_{n_m, m})!} \left\| \overset{\vee}{P}_{n_m} \left(\sum_{s=1}^m y_s \right)^{j_{n_m, m}} \left(\sum_{s=m+1}^{n_m} y_s \right)^{d_{n_m} - j_{n_m, m}} \right\| \right)^{\frac{1}{n_m}} \\ &\geq (\alpha_m)^{\frac{j_{n_m, m}}{n_m}} \rho \end{aligned}$$

and $\limsup_m (\alpha_m)^{\frac{j_{n_m, m}}{n_m}} \rho = \rho > 0$. It is a contradiction.

We fix m_1 , satisfying the inequality 2. We will show that $\liminf_n \frac{j_{n, m_1}}{n} < 1$. The fact, if $\liminf_n \frac{j_{n, m_1}}{n} = 1$ then given p there exists n_p such that

$$1 - \frac{1}{p} < \frac{j_{n_p, m_1}}{n_p}$$

Therefore $0 \leq \lim_p \frac{d_{n_p} - j_{n_p, m_1}}{n_p} \leq \lim_p \frac{n_p - j_{n_p, m_1}}{n_p} = \lim_p \left(1 - \frac{j_{n_p, m_1}}{n_p}\right) = 0$. Let

$$\alpha_p := \begin{cases} e^{-\sqrt{\frac{n_p}{d_{n_p} - j_{n_p, m_1}}}} & \text{if } d_{n_p} - j_{n_p, m_1} \neq 0 \\ 1/p & \text{if } d_{n_p} - j_{n_p, m_1} = 0 \end{cases}$$

then $\lim_p \alpha_p = 0$ and $\lim_p \frac{\alpha_p}{n_p} = 1$. Now we have $\lim_p \alpha_p (\sum_{s=m_1+1}^{n_p} y_s) = 0$ and as $\sum_{s=1}^{m_1} y_s$ is a fixed vector of E , the lemma 2.2 implies that

$$\limsup_p (d_{n_p} + 1)^{\frac{1}{n_p}} \left(\frac{d_{n_p}!}{j_{n_p, m_1}! (d_{n_p} - j_{n_p, m_1})!} \left\| \frac{\vee}{P_{n_p}} \left(\sum_{s=1}^{m_1} y_s \right)^{j_{n_p, m_1}} \left(\alpha_p \sum_{s=m_1+1}^{n_p} y_s \right)^{d_{n_p} - j_{n_p, m_1}} \right\| \right)^{\frac{1}{n_p}} = 0.$$

On the other hand

$$\begin{aligned} & (d_{n_p} + 1)^{\frac{1}{n_p}} \left(\frac{d_{n_p}!}{j_{n_p, m_1}! (d_{n_p} - j_{n_p, m_1})!} \left\| \frac{\vee}{P_{n_p}} \left(\sum_{s=1}^{m_1} y_s \right)^{j_{n_p, m_1}} \left(\alpha_p \sum_{s=m_1+1}^{n_p} y_s \right)^{d_{n_p} - j_{n_p, m_1}} \right\| \right)^{\frac{1}{n_p}} \\ &= \alpha_p^{\frac{d_{n_p} - j_{n_p, m_1}}{n_p}} (d_{n_p} + 1)^{\frac{1}{n_p}} \left(\frac{d_{n_p}!}{j_{n_p, m_1}! (d_{n_p} - j_{n_p, m_1})!} \left\| \frac{\vee}{P_{n_p}} \left(\sum_{s=1}^{m_1} y_i \right)^{j_{n_p, m_1}} \left(\sum_{s=m_1+1}^{n_p} y_s \right)^{d_{n_p} - j_{n_p, m_1}} \right\| \right)^{\frac{1}{n_p}} \\ &\geq \alpha_p^{\frac{d_{n_p} - j_{n_p, m_1}}{n_p}} \rho \end{aligned}$$

and $\limsup_p \alpha_p^{\frac{d_{n_p} - j_{n_p, m_1}}{n_p}} \rho = \rho$. It is a contradiction. \square

Lemma 3.2. *Let E be a Banach space and (P_n) be a sequence of polynomials from E into F , with $n = \deg(P_n)$. If for every weakly compact subset $W \subset E$ the $\limsup \|\mathcal{P}_n\|_W^{1/n} = 0$; then for every weakly unconditional Cauchy series $\sum y_i$, we have*

$$\limsup_n \left\| P_n \left(\sum_{s=1}^n y_s \right) \right\|^{1/n} = 0.$$

Proof. The proof will be made constructing subsequences $(P_{n_{i_k(i)}})$ ($k = 1, 2, \dots$) of the sequence of polynomials (P_n) , satisfying certain properties. We will use these properties and the diagonalization process, taking the sequence $(P_{n_{i_k(i)}})$, in order to obtain a contradiction.

