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Resumo. Os manipuladores cinemáticos paralelos (PKMs) com elos flexı́veis além de apresentarem maiores relações
velocidade/aceleração, capacidade de carga, rigidez e compactação quando comparados aos manipuladores seriais,
também possuem melhor desempenho dinâmico e eficiência energética. No entanto, esta abordagem pode produzir
vibrações que requerem a implementação de controle no espaço de junta baseado em modelo ou estratégias de controle
de espaço de tarefa. Por este motivo, estudos sobre o uso de sensores redundantes têm sido realizados para obter dados
relevantes para PKM com elos flexı́veis. Dados experimentais de um 3RRR planar são extraı́dos usando codificadores,
extensômetros e uma câmera durante a execução de tarefas pré-determinadas. Uma Rede Neural Artificial utilizando
uma topologia de Perceptron Multicamadas é utilizada para estimar a pose do efetuador do manipulador. Esta estimativa
pode ser usada para melhorar modelos dinâmicos ou para implementar estratégias de controle de espaço de tarefas.

Palavras chave: Manipuladores Cinemáticos de Cadeia Paralela. Estimativa de Posição. Fusão Sensorial. Rede Neural
Artificial. Instrumentação.

1. INTRODUÇÃO

O uso de manipuladores cinemáticos paralelos tem se mostrado uma alternativa promissora em relação aos modelos
padrão de arquiteturas robóticas devido à sua leveza, rigidez, capacidade de carga, altas taxas de velocidade / aceleração
e compactação (Merlet, 2006). Por este motivo, esta configuração cinemática pode ser uma alternativa para o projeto de
manipuladores robóticos com eficiência energética (Yan Li and Bone, 2001; Ruiz et al., 2018). Porém, sua viabilidade
requer a superação de algumas dificuldades práticas. Dentre essas questões, podemos citar a presença de singularidades
em seu espaço de trabalho (Merlet, 2006) e a complexidade de sua estratégia de controle (Paccot et al., 2009). Essa
complexidade está presente nas estratégias de controle, tanto no espaço de tarefa quanto no espaço das juntas. Por um
lado, as estratégias de controle do espaço das juntas requerem o cálculo do modelo cinemático inverso, o que é complicado
e demorado para manipuladores de cadeia cinemática paralela. Por outro lado, as estratégias de controle do espaço de
tarefas requerem a medição da pose do efetuador do manipulador por meio de técnicas baseadas em visão computacional
e algoritmos de processamento de imagem (Bellakehal et al., 2011).

Alguns autores propõem o uso de redundância para superar esses problemas técnicos. Por exemplo, a presença de
singularidades pode ser reduzida usando redundância cinemática (Wu et al., 2010; de Carvalho Fontes et al., 2018, 2021),
e o uso de redundância de medição pode diminuir a complexidade da estratégia de controle. Redundância de medição,
que corresponde à obtenção de mais medições do que graus de liberdade para o manipulador (Muller, 2008), é usada
por Zubizarreta et al. (2012) para aquisição mais precisa da pose do efetuador de um manipulador planar 3RRR, onde
(R) descreve uma junta ativa e (RR) duas juntas passivas. Uma estratégia de feedback redundante no espaço da junta
e de tarefas é proposta por Mohan et al. (2017) usando sensores apropriados. Devido à redundância de medição desta
abordagem, o erro real dos deslocamentos da junta é calculado, melhorando o desempenho do controle. Uma estratégia
semelhante foi proposta por Colombo et al. (2019) usando uma câmera de taxa limitada.

O desempenho dinâmico e a eficiência energética desses manipuladores também podem ser melhorados reduzindo
a inércia de seus componentes móveis (Nabat et al., 2005; Zhang et al., 2015). No entanto, a redução da inércia de
seus componentes aumenta a flexibilidade de toda a estrutura, dificultando o projeto do sistema de controle devido à
complexidade dos modelos cinemáticos e dinâmicos tratados em (Zhang et al., 2015; Wang et al., 2009), e aos rı́gidos
requisitos de técnicas baseadas na visão. Portanto, redundância de medição e estratégias de metamodelagem também
podem ser uma alternativa para implementação de controladores para este tipo de sistema.

