

IV RB

SBEE

IV Reunião Bienal da Sociedade
Brasileira de Eletroquímica e
Eletroanalítica

ARARAS-SP

ANAIS DA IV REUNIÃO BIENAL DA SOCIEDADE BRASILEIRA DE ELETROQUÍMICA E ELETROANALÍTICA

24 E 25 DE OUTUBRO DE 2024

ORGANIZAÇÃO:

Green Hydrogen Production Assisted by Ethanol Electrooxidation in Alkaline Media using Ni-B Intermetallic Materials

Seiti I. Venturini; César A. D. Rodrigues and Germano Tremiliosi-Filho

Instituto de Química de São Carlos – Universidade de São Paulo

Av. Trabalhador São-carlense, 400, CEP: 13566-590, São Carlos, SP, Brasil.

e-mail: seitiventurini@gmail.com

The generation of green hydrogen, that is hydrogen produced without carbon dioxide emissions, is one of the most significant tasks of the energy transformation. Electrochemical ethanol reforming in alkaline media can be considered as a viable method for green H₂ production in Brazil, based on a renewable and abundantly available feedstock, ethanol. Nonetheless, there is a need to develop effective and inexpensive HER catalysts for this process to be economically feasible. This work focuses on the preparation of Ni-B intermetallic catalysts for the HER since they are more affordable than the platinum-based catalysts. Nickel-boron (Ni-B) catalysts' physical properties were examined by X-ray diffraction (XRD) which displayed the formation of the Ni₃B phase when the sample was heated at 600°C and 980°C. The electrochemical measurements indicated that the catalytic activity for HER enhanced in the presence of ethanol, which supported the notion that ethanol electrooxidation enhanced the H₂ production. Also, to assess the stability of the Ni-B catalysts, the cyclic voltammetry test was performed and it was observed that the catalysts were quite stable for use in ethanol electrochemical reforming cells.

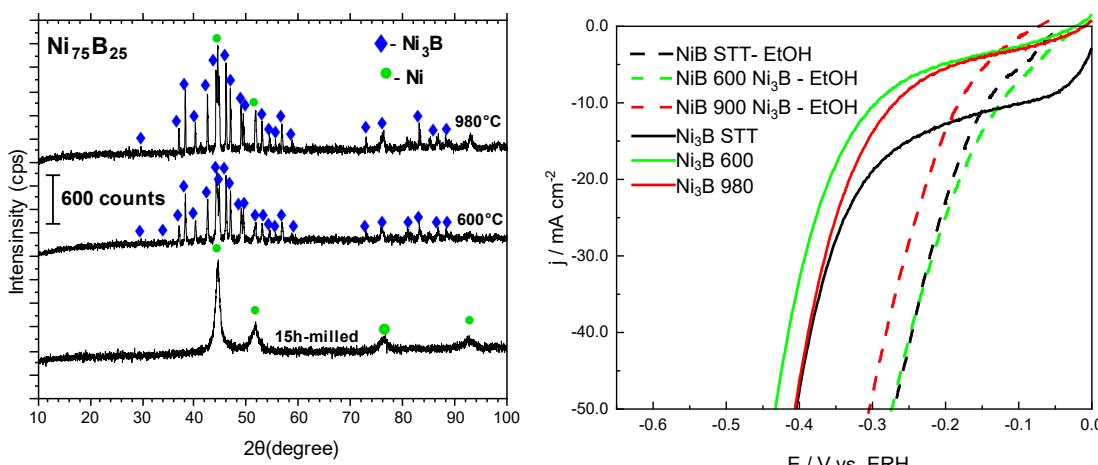


Figure 1: (a) XRD of Ni-B alloys at different temperatures, highlighting Ni₃B formation. (b) Polarization curves of catalysts in 4M KOH + 1M ethanol at 85°C.

Thus, the Ni-B intermetallic catalysts prepared in this work can be considered as promising for green hydrogen generation from ethanol in the basic environment. The findings of the study can therefore be useful in the creation of improved and sustainable H₂ production systems with a great implication on the Brazilian energy sector. The future work will be devoted to the further enhancement of the composition and porous structure of Ni-B catalysts for achieving higher activity and durability of the catalyst.

Acknowledgments:

This work was supported by FAPESP. Seiti Inoue Venturini also acknowledges CNPq for the scholarship (process number 383552/2023-0).