We suppose that $\limsup_n \|\mathcal{P}_n(\sum_{i=1}^n y_i)\|^{1/n} = 2\rho > 0$. Then, taking a subsequence of (P_n) if it is necessary we can suppose that

$$\left\| P_n \left(\sum_{s=1}^n y_s \right) \right\| > \rho$$

for every $n \geq 1$.

The process that follows is, in essence, the same established by Dineen in [6]: Since $\lim_n n / (\ln(n+1)) = +\infty$, then given $i \in \mathbb{N}$ there exists a $n_i \geq i$ such that $n_i / (\ln(n_i+1)) \geq i$. Where we obtain $1 / (n_i+1) \geq 1/e^{n_i/i}$ and therefore

$$(3) \quad \frac{1}{(n_i+1)^{i/n_i}} \geq \frac{1}{e}$$

we observe that if $d_{i-1} < d_{i-1} < \dots < d_i < n_i = d_0$ and $i < n_i$, then $\prod_{s=0}^{i-1} (d_s + 1) \leq (n_i + 1)^i$. Therefore

$$(4) \quad \frac{1}{\prod_{s=0}^i (d_s + 1)^{i/n_i}} \geq \frac{1}{(n_i + 1)^{i/n_i}} \geq \frac{1}{e}$$

and

$$\left\| P_{n_t} \left(\sum_{s=1}^{n_t} y_s \right) \right\| \geq \rho$$

We will show the existence of:

- i) A sequence $(m_i)_{i \geq 1}$ of strictly increasing integer numbers,
- ii) Strictly increasing sequences $(i_k(t))_t$, $(k = 1, 2, \dots)$ with $(i_{k+1}(t)) \subset (i_k(t))$ and $i_k(k) \geq k$;
- iii) Sequences $(j_{n_{i_k(t)}, m_k})_t$ of integer numbers, $(k = 1, 2, \dots)$ such that

$$\begin{aligned} 0 &\leq \sum_{s=1}^k j_{n_{i_k(t)}, m_s} \leq n_{i_k(t)}, \quad \forall k \geq 1 \\ 0 &< \lim_t \frac{j_{n_{i_k(t)}, m_k}}{n_{i_k(t)}} = \delta_k < 1 \quad \forall k \\ \frac{j_{n_{i_k(t)}, m_k}}{n_{i_k(t)}} &< 2\delta_s \quad \forall k \geq s; \forall t \end{aligned}$$

and

iv)

$$\rho < \prod_{s=0}^k \left(d_{n_{i_k(t)}, m_s} + 1 \right)^{\frac{1}{n_{i_{k+1}(t)}}} \times \left(\frac{n_{i_{k+1}(t)}!}{\prod_{s=1}^{k+1} j_{n_{i_{k+1}(t)}, m_s}! d_{n_{i_{k+1}(t)}, m_{k+1}}!} \left\| P_{n_{i_{k+1}(t)}} \prod_{s=1}^{k+1} \left(q_{m_{s-1}}^{m_s} (y) \right)^{j_{n_{i_{k+1}(t)}, m_s}} \left(q_{m_{k+1}}^{n_{i_{k+1}(t)}} (y) \right)^{d_{n_{i_{k+1}(t)}, m_{k+1}}} \right\| \right)^{\frac{1}{n_{i_{k+1}(t)}}}$$

where

$$d_{n_{i_{k+1}(t)}, m_{k+1}} := n_{i_{k+1}(t)} - \sum_{s=1}^{k+1} j_{n_{i_{k+1}(t)}, m_s}$$

