
A constraint programming model for the flexible job shop scheduling problem
with sequencing flexibility and position based learning effects

Kennedy A. G. Araújo
Departamento de Matemática Aplicada, IME-USP, Universidade de São Paulo

Rua do Matão, 1010, Cidade Universitária, 05508-090 - São Paulo - Brasil
kennedy94@ime.usp.br

Ernesto G. Birgin
Departamento de Ciência da Computação, IME-USP, Universidade de São Paulo

Rua do Matão, 1010, Cidade Universitária, 05508-090 - São Paulo - Brasil
egbirgin@ime.usp.br

Débora P. Ronconi
Departamento de Engenharia de Produção, EPUSP, Universidade de São Paulo

Av. Prof. Almeida Prado, 128, Cidade Universitária, 05508-900, São Paulo SP, Brasil
dronconi@usp.br

ABSTRACT
This paper addresses the flexible job shop scheduling problem with sequencing flexibility

(FJS-SF) and learning effects with the objective of makespan minimization. Mixed integer linear
programming (MILP) and constraint programming (CP) models are proposed to solve the problem
for the position based learning effects. Computational experiments show that CP model is more
efficient than MILP model to solve the problem.

KEYWORDS. Job shop scheduling problem. Constraint Programming. Mixed integer linear
programming.

Mathematical Programming. Combinatorial Optimization

RESUMO
Este trabalho trata do problema do job shop flexível com flexibilidade de sequência e

efeitos de aprendizado com o objetivo de minimizar o makespan. Modelos de programação linear
inteira mista e programação por restrições são propostos para resolver o problema para efeitos de
aprendizado baseado na posição. Experimentos computacionais mostram que o modelo de progra-
mação por restrições é mais eficiente que o modelo de programação linear inteira mista para resolver
o problema.

PALAVRAS CHAVE. Job shop scheduling problem, Programação por Restrições, Progra-
mação linear inteira mista.

Programação Matemática. Otimização Combinatória

https://proceedings.science/p/157453?lang=pt-br

https://proceedings.science/p/157453?lang=pt-br

1. Introduction

The flexible job shop scheduling problem (FJS) is one of the most important and well-
studied scheduling problems with several applications in real-world problems. In FJS we have a
set of jobs and each job consists of a sequence of operations that have to be processed in a known
order. Each operation must be processed without preemption exactly once by one machine from
a given set of machines, not necessarily identical, and requires a processing time to be concluded.
The objective is assigning and scheduling each operation in the available machines minimizing the
maximal completion time, i.e the makespan.

The flexible job shop scheduling problem with sequencing flexibility (FJS-SF) is a variant
of the FJS in which the precedence relations of the operations from the jobs are defined by a directed
acyclic graph (DAG). A job is implicitly defined by a connected component of the DAG. The FJS-
SF have several applications in industry, one of them is the printing industry, where each job may
be represented by an order of printed copies of some object. Some of the orders correspond to a
path-job or a Y-job. Usually, more than one machine may process the operations. Learning effect
consideration may occur in some real-world problems, for example when the processing times arise
from manual operations. Learning effect implies that the processing times are not constant and may
decrease based on a learning function. The FJS-SF with learning effect is NP-hard, since it is also a
generalization of the classical job shop scheduling problem [Pinedo, 2012].

Several authors studied scheduling problems with learning and deteriorating effects. Wang
[2007] studied the single machine scheduling problem with learning and deterioration effects and
analyzed several objective function choices. They prove that for some objective functions and spe-
cial cases the problem can be solved in polynomial time by specific dispatching rules. Biskup
[2008] reviewed works concerning scheduling problems with learning effects along with their im-
portance in practical and theoretical studies. The authors discussed several learning functions and
types of learning in scheduling literature, divided by position and sum of processing time based.
The authors also commented about solution methods and their respective time complexities. Tok-
sarı e Güner [2009] studied the parallel machine scheduling problem considering position based
learning and deterioration effects simultaneously, aiming the weighted sum of earliness and tardi-
ness minimization with common due date. The authors proposed integer programming models for
the problem with linear and nonlinear deterioration, and introduced a modification of the Baker’s
algorithm [Baker e Trietsch, 2013] to solve the problem. The authors compared the computational
results with respect to a proposed lower bound based on the Lagrangian relaxation of the problem.
Yin e Xu [2011] studied single machine scheduling problems with deteriorating and learning effects
aiming at different objective functions, such as makespan minimization, total weighted completion
time minimization. The authors presented a generalized model for the problem and showed that,
for some objective functions, the problem can be polynomially solved by dispatching rules, such as
LPT and SPT. Ruiz-Torres et al. [2013] introduced a novel unrelated parallel machine scheduling
problem with sequence dependent deteriorating effect aiming the makespan minimization. The au-
thors prove that with single machine environment the problem is solved in polynomial time. List
scheduling heuristics and a simulated annealing meta-heuristic are proposed to solve the case with
2 or more machines. Tayebi Araghi et al. [2014] studied the flexible job shop scheduling problem
with sequence-dependent setup, position-based learning effect on setup time and deterioration effect
on processing times with the objective of makespan minimization. The authors proposed a hybrid
metaheuristic combining genetic algorithm and variable neighborhood search. Azzouz et al. [2018]
revised scheduling problems with processing times with learning and deteriorating effects. The au-
thors proposed a new classification scheme for the problems and a new cartography. The problem