A abordagem básica para técnicas de metamodelagem é construir aproximações que irão fornecer uma resposta efici-
ente e uma relação funcional entre as variáveis de entrada e saı́da em análise (Simpson et al., 2001). Para este trabalho,
a pose do efetuador do manipulador paralelo 3RRR com elos flexı́veis, representado na Fig. 1, é estimada usando os
dados adquiridos pelos encoders e extensômetros. A primeira etapa para a realização dessa estimativa foi a aquisição
dos conjuntos de dados de treinamento e teste durante a execução de várias tarefas predefinidas. A segunda etapa foi
selecionar o metamodelo apropriado para representar esses dados adquiridos. Um algoritmo de Rede Neural Artificial
(RNA) é investigado uma vez que esta metodologia é bem conhecida e apresenta bons resultados para aproximação de
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Figura 1. Protótipo 3RRR com elos flexı́veis.

funções (Haykin, 2009). Essa RNA pode ter uma ou várias camadas de neurônios, também chamadas de perceptron.
Para perceptrons com mais de uma camada, chamados de Perceptron Multicamadas (PMC), o processo de treinamento
é baseado no algoritmo Backpropagation (da Silva et al., 2017). A terceira etapa, por fim, é realizar o procedimento de
treinamento e texte do metamodelo construido. Foram avaliadas duas situações para o número total de dados utilizados
para a construção da rede. No primeiro caso são utilizados todos os seis dados dos extensômetros e três de encoders,
enquanto que no segundo caso são utilizados apenas três dados de extensômetros relativos aos elos que estão acoplados ás
juntas ativas e três de encoders. Com isso, são construı́das duas redes neurais, a primeira com nove medições adquiridas
dos sensores e a segunda com seis medições, com o objetivo de realizar a estimativa da postura, coordenadas x, y e α, do
efetuador do manipulador na Fig. 1.

2. MATERIAIS E MÉTODOS

2.1 Redes Neurais Artificiais

Uma arquitetura de rede neural artificial (RNA) é definida como a maneira como seus vários neurônios estão dispostos
uns com os outros. Esses arranjos são estruturados por meio de conexões sinápticas de neurônios. A topologia de uma
rede neural, com uma arquitetura já definida, são as diferentes formas de composição que pode assumir (da Silva et al.,
2017). As principais arquiteturas de uma rede neural podem ser divididas em redes feedforward de camada única, redes
feedforward multicamadas (ver Fig. 2) e redes recorrentes (Haykin, 2009).

A arquitetura escolhida para este trabalho foi de um PMC, que é uma rede neural que conecta uma entrada, uma saı́da
e camadas ocultas. A Fig. 2 ilustra um MLP com p entradas, q saı́das e uma única camada oculta com L neurônios. Os
dados de entrada são compostos pela pose estimada do efetuador X = [x y α]T e as medições dos extensômetros (p = 9),
descritos como fi onde i = 1 . . . p na Fig. 2. A pose do efetuador é estimada usando o modelo cinemático do 3RRR
considerando elos rı́gidos e os dados medidos dos encoders Θ = [θ1 θ2 θ3]T . Este modelo está resumido na Seção 3.1.

A saı́da e as camadas ocultas são compostas de neurônios. A entrada para os neurônios das camadas oculta e de
saı́da, descrita por U =∗ uj onde ∗ pode ser 1, 2 ou o de acordo com a camada e j pode variar de acordo ao número de
neurônios da camada, é composto por uma soma ponderada. A saı́da desses neurônios, descritos por ∗yj ou ej para as
camadas ocultas ou para a camada de saı́da, é resultante da seguinte função de ativação do tipo tangente hiperbólica:

σ(U) =
1− e−βU

1 + e−βU
. (1)