The proof will be made by induction in k . By the lemma 3.1 there exists a positive integer m_1 so that $0 < \delta_1 := \liminf_n j_{n, m_1} / n < 1$ and

$$\rho < (n+1) \frac{n!}{j_{n, m_1}! (n - j_{n, m_1})!} \left\| P_n \left(\sum_{s=1}^{m_1} y_s \right)^{j_{n, m_1}} \left(\sum_{s=m_1+1}^n y_s \right)^{n - j_{n, m_1}} \right\|$$

We choose a sequence $(i_1(t))_t$ strictly increasing, such that

$$\begin{aligned} \lim_t \frac{j_{n_{i_1(t)}, m_1}}{n_{i_1(t)}} &= \delta_1 \\ \frac{j_{n_{i_1(t)}, m_1}}{n_{i_1(t)}} &< 2\delta_1, \forall t \end{aligned}$$

Thus for $k = 1$, the claim is true. We suppose the existence of the sequences $(i_s(t))$, $(j_{i_s(t), m_s})$ and the integer m_s , for $s = 1, 2, \dots, k+1$, satisfying conditions i), ii), iii) and iv) we will show the existence of a integer m_{k+2} and the sequences $(i_{k+2}(t))$, $(j_{i_{k+2}(t), m_{k+2}})$. We consider the polynomial $Q_{d_{n_{i_{k+1}(t)}, m_{k+1}}} : E \rightarrow F$ defined by

$$\begin{aligned} Q_{d_{n_{i_{k+1}(t)}, m_{k+1}}}(x) &:= \prod_{s=0}^{k+1} \left(d_{n_{i_{k+1}(t)}, m_s} + 1 \right) \times \\ &\quad \frac{n_{i_{k+1}(t)}!}{\prod_{s=1}^{k+1} j_{n_{i_{k+1}(t)}, m_s}! d_{n_{i_{k+1}(t)}, m_{k+1}}!} \left\| P_{n_{i_{k+1}(t)}} \prod_{s=1}^{k+1} \left(q_{m_{s-1}}^{m_s} (y) \right)^{j_{n_{i_{k+1}(t)}, m_s}} (x)^{d_{n_{i_{k+1}(t)}, m_{k+1}}} \right\| \end{aligned}$$

We have that $\deg Q_{d_{n_{i_{k+1}(t)}, m_{k+1}}} = d_{n_{i_{k+1}(t)}, m_{k+1}} \leq n_{i_{k+1}(t)}$ for every t and being $q_{m_{s-1}}^{m_s}(y)$, $s = 1, \dots, k+1$ fixed vectors then lemma 2.2 implies that for every weakly compact subset $W \subset E$ we have

$$\limsup_t \|Q_{d_{n_{i_{k+1}(t)}, m_{k+1}}}\|_W^{1/n_{i_{k+1}(t)}} = 0$$

Since $\sum_{s=m_{k+1}+1}^{\infty} y_s$ is wuC , lemma 3.1 implies then that there exist a integer positive number $m_{k+2} > m_{k+1}$, a sequence $(j_{n_{i_{k+1}(t)}, m_{k+2}})$ with $0 \leq j_{n_{i_{k+1}(t)}, m_{k+2}} \leq d_{n_{i_{k+1}(t)}, m_{k+1}}$ for every t , such that

$$0 < \liminf_t \frac{j_{n_{i_{k+1}(t)}, m_{k+2}}}{n_{i_{k+1}(t)}} = \delta_{k+2} < 1$$

