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Resumo. Os manipuladores cinemdticos paralelos (PKMs) com elos flexiveis além de apresentarem maiores relacoes
velocidade/aceleragdo, capacidade de carga, rigidez e compactagdo quando comparados aos manipuladores seriais,
também possuem melhor desempenho dindmico e eficiéncia energética. No entanto, esta abordagem pode produzir
vibragdes que requerem a implementagdo de controle no espago de junta baseado em modelo ou estratégias de controle
de espaco de tarefa. Por este motivo, estudos sobre o uso de sensores redundantes tém sido realizados para obter dados
relevantes para PKM com elos flexiveis. Dados experimentais de um 3RRR planar sdo extraidos usando codificadores,
extensometros e uma cdmera durante a execucdo de tarefas pré-determinadas. Uma Rede Neural Artificial utilizando
uma topologia de Perceptron Multicamadas é utilizada para estimar a pose do efetuador do manipulador. Esta estimativa
pode ser usada para melhorar modelos dindmicos ou para implementar estratégias de controle de espago de tarefas.

Palavras chave: Manipuladores Cinemdticos de Cadeia Paralela. Estimativa de Posicdo. Fusdo Sensorial. Rede Neural
Artificial. Instrumentagdo.

1. INTRODUCAO

O uso de manipuladores cinemadticos paralelos tem se mostrado uma alternativa promissora em relacdo aos modelos
padrdo de arquiteturas robdticas devido a sua leveza, rigidez, capacidade de carga, altas taxas de velocidade / aceleragcao
e compactacdo (Merlet, 2006). Por este motivo, esta configura¢do cinemadtica pode ser uma alternativa para o projeto de
manipuladores robéticos com eficiéncia energética (Yan Li and Bone, 2001; Ruiz ef al., 2018). Porém, sua viabilidade
requer a superacao de algumas dificuldades praticas. Dentre essas questdes, podemos citar a presencga de singularidades
em seu espaco de trabalho (Merlet, 2006) e a complexidade de sua estratégia de controle (Paccot et al., 2009). Essa
complexidade estd presente nas estratégias de controle, tanto no espaco de tarefa quanto no espaco das juntas. Por um
lado, as estratégias de controle do espago das juntas requerem o cdlculo do modelo cinematico inverso, o que € complicado
e demorado para manipuladores de cadeia cinemdtica paralela. Por outro lado, as estratégias de controle do espago de
tarefas requerem a medigo da pose do efetuador do manipulador por meio de técnicas baseadas em visdo computacional
e algoritmos de processamento de imagem (Bellakehal et al., 2011).

Alguns autores propdem o uso de redundancia para superar esses problemas técnicos. Por exemplo, a presenca de
singularidades pode ser reduzida usando redundancia cinemética (Wu et al., 2010; de Carvalho Fontes et al., 2018, 2021),
e o uso de redundancia de medi¢do pode diminuir a complexidade da estratégia de controle. Redundancia de medigao,
que corresponde a obtencdo de mais medigdes do que graus de liberdade para o manipulador (Muller, 2008), é usada
por Zubizarreta et al. (2012) para aquisi¢do mais precisa da pose do efetuador de um manipulador planar 3RRR, onde
(R) descreve uma junta ativa e (RR) duas juntas passivas. Uma estratégia de feedback redundante no espago da junta
e de tarefas € proposta por Mohan et al. (2017) usando sensores apropriados. Devido a redundancia de medicao desta
abordagem, o erro real dos deslocamentos da junta é calculado, melhorando o desempenho do controle. Uma estratégia
semelhante foi proposta por Colombo et al. (2019) usando uma cimera de taxa limitada.

O desempenho dindmico e a eficiéncia energética desses manipuladores também podem ser melhorados reduzindo
a inércia de seus componentes mdveis (Nabat et al., 2005; Zhang et al., 2015). No entanto, a reducio da inércia de
seus componentes aumenta a flexibilidade de toda a estrutura, dificultando o projeto do sistema de controle devido a
complexidade dos modelos cinemdticos e dindmicos tratados em (Zhang et al., 2015; Wang et al., 2009), e aos rigidos
requisitos de técnicas baseadas na visdo. Portanto, redundincia de medicdo e estratégias de metamodelagem também
podem ser uma alternativa para implementagdo de controladores para este tipo de sistema.