https://proceedings.science/p/157453?lang=pt-br

https://proceedings.science/p/157453?lang=pt-br

learning functions can be classified into position based, sum-of-processing time-based, truncated,
exponential, position-based and sum-of-processing time-based simultaneously, and general learning
effects. Future research is suggest, for example the combination of learning effects classes, multi-
criteria objective functions, consideration of dynamic events impact such as breakdown machines
or dynamic arrival of jobs. Computational complexity of general problems remains open. Wang
et al. [2019] treated two variants of permutation flow shop problems with truncated exponential
sum of logarithm processing times based and position-based learning effects with makespan and
total weighted completion time minimization, respectively. The author presented heuristics based
on dispatching rules and an exact branch-and-bound algorithm to solve the problem as well as show
lower bounds for both problems. Liu e Jiang [2020] studied the single machine scheduling problem
under the consideration with job-dependent position based learning effects and resource allocation
simultaneously with common due-date and slack due-date assignment. The authors proved that two
special cases of the problem can be solved in polynomial time reducing them to linear assignment
problems. A heuristic based on solving linear assignment problems and a branch-and-bound al-
gorithm were proposed to solve the general problem. Peng et al. [2021] address a manufacturing
industry flexible job shop scheduling problem considering learning effects with the objectives of
time energy consumption and noise minimization. The author propose a MINLP model. A hybrid
discrete multi-objective imperial competition algorithm is proposed to solve the problem combining
with simulated annealing algorithm to improve the neighborhood search. In the problem sequencing
flexibility is not considered.

There are few researchers which studied the flexible job shop scheduling problem with
consideration of position based learning effects on processing time. To the best of our knowledge,
the consideration of learning effect on processing time and sequence flexibility simultaneously on
the flexible job shop scheduling problem has not been previously studied.

The remainder of this work consists of the following sections. In Section 2 the FJS-
LE is formally defined. In Sections 3 and 4 a mixed integer linear programming model and a
constraint programming model are proposed, respectively. In Section 5 computational experiments
are discussed. In Section 6 final conclusions are commented.

2. The flexible job shop scheduling problem with sequencing flexibility and learning effect
In the FJS-SF we have a set a operations O. Each operation i may be processed in a

machine k from a set of machines Fi. The operations have their precedence relations represented
by a directed acyclic graph (DAG). A job is implicitly defined by a connected component of the
DAG. The objective of the FJS-SF is assigning and scheduling every operation in a machine without
preemption whilst minimizing the makespan. The FJS is NP-hard, since it is a generalization of the
job shop scheduling problem which is proved to be NP-hard Pinedo [2012].

An example of an instance of the FJS-SF is shown as follows. We consider the following
instance has two jobs with 12 operations in total (job 1 with operations 1-6, and job 2 with oper-
ations 7-12), and 3 machines. The precedence constraints are represented in the directed acyclic
graph (DAG) in Figure 1. Normal processing times and machine availability for each operation are
detailed in Table 1.

A solution for the problem, associates for every operation i ∈ O an unique machine
k ∈ Fi on which i is processed without preemption and starting time si. In the FJS-SF with learning
effect on the processing time, the actual processing time may be faster and is calculated by a learning
function that can take several parameters such as learning rate, position on which the operation is
processed in a machine, or sum of processing time that a machine took processing operations before
starting the processing of the current operation. An example of position-based learning function is

https://proceedings.science/p/157453?lang=pt-br

https://proceedings.science/p/157453?lang=pt-br

1 2

3 4 5 6

7 8

9 10

11 12

Figure 1: Representation of job precedence constraints in a directed acyclic graph.