and

$$\begin{aligned} \rho &< \prod_{s=0}^k \left(d_{n_{i_{k+1}(t)}, m_s} + 1 \right)^{\frac{1}{n_{i_{k+1}(t)}}} \times \left(d_{n_{k+1}(t), m_{k+1}} + 1 \right)^{\frac{1}{n_{i_{k+1}(t)}}} \\ &\quad \left(\frac{n_{i_{k+1}(t)}!}{\prod_{s=1}^k j_{n_{i_{k+1}(t)}, m_s}! d_{n_{i_{k+1}(t)}, m_{k+1}}!} \frac{d_{n_{i_{k+1}(t)}, m_{k+1}}!}{(d_{n_{i_{k+1}(t)}, m_{k+1}} - j_{n_{i_{k+1}(t)}, m_{k+2}})! j_{n_{i_{k+1}(t)}, m_{k+2}}!} \right)^{\frac{1}{n_{i_{k+1}(t)}}} \times \\ &\quad \left\| \left(\sum_{P_{n_{i_{k+1}(t)}}} \prod_{s=1}^{k+2} \left(q_{m_{s-1}}^{m_s}(y) \right)^{j_{n_{i_{k+1}(t)}, m_s}} \left(q_{m_{k+2}}^{n_{i_{k+1}(t)}}(y) \right)^{d_{n_{i_{k+1}(t)}, m_{k+1}} - j_{n_{i_{k+1}(t)}, m_{k+2}}} \right) \right\|^{\frac{1}{n_{i_{k+1}(t)}}} \\ &= \prod_{s=0}^{k+1} \left(d_{n_{i_{k+1}(t)}, m_s} + 1 \right)^{\frac{1}{n_{i_{k+1}(t)}}} \times \\ &\quad \left(\frac{n_{i_{k+1}(t)}!}{\prod_{s=1}^{k+2} j_{n_{i_{k+1}(t)}, m_s}!} \frac{1}{(d_{n_{i_{k+1}(t)}, m_{k+1}} - j_{n_{i_{k+1}(t)}, m_{k+2}})!} \right)^{\frac{1}{n_{i_{k+1}(t)}}} \\ &\quad \left\| \left(\sum_{P_{n_{i_{k+1}(t)}}} \prod_{s=1}^{k+2} \left(q_{m_{s-1}}^{m_s}(y) \right)^{j_{n_{i_{k+1}(t)}, m_s}} \left(q_{m_{k+2}}^{n_{i_{k+1}(t)}}(y) \right)^{d_{n_{i_{k+1}(t)}, m_{k+1}} - j_{n_{i_{k+1}(t)}, m_{k+2}}} \right) \right\|^{\frac{1}{n_{i_{k+1}(t)}}} \end{aligned}$$

We choose a subsequence $(i_{k+2}(t))$ of $(i_{k+1}(t))$ such that,

$$\begin{aligned} i_{k+2}(k+2) &\geq k+2 \\ \lim_t \frac{j_{n_{i_{k+2}(t)}, m_{k+2}}}{n_{i_{k+2}(t)}} &= \liminf_t \frac{j_{n_{i_{k+1}(t)}, m_{k+2}}}{n_{i_{k+1}(t)}} = \delta_{k+2} \\ \frac{j_{n_{i_{k+2}(t)}, m_{k+2}}}{n_{i_{k+2}(t)}} &< 2\delta_{k+2} \quad \forall k \geq s, \forall t \end{aligned}$$

and we define $d_{n_{i_{k+2}(t)}, m_{k+2}} := d_{n_{i_{k+1}(t)}, m_{k+1}} - j_{n_{i_{k+1}(t)}, m_{k+2}}$. The affirmation is shown.

We observe that given $(i_k(t)) \subset (i_s(t))$ for $k \geq s$ then

$$\begin{aligned} \lim_t \frac{j_{n_{i_k(t)}, m_s}}{n_{i_k(t)}} &= \lim_t \frac{j_{n_s(t), m_s}}{n_{i_s(t)}} = \delta_s \\ \frac{j_{n_{i_k(t)}, m_s}}{n_{i_k(t)}} &< 2\delta_s \quad \forall k \geq s, \forall t \end{aligned}$$

Now, we will show that the sequence (δ_k) is absolutely summing, in fact, since $0 \leq \sum_{s=1}^r j_{n_{i_k(t)}, m_s} \leq n_{i_k(t)}$ for every t , and $k \geq r$; then we have that

$$\sum_{s=1}^r \delta_s = \sum_{s=1}^r \lim_t \frac{j_{n_{i_k(t)}, m_s}}{n_{i_k(t)}} = \lim_t \sum_{s=1}^r \frac{j_{n_{i_k(t)}, m_s}}{n_{i_k(t)}} \leq 1$$

Hence $\sum_{i=1}^r \delta_i \leq 1$. Given r arbitrary, we obtain that $\sum_{k=1}^{\infty} \delta_k \leq 1$.