A abordagem bdsica para técnicas de metamodelagem € construir aproximagdes que irdo fornecer uma resposta efici-
ente e uma relacdo funcional entre as varidveis de entrada e saida em andlise (Simpson et al., 2001). Para este trabalho,
a pose do efetuador do manipulador paralelo 3RRR com elos flexiveis, representado na Fig. 1, é estimada usando os
dados adquiridos pelos encoders e extensdmetros. A primeira etapa para a realiza¢do dessa estimativa foi a aquisicdo
dos conjuntos de dados de treinamento e teste durante a execugdo de vdrias tarefas predefinidas. A segunda etapa foi
selecionar o metamodelo apropriado para representar esses dados adquiridos. Um algoritmo de Rede Neural Artificial
(RNA) ¢ investigado uma vez que esta metodologia ¢ bem conhecida e apresenta bons resultados para aproximacio de
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2. MATERIAIS E METODOS

Figura 1. Protétipo 3RRR com elos flexiveis.

funcdes (Haykin, 2009). Essa RNA pode ter uma ou vérias camadas de neurdnios, também chamadas de perceptron.
Para perceptrons com mais de uma camada, chamados de Perceptron Multicamadas (PMC), o processo de treinamento
€ baseado no algoritmo Backpropagation (da Silva et al., 2017). A terceira etapa, por fim, € realizar o procedimento de
treinamento e texte do metamodelo construido. Foram avaliadas duas situagdes para o nimero total de dados utilizados
para a construcdo da rede. No primeiro caso sdo utilizados todos os seis dados dos extensometros e trés de encoders,
enquanto que no segundo caso sdo utilizados apenas trés dados de extensdmetros relativos aos elos que estdo acoplados 4s
juntas ativas e trés de encoders. Com isso, sdo construidas duas redes neurais, a primeira com nove medi¢cdes adquiridas
dos sensores e a segunda com seis medi¢cdes, com o objetivo de realizar a estimativa da postura, coordenadas x, y € «, do
efetuador do manipulador na Fig. 1.

2. MATERIAIS E METODOS
2.1 Redes Neurais Artificiais

Uma arquitetura de rede neural artificial (RNA) é definida como a maneira como seus varios neurdnios estio dispostos
uns com os outros. Esses arranjos sdo estruturados por meio de conexdes sindpticas de neurdnios. A topologia de uma
rede neural, com uma arquitetura ja definida, s@o as diferentes formas de composi¢cdo que pode assumir (da Silva et al.,
2017). As principais arquiteturas de uma rede neural podem ser divididas em redes feedforward de camada tnica, redes
feedforward multicamadas (ver Fig. 2) e redes recorrentes (Haykin, 2009).

A arquitetura escolhida para este trabalho foi de um PMC, que € uma rede neural que conecta uma entrada, uma saida
e camadas ocultas. A Fig. 2 ilustra um MLP com p entradas, ¢ saidas e uma tnica camada oculta com L neurdnios. Os
dados de entrada sdo compostos pela pose estimada do efetuador X = [z y o] e as medigdes dos extensdmetros (p = 9),
descritos como f; onde ¢ = 1...p na Fig. 2. A pose do efetuador é estimada usando o modelo cinemdtico do 3RRR
considerando elos rigidos e os dados medidos dos encoders © = [0; 05 05]7. Este modelo esté resumido na Sego 3.1.

A saida e as camadas ocultas sdo compostas de neurdnios. A entrada para os neurdnios das camadas oculta e de
saida, descrita por U = u; onde * pode ser 1, 2 ou o de acordo com a camada e j pode variar de acordo ao nimero de
neur6nios da camada, é composto por uma soma ponderada. A saida desses neur6nios, descritos por *y; ou e; para as
camadas ocultas ou para a camada de saida, € resultante da seguinte funcdo de ativacao do tipo tangente hiperbdlica:

1—e AU

o) = Te=pu

)]

O niimero de neurdnios na camada oculta estd diretamente relacionado a capacidade de aprendizado da rede. Ge-
ralmente, duas camadas intermedidrias tratam de problemas ndo convexos e ndo continuos, sendo amplamente aplica-
das em problemas de engenharia da Silva et al. (2017). O algoritmo de aprendizado supervisionado para treinamento,
Levenberg-Marquardt Backpropagation ajusta os pesos sindpticos usados para derivar as entradas dos neurdnios. Neste
procedimento, os dados sdo separados entre conjuntos de treinamento e teste. O primeiro é usado para o processo de
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aprendizagem da RNA e o ultimo para a verificagdo de desempenho do estimador. O algoritmo de treinamento consiste
em minimizar o erro entre as saidas do conjunto de dados de treinamento (as medi¢des reais da camera) e a camada
de saida. Além disso, foi realizada uma andlise consistente em relacdo aos erros associados aos subconjuntos de teste
e treinamento para superar situagcdes de subfitting e overfitting. Essa andlise é necessdria para evitar que o algoritmo
de aprendizado opte por usar um nimero maior de neurdnios enquanto a razao entre o erro do subconjunto de teste e
treinamento aumenta.
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Figura 2. Ilustracdo de um PMC com uma tinica camada de neur6nios escondida.