Machines Operations
– 1 2 3 4 5 6 7 8 9 10 11 12
1 10 20 10 – 30 20 – 40 – 10 20 –
2 20 15 – 30 40 – 10 10 40 20 10 –
3 15 5 20 – 10 30 20 – 20 10 – 15

Table 1: Normal processing times for the 12 operations for each of the three machines. If a cell is filled with
“–”, it means that the operation cannot be processed in the machine.

f(α, pik) = rαpik, in which α ≤ 0 stands for the learning rate, the more negative, the faster the
actual processing time is, and r stands for the position in which the operation is processed. Note
that, the processing times may be calculated previously.

3. Mixed integer linear model for the FJS-SF with position-based learning effect
In this section, a MILP model for the FJS-SF with position-based learning effect is pro-

posed. Position-based decision variables is the basis for modeling position-based learning effect
problems since is more natural to express constraints on the processing time change. The MILP
model proposed as follows is based on Birgin et al. [2014]’s model and on the model with position
based variables for scheduling first introduced by Wagner [1959]. Wilson [1989] also used position
based variables for flowshop scheduling problems. The following notation is presented.
Sets:
O: operations,

F : machines,

Ok: operations that can be processed by machine k,

Fi: machines that can process operation i,

A: directed arcs that represent job precedence constraints (a directed acyclic graph),
Parameters:
pik: normal processing time of operation i in machine k,

f(pik, r): position based learning function,
Decision variables:
xikr: 1 if operation i is processed in the r-th position by machine k; 0, otherwise,

si, starting time of operation i,

hkr, starting time of processing the operation associated to the r-th position of machine k,

p′i: actual processing time of operation i,
We present the MILP model for general linear position-based learning functions in Equa-

tions (1)-(14).

https://proceedings.science/p/157453?lang=pt-br

https://proceedings.science/p/157453?lang=pt-br

Minimize Cmax (1)

subject to∑
k∈Fi

|Ok|∑
r=1

xikr = 1, i ∈ O, (2)

∑
i∈Ok

xikr ≤ 1, k ∈ F , r = 1, . . . , |Ok|, (3)

∑
i∈Ok

xi,k,r+1 ≤
∑
i∈Ok

xikr, k ∈ F , r = 1, . . . , |Ok| − 1, (4)

p′i =
∑
k∈Fi

|Ok|∑
r=1

f(pik, r) · xikr, i ∈ O (5)

hkr +
∑
i∈Ok

f(pik, r) · xikr ≤ hk,r+1, k ∈ F , r = 1, . . . , |Ok| − 1, (6)

hkr +
∑
i∈Ok

f(pik, r) · xikr ≤ Cmax, k ∈ F , r == 1, . . . , |Ok|, (7)

si + p′i ≤ sj , ∀(i, j) ∈ A (8)

si + p′i −

2− xikr −
|Ok|∑

r′=r+1

xjkr′

 ·M ≤ sj , ∀i, j ∈ {O|i ̸= j},∀k ∈ Fi ∩ Fj ,

r = 1, . . . , |Ok| − 1, (9)

hkr −M · (1− xikr) ≤ si, i ∈ O, k ∈ Fi, r = 1, . . . , |Ok|, (10)

si −M · (1− xikr) ≤ hkr, i ∈ O, k ∈ Fi, r = 1, . . . , |Ok|, (11)

si ≥ 0, i ∈ O, (12)

hkr ≥ 0, k ∈ Fi, r = 1, . . . , |Ok| (13)

xikr ∈ {0, 1} i ∈ O, k ∈ Fi, r = 1, . . . , |Ok|. (14)

Objective function (1) stands for the makespan. Constraints (2) define that every operation
must be processed by one machine and takes only one position. Constraints (3) impose that a
position of one machine may only be associated to at most one operation. Constraints (4) force that
idle positions, i.e., positions that are not associated to any operation, are at the end of the usage of
the machines. Constraints (5) define the actual processing time of operation i in order to simplify
the model. Constraints (6) force that the operations do not overlap in the machines. Constraints (7)
set that the makespan is greater or equal to the completion time of every operation, combining such
constraints with the function (1) minimization, the makespan is set as the maximum completion time
among the operations. Constraints (8) impose that the precedence constraints among operations in
the DAG is respected. Constraints (9) state that, if both operations i and j were assigned to the same
machine k and operation i precedes operation j, i and j do not overlap. Constraints (10) and (11)
associate starting times of operations to its corresponding position and machine, i.e., if xikr = 1
then si = hkr. Constraints (12) and (14) refer to the decision variables domain. M is a sufficiently
big number and may assume value