Let $(\alpha_i) \in c_0$ such that

$$(5) \quad \prod_{i=1}^{\infty} \alpha_i^{\delta_i} = 2$$

Since $\frac{j_{n_{i_k(k)}, m_s}}{n_{i_k(k)}} < 2\delta_s$, for every $k \geq s$, then

$$\frac{\prod_{s=1}^k \alpha_s^{\frac{j_{n_{i_k(k)}, m_s}}{n_{i_k(k)}}}}{\prod_{s=1}^k \alpha_s^{2\delta_s}} > \prod_{s=1}^k \alpha_s^{2\delta_s}$$

and therefore

$$\begin{aligned} & \left(\frac{n_{i_k(k)}!}{\prod_{s=1}^k j_{n_{i_k(k)}, m_s}! d_{n_{i_k(k)}, m_k}!} \left\| P_{n_{i_k(k)}} \prod_{s=1}^k \left(\alpha_s q_{m_{s-1}}^{m_s} (y) \right)^{j_{n_{i_k(k)}, m_s}} \left(q_{m_k}^{n_{i_k(k)}} (y) \right)^{d_{n_{i_k(k)}, m_k}} \right\| \right)^{\frac{1}{n_{i_k(k)}}} \\ &= \prod_{s=1}^k \alpha_s^{\frac{j_{n_{i_k(k)}, m_s}}{n_{i_k(k)}}} \left(\frac{n_{i_k(k)}!}{\prod_{s=1}^k j_{n_{i_k(k)}, m_s}! d_{n_{i_k(k)}, m_k}!} \left\| P_{n_{i_k(k)}} \prod_{s=1}^k \left(q_{m_{s-1}}^{m_s} (y) \right)^{j_{n_{i_k(k)}, m_s}} \left(q_{m_k}^{n_{i_k(k)}} (y) \right)^{d_{n_{i_k(k)}, m_k}} \right\| \right)^{\frac{1}{n_{i_k(k)}}} \\ &\geq \prod_{s=1}^k \alpha_s^{2\delta_s} \frac{\rho}{\prod_{s=0}^{k-1} (d_{n_{i_k(k)}, m_s} + 1)^{1/n_{i_k(k)}}} \\ &\geq \frac{\rho}{e} \prod_{s=1}^k \alpha_s^{2\delta_s}. \end{aligned}$$

and $\lim \frac{\rho}{e} \prod_{s=1}^k \alpha_s^{2\delta_s} = 4\rho/e$.

On the other hand, the set

$$W = \left\{ \alpha_1 \theta_1 q^{m_1} (y) + \alpha_2 \theta_2 q^{m_2} (y) + \dots + \alpha_k \theta_k q^{m_k} (y) + \theta_{k+1} \cdot q_{m_k}^{n_{i_k(k)}} (y) : |\theta_i| = 1, k \geq 1 \right\}$$

is relatively weakly compact, since the series

$$\alpha_1 \left(\sum_{k=1}^{m_1} y_i \right) + \alpha_2 \left(\sum_{k=m_1+1}^{m_2} y_i \right) + \dots + \alpha_k \left(\sum_{k=m_{k-1}+1}^{m_k} y_i \right) + \dots$$

is unconditionally convergent in norm and the sequence $\left(q_{m_k}^{n_{i_k(k)}} (y) \right)_k = \left(\sum_{s=m_k+1}^{n_{i_k(k)}} y_s \right)_k$ converges weakly to zero. Thus

$$\begin{aligned} & \left(\frac{n_{i_k(k)}!}{\prod_{s=1}^k j_{n_{i_k(k)}, m_s}! d_{n_{i_k(k)}, m_k}!} \left\| P_{n_{i_k(k)}} \prod_{s=1}^k \left(\alpha_s q_{m_{s-1}}^{m_s} (y) \right)^{j_{n_{i_k(k)}, m_s}} \left(q_{m_k}^{n_{i_k(k)}} (y) \right)^{d_{n_{i_k(k)}, m_k}} \right\| \right)^{1/n_{i_k(k)}} \\ &\leq \left\| P_{n_{i_k(k)}} \left(\alpha_1 \theta_1 q^{m_1} (y) + \alpha_2 \theta_2 q^{m_2} (y) + \dots + \alpha_k \theta_k q^{m_k} (y) + \theta_{k+1} \cdot q_{m_k}^{n_{i_k(k)}} (y) \right) \right\|^{1/n_{i_k(k)}} \\ &\leq \left\| P_{n_{i_k(k)}} \right\|_{\overline{W}}^{1/n_{i_k(k)}} \end{aligned}$$

where \overline{W} is the closure of W , in the weak topology. By the hypothesis of the lemma we have that $\limsup_k \left\| P_{n_{i_k(k)}} \right\|_{\overline{W}}^{1/n_{i_k(k)}} = 0$. It is a contradiction. \square