O número de neurônios na camada oculta está diretamente relacionado à capacidade de aprendizado da rede. Ge-
ralmente, duas camadas intermediárias tratam de problemas não convexos e não contı́nuos, sendo amplamente aplica-
das em problemas de engenharia da Silva et al. (2017). O algoritmo de aprendizado supervisionado para treinamento,
Levenberg-Marquardt Backpropagation ajusta os pesos sinápticos usados para derivar as entradas dos neurônios. Neste
procedimento, os dados são separados entre conjuntos de treinamento e teste. O primeiro é usado para o processo de



aprendizagem da RNA e o último para a verificação de desempenho do estimador. O algoritmo de treinamento consiste
em minimizar o erro entre as saı́das do conjunto de dados de treinamento (as medições reais da câmera) e a camada
de saı́da. Além disso, foi realizada uma análise consistente em relação aos erros associados aos subconjuntos de teste
e treinamento para superar situações de subfitting e overfitting. Essa análise é necessária para evitar que o algoritmo
de aprendizado opte por usar um número maior de neurônios enquanto a razão entre o erro do subconjunto de teste e
treinamento aumenta.
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Figura 2. Ilustração de um PMC com uma única camada de neurônios escondida.

2.2 Manipulador Paralelo 3RRR Planar

Nesta seção, o protótipo experimental é descrito. Em seguida o modelo cinemático do 3RRR é apresentado.

2.2.1 Protótipo Experimental

Nesta seção, a comunicação e instrumentação do protótipo 3RRR são descritas. Os motores que realizam os desloca-
mentos lineares δi, ilustrados na Fig. 3(a), não são abordados neste trabalho, portanto as juntas relacionadas aos motores
M1, M2 e M3 , mostrado na Fig. 3(b) são considerados passivos. Assim, as únicas articulações ativas que fornecem
movimento ao manipulador são as juntas ativas em M4, M5 e M6. Essas juntas são movidas por motores planos Maxon
EC60 sem escova, com 100W de potência e uma corrente de 2, 3A, acoplados a redutores planetários GP52C com uma
redução de 3, 5 : 1, proporcionando uma rotação nominal de 1200RPM e torque nominal de 0, 82Nm. Cada um dos
motores possui um controlador Maxon EPOS250/5 com alimentação de até 50V dc e corrente de 5A.

Um diagrama da comunicação pode ser visto na Fig. 3(b). A comunicação destes motores com o DSPACE1103 é
feita via protocolo CAN com uma taxa de transmissão de 250kbit/s. Portanto, tanto o acionamento do motor quanto a
aquisição dos dados do encoders são realizados dessa forma. Medidores de tensão HBM 350 − E arranjados com ponte
completa foram anexados a cada link do manipulador para realizar as medições de deformação de cada elo, quando o
manipulador executa uma tarefa. As informações do extensômetro precisam ser lidas pelas entradas A/D da DSPACE e,
por esse motivo, passam por um amplificador de sinal HBM HB40 CLIPX.

Para medir diretamente a posição do atuador final do manipulador, é usada uma câmera oCam - 5CRO - U com
interface USB 3.0 com sensor de imagem CMOS e obturador de rolamento, com resolução de 640x480 pixels e um taxa
de quadros máxima de 120fps. As imagens obtidas pela câmera são processadas em um computador por meio de um
filtro que detectará os pontos mais relevantes do manipulador: o centro do efetuador, Di, e os pontos fixos Ai (ver Fig.
3(a)). Este filtro é implementado no Visual Studio e utiliza uma biblioteca de visão computacional denominada OpenCV,
desenvolvida em C++. A transmissão dos dados medidos por cada quadro capturado pela câmera é feita por meio de
comunicação serial através do padrão RS - 232 entre o computador e a placa de aquisição DSPACE, com frequência de
60fps.

Com dados de medição direta da câmera, deformações do medidor de tensão e posição angular dos encoders, a
DSPACE envia esse conjunto de dados para um computador central onde é possı́vel capturar todas essas informações
simultaneamente. É necessário tratar os dados dos extensômetros e da câmera com um filtro digital passa-baixa, pois os
sinais obtidos pelos extensômetros possuem ruı́dos de alta frequência.
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2.2.2 Manipuladores Cinemáticos de Cadeia Paralela

O manipulador de cadeia paralela 3RRR é um mecanismo planar que tem três cadeias cinemáticas conectadas ao
efetuador AiBi, onde o subscrito i = 1, 2, 3 está de acordo com a cadeia cinemática. Conforme mostrado na Fig. 3(a), as
três articulações ativas do manipulador transmitem o movimento para o efetuador, com centro no ponto D. O sistema de
coordenadas global fixado no efetuadorOxoyo está localizado no pontoD e tem uma orientação, em relação a este sistema
de coordenada, de ângulo α. A orientação angular dos elos AiBi é dada pelo ângulo θi, e βi é a orientação angular para
os elosBiCi. O vetor posição do efetuador X = [x y α]T , é relativo ao sistema de coordenadas fixas e é o conjunto de
pontos que serão estimados, dada uma trajetória que o manipulador irá executar.