∑
i∈O

∑
k∈F pik. Function f(pik, r) is a general function f tha

calculates the actual processing time of operation i in machine k in the r-th position, such function

https://proceedings.science/p/157453?lang=pt-br

https://proceedings.science/p/157453?lang=pt-br

may have additional parameters such as learning rate αi ≤ 0 or truncation parameter 0 < βi < 1
for each operation i.

4. Constraint programming model for the FJS-SF with position-based learning effect
Constraint programming (CP) is well a powerful technique to solve scheduling problems

in the literature. CP optimizer is an optimization commercial solver based on CP and has constraint
and variable concepts that make modeling for scheduling problems easier. In this section, a CP
model that can be used with CP Optimizer is presented. The CP optimizer syntax are defined as
soon as they appear in the formulation. The CP model for the FJS-SF with position-based learning
effect is presented in (15) - (21).

Minimize max
i∈V

endOf(oi) (15)

subject to

endBeforeStart(oi, oj), (i, j) ∈ A, (16)

alternative
(
oi, [aikr]k∈Fi,r=1,...,|Ok|

)
, i ∈ O, (17)

noOverlap
(
[aikr]i∈Ok,r=1,...,|Ok|

)
, k ∈ F , (18)

or([presenceOf(aik,r+1)]i∈Ok
) =⇒ or([presenceOf(aikr])i∈Ok

), k ∈ Fk, r = 1, . . . , |Ok| − 1,
(19)

interval oi, i ∈ O, (20)

interval aikr, opt, size = f(pik, r), i ∈ O, k ∈ Fk, r = 1, . . . , |Ok|.
(21)

Interval decision variables of the problem are described in (20) and (21). In (20), an
interval variable oi for each operation i is defined. In (21), an optional interval variable aikr is
being defined for each possible assignment of operation i to a machine k ∈ Fi and positions r =
1, . . . , |Ok|. Optional means that the interval variable may exist or not; and the remaining of the
constraint says that, in case it exists, its size must be given by f(pik, r). The objective function (15)
is to minimize the makespan, given by the maximum end value of all the operations represented by
the interval variables oi. Precedence constraints between operations are posted as endBeforeStart
constraints between interval variables in constraints (16). Constraints (17) state that each operation
i must be allocated to exactly one machine k ∈ Fi in exactly one position r, that is, one and only
one interval variable aikr must be present and the selected interval aikr will start and end at the same
values as interval oi. Constraints (18) state that, for a machine k, the intervals aikr representing the
assignment of the operations to this machine do not overlap. Constraints (19) force that the absent
position of machine k are the last ones, i.e., that operations are processed in the first positions of the
machines without absent intervals among them.

The CP model can be strengthened by redundant constraints stating that, at any moment
in time, there are never more than m machines being used simultaneously, and that operation asso-
ciated to interval variable aikr ends before operation associated to interval variable aik,r+1 starts.
Such constraints are given by Equations (22) and (23).

∑
i∈O

pulse(oi, 1) ≤ m, (22)

endBeforeStart(aikr, aik,r+1), i ∈ O, k ∈ Fi, r = 1, . . . , |Ok| − 1, (23)

https://proceedings.science/p/157453?lang=pt-br

https://proceedings.science/p/157453?lang=pt-br

Adding redundant constraints reduces the domains of variables at each search node, which
gets to a reduced search space.

5. Computational experiments
In this section, we evaluate the performance of the MILP and CP models proposed in

the previous sections. We carried out the experiments with respect to a set of 50 benchmark in-
stances. The experiments were carried out with an Intel Xeon X5690 3.47 GHz machine with 64
GB of RAM. The MILP and CP models were solved using CPLEX and CP Optimizer solvers,
respectively, with IBM ILOG CPLEX Optimization Studio 22.1 software using default parame-
ters with the concert library and C++ programming language. The code was compiled using the
g++ 10.2.1 compiler. Benchmark instances and detailed experiments are available at https:
//github.com/kennedy94/FJSModels.