The following theorem generalizes the result of Dineen obtained for c_0 .[6]

Theorem 3.3. *Let E be a Banach space. If E has U property and contains no subspace isomorphic to l_1 then*

$$H_{bk}(E, F) = H_b(E, F)$$

Proof. It is obvious that $H_b(E, F) \subset H_{bk}(E, F)$. Let $f = \sum_{n=0}^{\infty} P_n \in H_{bk}(E, F)$. We suppose that $f \notin H_b(E, F)$ then $\limsup \left\| P_n \right\|_{S(E)}^{1/n} = \rho > 0$. Taking subsequences, if it is necessary, we can suppose

that $\|P_n\|_{S(E)}^{1/n} \geq \rho$ for every $n \geq 1$. Therefore, by continuity, there exists a sequence $(x_n) \subset S(E)$, such that

$$\|P_n(x_n)\|^{1/n} > \rho/2$$

or $\left\|P_n\left(\frac{2}{\rho}x_n\right)\right\| > 1$ for every $n \geq 1$. As E contains no subspace isomorphic to l_1 and the sequence $(z_n) := \left(\frac{2}{\rho}x_n\right)$ is bounding, then by the Rosenthal theorem of l_1 , there exists a Cauchy weak subsequence $(z_{n_i}) := \left(\frac{2}{\rho}x_{n_i}\right)$. Since E has a U property then there exists a series weakly unconditional Cauchy $\sum_{k=1}^{\infty} y_k$ such that $(z_{n_i} - \sum_{k=1}^{n_i} y_k)_k$ converges to zero in weak topology. Now, for each n_i we have by the Leibniz formula

$$P_{n_i}(z_{n_i}) = \sum_{j=0}^{n_i} \frac{n_i!}{j!(n_i-j)!} P_{n_i}\left(\left(z_{n_i} - \sum_{k=1}^{n_i} y_k\right)^j \left(\sum_{k=1}^{n_i} y_k\right)^{n_i-j}\right),$$

thus given n_i there exist a j_{n_i} with $0 \leq j_{n_i} \leq n_i$ for every i such that

$$(6) \quad 1 \leq \|P_{n_i}(z_{n_i})\| \leq (n_i + 1) \frac{n_i!}{j_{n_i}!(n_i - j_{n_i})!} \left\| P_{n_i}\left(\left(z_{n_i} - \sum_{k=1}^{n_i} y_k\right)^{j_{n_i}} \left(\sum_{k=1}^{n_i} y_k\right)^{n_i - j_{n_i}}\right) \right\|$$

We will define the polynomial $Q_{n_i} : E \rightarrow F$ making

$$Q_{n_i}(x) = (n_i + 1) \frac{n_i!}{j_{n_i}!(n_i - j_{n_i})!} P_{n_i}\left(\left(z_{n_i} - \sum_{k=1}^{n_i} y_k\right)^{j_{n_i}} (x)^{n_i - j_{n_i}}\right)$$

$i = 1, 2, \dots$ Then by lemma 2.2 we have

$$0 = \limsup_i \|Q_{n_i}\|_W^{1/n_i}$$

for every weakly compact subset $W \subset E$. By lemma 3.2 this implies that

$$\begin{aligned} 0 &= \limsup_i \left\| Q_{n_i} \left(\sum_{k=1}^{n_i} y_k \right) \right\|^{1/n_i} \\ &= \limsup_i \left\| (n_i + 1) \frac{n_i!}{j_{n_i}!(n_i - j_{n_i})!} P_{n_i}\left(\left(z_{n_i} - \sum_{k=1}^{n_i} y_k\right)^{j_{n_i}} \left(\sum_{k=1}^{n_i} y_k\right)^{n_i - j_{n_i}}\right) \right\|^{1/n_i} \end{aligned}$$