De acordo com a Fig. 3(a), o manipulador com elos rı́gidos pode ser modelado cinematicamente considerando a
restrição geométrica dos elos

∥∥∥−−−→BiCi

∥∥∥ = ‖rCi
− rBi

‖ = l2, nos permite derivar uma equação para cada ângulo θi (Fontes

and da Silva, 2016), onde ei1 = −2l1ρi, ei2 = −2l1µi, ei3 = µ2
i + ρ2i + l21 − l22, µi = xD + hicos(λi + α)− aicos(λi)

e ρi = yD + hisin(λi + α)− aisin(λi). A Eq. 2 também é chamado de cinemática inversa para o manipulador 3RRR.

Figura 3. (a) Ilustração de uma cadeia cinemática do manipulador 3RRR, (b) Diagrama da instrumentação e comunicação
experimental do protótipo.

θi = 2 tan−1

(
−ei1 ±

√
e2i1 + e2i2 − e2i3

ei3 − ei2

)
. (2)

Para determinar a velocidade da articulação ativa, Θ̇ = [θ̇1 θ̇2 θ̇3]T , e a velocidade do efetuador Ẋ = [ẋ ẏ α̇]T ,
utiliza-se a equação de restrição geométrica e a derivamos em relação ao tempo e também assumindo que λi é constante,
é possı́vel chegar à seguinte equação após algumas manipulações matemáticas

l2 cos(βi) ẋP + l2 sin(βi) ẏP + l2 h α̇ sin(βi − α− λi) = l1 l2 θ̇ sin(βi − θi). (3)

Assim, é possı́vel reescrever a Eq. 3 na forma matricial para determinar a relação que mapeia as velocidades no espaço
das juntas Θ̇, com as velocidades no espaço da tarefa Ẋ como sendo AẊ = BΘ̇, onde

A =

l2 cos(β1) l2 sin(β1) l2 h sin(β1 − α− λ1)
l2 cos(β2) l2 sin(β2) l2 h sin(β2 − α− λ2)
l2 cos(β3) l2 sin(β3) l2 h sin(β3 − α− λ3)

 (4)

B =

l1 l2 sin(β1 − θ1) 0 0
0 l1 l2 sin(β2 − θ2) 0
0 0 l1 l2 sin(β3 − θ3)

 (5)

Portanto, a matriz Jacobiana que mapeia as velocidades no espaço das juntas para o espaço da tarefa é tal que J =
A−1B se A for invertı́vel. O desenvolvimento do modelo cinemático inverso se faz necessário para obter-se o valor



Figura 4. Gráficos comparativos entre os resultados das estimativas.

correto dos ângulos das juntas ativas do manipulador. Esses dados de posição angulares provenientes dos encoders
precisam ser inseridos no modelo desenvolvido nesta seção para que possua a devida unidade e esteja no referencial
correto.

3. RESULTADOS

Como descrito nas seções anteriores, um algoritmo de RNA utilizando a arquitetura de Perceptron Multicamadas foi
desenvolvida para estimar a pose do efetuador do manipulador. Utilizando os dados da câmera, foi possı́vel mapear a tra-
jetória das coordenadas lineares x, y e a trajetória angular α que o manipulador desenvolve após realizar a movimentação
proposta. Foi feita uma avaliação do número de neurônios que a RNA irá utilizar, de forma a minimizar entre a curva
objetivo, capturada pela câmera, e a curva estimada pelo algoritmo. Essa minimização é baseada no desempenho que
a rede irá executar e isso será mensurado de acordo com o Erro Quadrático Médio. Quanto menor for o valor do erro,
melhor é o desempenho da rede, e mais fiél o metamodelo construı́do está da forma como o sistema realmente se com-
porta. O número de neurônios na camada escondida pode ir de um até 150, variando a cada cinco. Em cada processo de
treinamento, a mesma arquitetura com o determinado número de neurônios é avaliado cinco vezes de forma a evitar que
o processo de treinamento, coincidentemente, escolha uma arquitetura que esteja em um mı́nimo local.