The set of benchmark instances was proposed by Birgin et al. [2014] for the FJS-SF with
no learning effect. The first set, named YFJS, contains 20 instances with Y-shaped jobs, and the
second set, named DAFJS, contains 30 instances with general type of jobs. The size of each instance
is detailed in Table 2, where the triple (n, o,m) represents the number of jobs, number of operations
per job, and number of machines, respectively.

In the computational tests, we considered the learning function f(α, pik) = rαpik, where
α and pik stand for the learning rate and normal processing time, respectively. The tests were carried
out with time limit of 3,600 seconds. In Table 2, we present the final duality gap for each instance,
varying the learning rate from α = −0.5 to α = −0.1. The duality gap is given by 100× (best
feasible solution value - best lower bound value) / best feasible solution value . In order to compare
the two models with respect to the same lower bound, we decided to get the CP model best lower
bound value as reference.

In Table 2, "–" states that no feasible solution was found within the time limit. CP model
was able to find feasible solution for every instance with the every tested α value used. Although,
proven optimal solutions were found by CP model only for instance YFJS03, for every α value.
MILP model could not find feasible solutions in 116 test out of 250. Note that the solutions of
instance YFJS03 are not equal,

With respect to the CP model, the average gaps for α ∈ {−0.5,−0.1} with instances of
group YFJS are 63.00, 58.02, 51.13, 41.17, and 31.27, respectively, and with instances of group
DAFJS are 81.72, 75.82, 68.76, 58.83, and 45.48, respectively. On the other hand, with respect to
the MILP model, the average gaps for α ∈ {−0.5,−0.1} with instances of group YFJS are 76.11,
73.62 70.60, 64.55, and 61.95, respectively, and with instances of group DAFJS are 89.44, 87.89,
84.26, 81.23, and 76.36, respectively.

The CP model could find better solutions than MILP model in every test. Figures 2 and 3
shows that, for both models, the lower the learning rate, the harder the problem.

6. Conclusions
This work addressed the flexible job shop problem with sequencing flexibility (FJS-SF)

with position-based learning effects. For the best of authors knowledge, sequencing flexibility and
position-based learning effects were not studied in the flexible job shop environment simultaneously.
We argued that FJS-SF with learning effects is NP-hard, proposed a constraint programming model
and mixed integer linear model to solve the problem.

Computational tests with 50 benchmark instances, with a specific learning function with
different parameter values, suggest that the CP model can find better solutions than MILP model.
The MILP model cannot find feasible solutions for large-sized instances, while CP model found

https://proceedings.science/p/157453?lang=pt-br

https://proceedings.science/p/157453?lang=pt-br

instance
size

(n, o,m)

CP model MILP model
duality gap for α ∈ {−0.5, . . . ,−0.1} duality gap for α ∈ {−0.5, . . . ,−0.1}
-0.5 -0.4 -0.3 -0.2 -0.1 -0.5 -0.4 -0.3 -0.2 -0.1

YFJS01 4, 10, 7 62.30 56.85 46.73 37.33 25.92 89.19 87.86 85.54 82.58 81.13
YFJS02 4, 10, 7 53.91 48.58 39.27 30.20 17.54 91.32 90.07 75.40 86.55 84.36
YFJS03 6, 4, 7 0.00 0.00 0.00 0.00 0.00 3.50 0.00 1.63 0.00 0.00
YFJS04 7, 4, 7 50.95 45.35 41.05 33.10 24.21 61.43 57.14 57.14 33.10 39.07
YFJS05 8, 4, 7 59.24 52.37 44.04 32.98 12.68 72.37 60.88 66.82 55.36 32.55
YFJS06 9, 4, 7 67.57 65.46 58.65 47.90 38.04 86.79 89.61 83.61 77.33 82.85
YFJS07 9, 4, 7 56.58 49.93 38.93 28.97 20.46 79.57 79.85 76.39 75.83 74.72
YFJS08 9, 4, 12 53.16 44.60 37.80 0.01 0.01 62.00 49.39 40.97 13.86 8.20
YFJS09 9, 4, 12 62.18 58.38 54.23 48.04 33.87 94.25 94.28 94.00 93.16 86.42
YFJS10 10, 4, 12 57.03 52.03 43.57 35.98 24.47 71.67 73.74 64.73 54.45 56.26
YFJS11 10, 5, 10 58.80 53.98 42.54 31.80 19.97 93.58 91.87 91.29 89.20 88.42
YFJS12 10, 5, 10 53.42 48.28 44.75 37.09 32.77 92.41 91.63 91.07 88.19 82.37
YFJS13 10, 5, 10 57.87 53.64 49.50 36.94 29.21 91.39 90.79 89.28 89.51 88.97
YFJS14 13, 17, 26 63.86 57.44 43.65 34.56 20.17 – – – – –
YFJS15 13, 17, 26 63.70 57.24 48.81 32.65 21.66 – – – – –
YFJS16 13, 17, 26 65.63 54.86 48.15 36.88 28.97 – – – – –
YFJS17 17, 17, 26 92.89 89.62 84.65 76.96 62.15 – – – – –
YFJS18 17, 17, 26 92.84 88.84 84.93 78.14 67.22 – – – – –
YFJS19 17, 17, 26 94.18 91.82 84.89 82.51 73.75 – – – – –
YFJS20 17, 17, 26 93.89 91.12 86.43 81.28 72.40 – – – – –