and this contradicts 6. \square

We denote $H_w(E, F)$ the space of the entire functions which are weakly continuous in the bounded sets of E ; that means $f \in H_w(E, F)$ if for each bounded set $M \subset E$, the restriction $f|_M$ is weakly continuous. Similarly we define the space $H_{wu}(E, F)$ of the entire functions which are weakly uniformly continuous in the bounded sets of E . Aron, Hervés and Valdivia in [1] raised the following question: Does every weakly continuous function in the bounded sets of E , weakly uniformly continuous? In other word, $H_w(E, F) = H_{wu}(E, F)$ for every Banach space E ? Clearly we have the following inclusion $H_{wu}(E, F) \subset H_w(E, F)$. In [1] it is shown that the equality of these spaces is equivalent to showing the inclusion $H_w(E, F) \subset H_b(E, F)$. Since all weakly continuous functions in the bounded sets of a Banach space is bounded in the weakly compact sets of E , the theorem 3.3 implies that when E is a Banach space with U property contains no subspace isomorphic to l_1 then $H_{wu}(E, F) \subset H_w(E, F)$. Thus for these spaces the l_1 problem has an affirmative answer. The answer is also affirmative for every F subspace of a space with U property, since this property is hereditary. Examples of this space are the spaces with shrinking and unconditional basis([15]) and more generally, all Banach spaces that are a M -ideal in their bidual, since these spaces have the U property [7, Thm. 3.8] and contain no subspace isomorphic to l_1 , because these are Asplund spaces. [7, Thm.3.1]

Let $H_{wsc}(E, F)$ the space of the entire functions which applies weakly convergent sequences of E in convergent sequences of F . Clearly $H_{wu}(E, F) \subset H_w(E, F) \subset H_{wsc}(E, F)$.

Corollary 3.4. *Let E be a Banach space. If E has U property and contains no subspace isomorphic to l_1 then*

$$H_w(E, F) = H_{wsc}(E, F) = H_{wu}(E, F)$$

Proof. By [1, Prop. 3.3] $H_w(E, F) = H_{wsc}(E, F)$ and by the commentary of the theorem 3.3 above $H_w(E, F) = H_{wu}(E, F)$. \square

We will remember that a Banach space E has the Dunford Pettis property and contains no subspace isomorphic to l_1 , if and only if, E' is a Schur space.

Corollary 3.5. *Let E be a Banach space. If E has U property and E' is a Schur space then*

$$H_{wu}(E) = H_w(E) = H_b(E) = H_{bk}(E)$$

Proof. Since E' is Schur then E has the Dunford Pettis property, and contains no subspace isomorphic to l_1 by [11, Prop. 4] we have $H_{bk}(E) = H_w(E)$. Since E has the U property, the theorem 3.3 implies $H_{bk}(E) = H_b(E)$, and by corollary 3.4 $H_w(E) = H_{wu}(E)$. The corollary follows. \square

Examples of spaces that satisfy the conditions of corollary 3.5 are Banach spaces that are a M -ideal in their bi-dual and also some spaces $C(K)$ [4].

REFERENCES

- [1] R.M. Aron, C. Hervés and M. Valdivia, "Weakly continuous mappings on Banach spaces", J. Funct. Anal., 52 (1983), 189-203
- [2] H. Carrión, "Entire functions on Banach spaces with a separable dual", J. Funct. Anal. (2002) 496-514.
- [3] J. Diestel, "Sequences and Series in Banach Spaces", Springer Verlag 1984.
- [4] J. Diestel, "A survey of results related to the Dunford-Pettis property", Contemporary Mathematics, vol 2 (1980) 15-60.
- [5] S. Dineen, "Complex Analysis on Infinite Dimensional Spaces", Springer Verlag, 1999.
- [6] S. Dineen, "Entire functions on c_0 ". Journal of functional Analysis 52, 205-218.1983
- [7] P. Harmand, D. Werner, W. Werner. "M-ideals in Banach Spaces and Banach Algebras", Springer Verlag, 1993.
- [8] W. B. Johnson, J. Lindenstrauss, "Some remarks on weakly compactly generated Banach Spaces" Israel J. Math. 17 (1974) 219-230. Corrigendum. Ibid 32 (1979) 382-383.
- [9] J. Lindenstrauss, L. Tzafiri, "Classical Banach Spaces I" Springer Verlag, New York 1977
- [10] J. Mujica "Complex Analysis in Banach Spaces". North- Holland Mathematics Studies. 120, (1986).
- [11] L.A. Moaress "Weakly continuous holomorphic mappings" Proceedings of the Royal Irish Academy. 97A, -2, (1997) 139-144.
- [12] A. Pełczyński "A connections between weakly unconditional convergence and weak completeness of Banach spaces. " Bull. Acad. Polon. Sci. 6 (1958) 251-253.
- [13] H. Rosenthal. "A characterization of Banach spaces containing c_0 " Journal of the AMS, vol7-2 (1994),707-74X.
- [14] Stegall, C. "Duals of certains spaces with the Dunford-Pettis property", Notices Amer. Math. Soc. 19, (1972) 799.
- [15] I. Singer, "Bases in Banach spaces I", Springer Verlag, 1970.
- [16] M. Valdivia "Some new results on weak compactness" J. Funct. Anal. 24 (1977), 1-10.