Os resultado do treinamento para o melhor número de neurônios no primeiro caso, utilizando seis medidas de ex-
tensômetros e três de encoders pode ser visto pelos três gráficos da primeira linha da Fig. 4. As curvas sólidas em azul
representam a curva obtida pela medição direta da câmera enquanto o efetuador se movimentava enquanto a linha em
vermelho representa a estimativa feita pela RNA construı́da. Da esquerda para a direita está o gráfico da coordenada no
eixo x, em seguida a coordenada no eixo y e por fim a posição angular α do centro do efetuador do manipulador. Esse
resultado, como comentado anteriormente, foi obtido avaliando o desempenho da rede durante o processo de treinamento.
Para a estimativa da posição x a rede obteve um desempenho de 1.5727 ∗ 10−7, baseado no Erro Quadrático Médio, uti-
lizando 141 neurônios em sua camada escondida. No segundo gráfico, estimativa da posição y, a rede desempenhou um
resultado de 1.2362 ∗ 10−7, totalizando 136 neurônios. Por fim, para a estimativa da posição angular α do manipulador,
a mesma obteve um desempenho de 1.5283 ∗ 10−7 com um número de neurônios de 126.

Para o segundo caso, onde foram utilizado apenas três dados dos extensômetros e três dados de encoders o resultado
final da estimativa, curva pontilhada em vermelho, pode ser visto pelos gráficos na segunda linha da Fig. 4. O primeiro
gráfico, que diz respeito a estimativa da posição no eixo x, obteve um desempenho de 3.0315∗10−6 com um número total
de 116 neurônios em sua camada escondida. No segundo gráfico, estimativa da posição do efetuador no eixo y, a rede
obteve um desempenho de 3.6014 ∗ 10−6 utilizando 121 neurônios em sua camada escondida. Finalmente, para estimar
a posição angular α do manipulador, o resultado do treinamento da rede gerou um desempenho de 1.2649 ∗ 10−−5 com
um número de 136 neurônios em sua camada escondida.
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7. RESPONSABILIDADE PELAS INFORMAÇÕES

4. CONCLUSÕES E DISCUSSÕES

O projeto de manipuladores de cadeia cinemática paralela com elos flexı́veis se mostra uma tarefa de alta complexi-
dade, exigindo muita atenção durante seu desenvolvimento e podendo produzir resultados insatisfatórios. A redução de
inércia dos componentes móveis do manipulador proposta por diversos pesquisadores, se mostrou uma das etapas cruciais
para o entendimento da complexidade deste problema. A flexibilidade na estrutura do manipulador faz com que a medição
precisa da posição do efetuador se torne uma tarefa ainda mais complicada de se obter.

Para contornar essa situação, a proposta de construção de um metamodelo baseado em uma Rede Neural Artificial para
estimar essa posição, se mostrou válida e apresentou resultados satisfatórios. A implementação de diferentes subconjuntos
heterogêneos para as fases de treinamento e teste, se mostraram de importânte relevância para se obter uma validação
cruzada entre os dados dos experimentos. Além disso ficou evidente que o número de dados utilizados na camada de
entrada da rede possui uma forte influência no desempenho final do algoritmo de RNA. Observou-se com os resultados
apresentados na seção anterior, que utilizar apenas três dados do extensômetros, ao invés de usar os seis disponı́veis,
ocasionou em um aumento do valor do erro, piorando dessa forma o desempenho da rede.

Portanto, este trabalho se mostrou relevante para problemas de estimativa da postura de manipuladores de cadeia
cinemática paralela, visto a dificuldade de adquirir de maneira satisfatória a postura desse tipo de manipulador. Os resul-
tados obtidos são satisfatórios para os objetivos e problemas propostos, tendo em vista o desempenho da rede construı́da
para realizar essa estimativa. Para um futuro trabalho, pode-se utilizar os resultados obtidos pelas estimativas obtidas
aqui, para realizar um projeto de controle do manipulador, expandindo ainda mais o projeto para outros campos dentro da
Dinâmica e Mecatrônica.
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