DAFJS01 4, 5-9, 5 64.42 55.36 47.09 37.23 22.42 71.81 77.41 66.49 47.64 49.39
DAFJS02 4, 5-7, 5 68.19 61.59 53.25 42.72 30.11 76.44 73.03 68.28 71.57 40.77
DAFJS03 4, 10-17, 10 68.01 60.23 49.83 35.81 20.11 91.42 88.93 84.33 – –
DAFJS04 4, 9-14, 10 62.97 54.26 43.12 29.81 17.74 85.48 81.65 75.14 69.81 58.59
DAFJS05 6, 5-13, 5 70.99 63.55 58.80 46.54 36.98 88.51 86.62 83.17 79.89 75.57
DAFJS06 6, 5-13, 5 72.77 67.48 56.48 50.90 38.66 89.50 87.26 82.98 81.39 77.58
DAFJS07 6, 7-23, 10 78.46 71.40 61.71 49.53 28.87 – – – – –
DAFJS08 6, 6-23, 10 72.76 65.56 54.90 42.33 23.94 92.64 90.43 87.70 – –
DAFJS09 8, 4-9, 5 76.55 70.29 64.07 55.72 45.39 91.16 90.03 88.07 85.39 82.21
DAFJS10 8, 4-11, 5 77.42 72.65 68.17 58.52 51.35 92.00 88.86 87.80 85.03 81.73
DAFJS11 8, 10-23, 10 86.86 74.12 69.13 55.02 34.33 – – – – –
DAFJS12 8, 9-22, 10 89.37 85.57 78.72 68.00 50.60 – – – – 87.53
DAFJS13 10, 5-11, 5 84.32 80.52 76.08 70.57 63.97 94.09 92.89 91.17 89.10 86.62
DAFJS14 10, 4-10, 5 83.73 79.88 77.17 69.93 65.30 94.29 92.69 90.72 88.34 85.56
DAFJS15 10, 8-19, 10 91.31 88.63 80.38 71.29 57.63 – – – – –
DAFJS16 10, 6-20, 10 87.93 80.72 75.02 61.17 44.39 – – – – 83.67
DAFJS17 12, 4-11, 5 87.97 86.19 81.76 77.81 73.44 95.49 94.34 92.97 91.33 89.44
DAFJS18 12, 5-9, 5 88.36 84.36 81.21 75.48 69.38 95.64 94.55 92.41 91.27 88.65
DAFJS19 8, 7-13, 7 75.04 67.00 57.92 46.43 27.16 93.73 91.84 88.45 86.47 81.78
DAFJS20 10, 6-17, 7 91.38 82.27 75.92 65.47 57.01 – – – – –
DAFJS21 12, 5-16, 7 93.05 87.38 81.65 77.90 63.06 – – – – –
DAFJS22 12, 5-17, 7 93.35 88.98 84.64 75.04 64.31 – – – – –
DAFJS23 8, 6-17, 9 77.13 70.72 60.85 49.93 36.27 – – – 88.80 –
DAFJS24 8, 6-25, 9 83.72 78.62 70.75 57.83 43.29 – – – – –
DAFJS25 10, 9-19, 9 91.86 87.88 82.30 73.30 57.55 – – – – –
DAFJS26 10, 8-17, 9 93.06 87.84 83.67 72.60 58.14 – – – – –
DAFJS27 12, 7-22, 9 92.22 90.65 84.52 77.15 67.12 – – – – –
DAFJS28 8, 8-15, 10 79.76 74.61 62.13 57.11 31.87 – – – – –
DAFJS29 8, 7-19, 10 81.20 74.42 69.24 50.61 35.17 – – – – –
DAFJS30 10, 8-19, 10 87.43 81.99 72.41 63.21 48.77 – – – – –