TRABALHOS DO DEPARTAMENTO DE MATEMÁTICA

TÍTULOS PUBLICADOS

2007.1 GREBENEV, V. N., GRISHKOV, A. N. and OBERLACK, M. Lie algebra methods in Statistical Theory of Turbulence. 29p.

2007.2 FUTORNY, V. and SERGEICHUK, V. Change of the congruence canonical form of 2×2 and 3×3 matrices under perturbations. 18p.

2007.3 KASHUBA, I. and PATERA, J. Discrete and continuous exponential transforms of simple Lie groups of rank two. 24p.

2007.4 FUTORNY, V. and SERGEICHUK, V. Miniversal deformations of matrices of bilinear forms. 34p.

2007.5 GONÇALVES, D. L., HAYAT, C., MELLO, M.H.P.L. and ZIESCHANG, H. Spin-structures of bundles on surfaces and the fundamental group. 22p.

2007.6 GOODAIRE, E. G. and MILIES, C.P. Polynomial and group identities in alternative loop algebras. 7p.

2007.7 GOODAIRE, E. G. and MILIES, C.P. Group identities on symmetric units in alternative loop algebras. 8p.

2007.8 ALEXANDRINO, M. M. Singular holonomy of singular Riemannian foliations with sections. 16p.

2007.9 ASPERTI, A. C. and VALÉRIO, B. C. Ruled Weingarten surfaces in a 3-dimensional space form. 6p.

2007.10 ASPERTI, A. C. and VILHENA, J. A. M. Spacelike surfaces in \mathbb{L}^4 with prescribed Gauss map and nonzero mean curvature. 22p.

2007.11 GOODAIRE, E. G. and MILIES, C. P. Involutions of RA loops. 13p.

2007.12 FERRAZ, R. A., MILIES, C.P., DEL RIO, Á. and SIMÓN, J. J. Group codes from subgroups. 9p.

2007.13 ALEXANDRINO, M. M. and TÖBEN, D. Equifocality of a singular Riemannian foliation. 10p.

2007.14 WEISS, M. A. A polynomial algorithm for deciding 3-sat. 23p.

2008.1 GRISHKOV, A. N., ZAVARNITSINE, A.V. and GIULIANI, M. L. M. Classification of subalgebras of the Cayley algebra $O(q)$ over a finite field. 17p.

2008.2 GRISHKOV, A. and LOGINOV, E. Some generalizations of groups with triality. 13p.

2008.3 GRISHKOV, A. N. and GUERREIRO, M. On simple Lie algebras of dimension seven over fields of characteristic 2. 16p.

2008.4 GRISHKOV, A. and NAGY, G. P. Algebraic bol loops. 12p.

2008.5 GRISHKOV, A. and CHESTAKOV, I. Commutative Moufang loops and alternative algebras. 15p.

2008.6 CARRION V., H. D. Entire functions on banach spaces with u property. 10p.

Nota: Os títulos publicados nos Relatórios Técnicos dos anos de 1980 a 2006 estão à disposição no Departamento de Matemática do IME-USP.
Cidade Universitária “Armando de Salles Oliveira”
Rua do Matão, 1010 - Cidade Universitária
Caixa Postal 66281 - CEP 05315-970