2.2 Manipulador Paralelo 3RRR Planar
Nesta se¢do, o protétipo experimental € descrito. Em seguida o modelo cinemético do 3RRR ¢ apresentado.
2.2.1 Protétipo Experimental

Nesta sec¢do, a comunicacdo e instrumentacdo do protdtipo 3RRR sdo descritas. Os motores que realizam os desloca-
mentos lineares ¢;, ilustrados na Fig. 3(a), ndo sdo abordados neste trabalho, portanto as juntas relacionadas aos motores
M1, M2 e M3, mostrado na Fig. 3(b) sdo considerados passivos. Assim, as unicas articulacdes ativas que fornecem
movimento ao manipulador sdo as juntas ativas em M4, M5 e M6. Essas juntas sdo movidas por motores planos Maxon
EC60 sem escova, com 1001/ de poténcia e uma corrente de 2, 3A, acoplados a redutores planetarios G P52C com uma
reducdo de 3,5 : 1, proporcionando uma rotagdo nominal de 1200RPM e torque nominal de 0, 82Nm. Cada um dos
motores possui um controlador Maxon EPO.S250/5 com alimentagdo de até 50V dc e corrente de 5A.

Um diagrama da comunicagdo pode ser visto na Fig. 3(b). A comunicagéo destes motores com o DSPACE1103 é
feita via protocolo CAN com uma taxa de transmisséo de 250kbit/s. Portanto, tanto o acionamento do motor quanto a
aquisi¢do dos dados do encoders sdo realizados dessa forma. Medidores de tensdio HBM 350 — E arranjados com ponte
completa foram anexados a cada link do manipulador para realizar as medicdes de deformacgdo de cada elo, quando o
manipulador executa uma tarefa. As informacdes do extensdmetro precisam ser lidas pelas entradas A/D da DSPACE e,
por esse motivo, passam por um amplificador de sinal HBM HB40 CLIPX.

Para medir diretamente a posi¢do do atuador final do manipulador, € usada uma camera oCam - 5CRO - U com
interface USB 3.0 com sensor de imagem CMOS e obturador de rolamento, com resolu¢@o de 6402480 pixels e um taxa
de quadros maxima de 120 fps. As imagens obtidas pela cidmera sdo processadas em um computador por meio de um
filtro que detectard os pontos mais relevantes do manipulador: o centro do efetuador, D;, e os pontos fixos A; (ver Fig.
3(a)). Este filtro € implementado no Visual Studio e utiliza uma biblioteca de visdo computacional denominada OpenCV,
desenvolvida em C++. A transmissdao dos dados medidos por cada quadro capturado pela camera € feita por meio de
comunicagdo serial através do padrao RS - 232 entre o computador e a placa de aquisi¢io DSPACE, com frequéncia de
60fps.

Com dados de medi¢do direta da cmera, deformac¢des do medidor de tensdo e posicdo angular dos encoders, a
DSPACE envia esse conjunto de dados para um computador central onde € possivel capturar todas essas informagdes
simultaneamente. E necessario tratar os dados dos extensdmetros e da cAmera com um filtro digital passa-baixa, pois os
sinais obtidos pelos extensdmetros possuem ruidos de alta frequéncia.