Table 2: Duality gaps (%)for the experiments with benchmark instances.

https://proceedings.science/p/157453?lang=pt-br

https://proceedings.science/p/157453?lang=pt-br

Figure 2: Average duality gaps for CP and MILP models with instance set YFJS. x and y-axis stand for α
and duality gap, respectively.

Figure 3: Average duality gaps for CP and MILP models with instance set DAFJS. x and y-axis stand for α
and duality gap, respectively.

feasible solutions for every test considered. Although proven optimal solutions were found only for
one instance.

For future work, several opportunities may be explored. Such as, multiobjective variants,
different learning or deteriorating functions and/or parameterization. Heuristic or metaheuristics
methods may be used as alternative methods to get to reasonable solutions in acceptable time.

7. Acknowledgments
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de

Nível Superior - Brasil (CAPES) - Finance Code 001.

References
Azzouz, A., Ennigrou, M., e Ben Said, L. (2018). Scheduling problems under learning effects:

classification and cartography. International Journal of Production Research, 56(4):1642–1661.

Baker, K. R. e Trietsch, D. (2013). Principles of sequencing and scheduling. John Wiley & Sons.

Birgin, E. G., Feofiloff, P., Fernandes, C. G., De Melo, E. L., Oshiro, M. T., e Ronconi, D. P. (2014).
A milp model for an extended version of the flexible job shop problem. Optimization Letters, 8
(4):1417–1431.

Biskup, D. (2008). A state-of-the-art review on scheduling with learning effects. European Journal
of Operational Research, 188(2):315–329.

https://proceedings.science/p/157453?lang=pt-br

https://proceedings.science/p/157453?lang=pt-br

Liu, W. e Jiang, C. (2020). Due-date assignment scheduling involving job-dependent learning
effects and convex resource allocation. Engineering Optimization, 52(1):74–89.

Peng, Z., Zhang, H., Tang, H., Feng, Y., e Yin, W. (2021). Research on flexible job-shop schedul-
ing problem in green sustainable manufacturing based on learning effect. Journal of Intelligent
Manufacturing, p. 1–22.

Pinedo, M. L. (2012). Scheduling, volume 29. Springer.

Ruiz-Torres, A. J., Paletta, G., e PéRez, E. (2013). Parallel machine scheduling to minimize the
makespan with sequence dependent deteriorating effects. Computers & Operations Research, 40
(8):2051–2061.

Tayebi Araghi, M., Jolai, F., e Rabiee, M. (2014). Incorporating learning effect and deterioration
for solving a sdst flexible job-shop scheduling problem with a hybrid meta-heuristic approach.
International Journal of Computer Integrated Manufacturing, 27(8):733–746.

Toksarı, M. D. e Güner, E. (2009). Parallel machine earliness/tardiness scheduling problem under
the effects of position based learning and linear/nonlinear deterioration. Computers & Operations
Research, 36(8):2394–2417.

Wagner, H. M. (1959). An integer linear-programming model for machine scheduling. Naval
research logistics quarterly, 6(2):131–140.

Wang, J.-B. (2007). Single-machine scheduling problems with the effects of learning and deterio-
ration. Omega, 35(4):397–402.

Wang, J.-B., Liu, F., e Wang, J.-J. (2019). Research on m-machine flow shop scheduling with trun-
cated learning effects. International Transactions in Operational Research, 26(3):1135–1151.

Wilson, J. (1989). Alternative formulations of a flow-shop scheduling problem. Journal of the
Operational Research Society, 40(4):395–399.

Yin, Y. e Xu, D. (2011). Some single-machine scheduling problems with general effects of learning
and deterioration. Computers & Mathematics with Applications, 61(1):100–108.

https://proceedings.science/p/157453?lang=pt-br
Powered by TCPDF (www.tcpdf.org)

https://proceedings.science/p/157453?lang=pt-br
http://www.tcpdf.org