Anais eletrénicos do 52 Simpdsio do Programa de Pos-Graduagdo em Engenharia Mecdnica = bb Servico de Biblioteca
Disponivel em: http://soac.eesc.usp.br/index.php/sipgem2021 | | Prof. Dr. Sérgio Rodrigues Fontes



POS-GRADUACAO EM Escola de Engenharia de Sao Carlos — Universidade de Sao Paulo

gm ’ PROGRAMA DE 5° SIPGEM — 5° Simpdsio do Programa de Pés-Graduacao em Engenharia Mecanica
ENGENHARIA MECANICA 27 e 28 de setembro de 2021, Sao Carlos - SP

2. MATERIAIS E METODOS

2.2.2 Manipuladores Cinematicos de Cadeia Paralela

O manipulador de cadeia paralela 3RRR é um mecanismo planar que tem trés cadeias cinemadticas conectadas ao
efetuador A; B;, onde o subscrito ¢ = 1, 2, 3 estd de acordo com a cadeia cinematica. Conforme mostrado na Fig. 3(a), as
trés articulagdes ativas do manipulador transmitem o movimento para o efetuador, com centro no ponto D. O sistema de
coordenadas global fixado no efetuador O, estd localizado no ponto D e tem uma orientacdo, em relacdo a este sistema
de coordenada, de angulo «.. A orientacdo angular dos elos A; B; é dada pelo angulo 6;, e 5; é a orientagdo angular para
os elos B;C;. O vetor posi¢do do efetuador X = [z y a]T, é relativo ao sistema de coordenadas fixas e é o conjunto de
pontos que serdo estimados, dada uma trajetéria que o manipulador ird executar.

De acordo com a Fig. 3(a), o manipulador com elos rigidos pode ser modelado cinematicamente considerando a

restri¢do geométrica dos elos H nos permite derivar uma equacio para cada angulo 6; (Fontes

and da Silva, 2016), onde e;1 = —2l1p;, €0 = —2l1 1, €3 = pz + p7 + 12 — 13, u; = xp + hicos(\; + a) — a;cos(N;)
e pi =yp + hisin(A; + ) — a;sin(\;). A Eq. 2 também é chamado de cinematica inversa para o manipulador 3RRR.
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Figura 3. (a) Ilustragdo de uma cadeia cinematica do manipulador 3RRR, (b) Diagrama da instrumenta¢io e comunicagio
experimental do protétipo.
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Para determinar a velocidade da articulacdo ativa, o = [91 G 03]T, e a velocidade do efetuador X = [ 7 &|T
utiliza-se a equagao de restri¢do geométrica e a derivamos em relacio ao tempo e também assumindo que \; é constante,
¢é possivel chegar a seguinte equagdo apds algumas manipulacdes matematicas

Iy cos(Bi) p + 1y sin(B;) gp + 1o h & sin(B; — a — N;) = Iy lo 0 sin(B; — 6;). 3)

Assim, € possivel reescrever a Eq. 3 na forma matricial para determinar a relago que mapeia as velocidades no espago
das juntas ©, com as velocidades no espaco da tarefa X como sendo AX = BO, onde

[15 cos(B1) 1o sin(B1) lo h sin(By —a — A1)
A = |lycos(B2) lasin(f2) lahsin(fe—a—N2) )
|l2 cos(B3) 1o sin(B3) la h sin(fz —a— A3)

_ll l2 sm(ﬂl - 91) 0 0
B = 0 11 12 Sin(ﬂg - 92) 0 (5)
L 0 0 ll l2 8’Ln<53 — 93)

Portanto, a matriz Jacobiana que mapeia as velocidades no espago das juntas para o espaco da tarefa é tal que J =
A~'B se A for invertivel. O desenvolvimento do modelo cinemdtico inverso se faz necessdrio para obter-se o valor
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Figura 4. Gréficos comparativos entre os resultados das estimativas.

correto dos angulos das juntas ativas do manipulador. Esses dados de posi¢do angulares provenientes dos encoders
precisam ser inseridos no modelo desenvolvido nesta secdo para que possua a devida unidade e esteja no referencial
correto.

3. RESULTADOS

Como descrito nas se¢des anteriores, um algoritmo de RNA utilizando a arquitetura de Perceptron Multicamadas foi
desenvolvida para estimar a pose do efetuador do manipulador. Utilizando os dados da camera, foi possivel mapear a tra-
jetoria das coordenadas lineares x, y e a trajetdria angular o que o manipulador desenvolve apds realizar a movimentacgio
proposta. Foi feita uma avaliacdo do nimero de neur6nios que a RNA ird utilizar, de forma a minimizar entre a curva
objetivo, capturada pela cimera, e a curva estimada pelo algoritmo. Essa minimizacdo é baseada no desempenho que
a rede ird executar e isso serd mensurado de acordo com o Erro Quadratico Médio. Quanto menor for o valor do erro,
melhor € o desempenho da rede, e mais fiél o metamodelo construido estd da forma como o sistema realmente se com-
porta. O niimero de neurdnios na camada escondida pode ir de um até 150, variando a cada cinco. Em cada processo de
treinamento, a mesma arquitetura com o determinado nimero de neurdnios € avaliado cinco vezes de forma a evitar que
o processo de treinamento, coincidentemente, escolha uma arquitetura que esteja em um minimo local.

Os resultado do treinamento para o melhor niimero de neurdnios no primeiro caso, utilizando seis medidas de ex-
tensometros e trés de encoders pode ser visto pelos trés graficos da primeira linha da Fig. 4. As curvas sélidas em azul
representam a curva obtida pela medi¢do direta da cAmera enquanto o efetuador se movimentava enquanto a linha em
vermelho representa a estimativa feita pela RNA construida. Da esquerda para a direita estd o grafico da coordenada no
eixo x, em seguida a coordenada no eixo y e por fim a posicao angular o do centro do efetuador do manipulador. Esse
resultado, como comentado anteriormente, foi obtido avaliando o desempenho da rede durante o processo de treinamento.
Para a estimativa da posicdo z a rede obteve um desempenho de 1.5727 x 10~ 7, baseado no Erro Quadratico Médio, uti-
lizando 141 neur6nios em sua camada escondida. No segundo gréfico, estimativa da posi¢ao y, a rede desempenhou um
resultado de 1.2362 * 107, totalizando 136 neurdnios. Por fim, para a estimativa da posi¢do angular o do manipulador,
a mesma obteve um desempenho de 1.5283 * 10~7 com um ndmero de neurdnios de 126.

Para o segundo caso, onde foram utilizado apenas trés dados dos extensdmetros e trés dados de encoders o resultado
final da estimativa, curva pontilhada em vermelho, pode ser visto pelos graficos na segunda linha da Fig. 4. O primeiro
grifico, que diz respeito a estimativa da posi¢do no eixo x, obteve um desempenho de 3.0315 + 10~¢ com um ndmero total
de 116 neurdnios em sua camada escondida. No segundo gréfico, estimativa da posi¢do do efetuador no eixo y, a rede
obteve um desempenho de 3.6014 x 10~° utilizando 121 neur6nios em sua camada escondida. Finalmente, para estimar
a posicdo angular v do manipulador, o resultado do treinamento da rede gerou um desempenho de 1.2649 * 10~ —5 com
um nimero de 136 neurdnios em sua camada escondida.
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7. RESPONSABILIDADE PELAS INFORMACOES

4. CONCLUSOES E DISCUSSOES

O projeto de manipuladores de cadeia cinemdtica paralela com elos flexiveis se mostra uma tarefa de alta complexi-
dade, exigindo muita aten¢do durante seu desenvolvimento e podendo produzir resultados insatisfatérios. A redugéo de
inércia dos componentes méveis do manipulador proposta por diversos pesquisadores, se mostrou uma das etapas cruciais
para o entendimento da complexidade deste problema. A flexibilidade na estrutura do manipulador faz com que a medicao
precisa da posi¢ao do efetuador se torne uma tarefa ainda mais complicada de se obter.

Para contornar essa situacdo, a proposta de constru¢cdo de um metamodelo baseado em uma Rede Neural Artificial para
estimar essa posi¢do, se mostrou vélida e apresentou resultados satisfatérios. A implementacio de diferentes subconjuntos
heterogéneos para as fases de treinamento e teste, se mostraram de importante relevancia para se obter uma validacio
cruzada entre os dados dos experimentos. Além disso ficou evidente que o nimero de dados utilizados na camada de
entrada da rede possui uma forte influéncia no desempenho final do algoritmo de RNA. Observou-se com os resultados
apresentados na secdo anterior, que utilizar apenas trés dados do extensometros, ao invés de usar os seis disponiveis,
ocasionou em um aumento do valor do erro, piorando dessa forma o desempenho da rede.

Portanto, este trabalho se mostrou relevante para problemas de estimativa da postura de manipuladores de cadeia
cinematica paralela, visto a dificuldade de adquirir de maneira satisfatéria a postura desse tipo de manipulador. Os resul-
tados obtidos sdo satisfatdrios para os objetivos e problemas propostos, tendo em vista o desempenho da rede construida
para realizar essa estimativa. Para um futuro trabalho, pode-se utilizar os resultados obtidos pelas estimativas obtidas
aqui, para realizar um projeto de controle do manipulador, expandindo ainda mais o projeto para outros campos dentro da
Dinamica e Mecatronica.
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