Journal of Hydrology 643 (2024) 131866

Contents lists available at ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier.com/locate/jhydrol

Research papers

Real-time regulation of detention ponds via feedback control: Balancing
flood mitigation and water quality

Marcus NGobrega Gomes Jr. »>%*, Ahmad F. Taha ¢, Luis Miguel Castillo Rapalo?,
Eduardo Mario Mendiondo ?, Marcio Hofheinz Giacomoni

a University of Sdo Paulo, Department of Hydraulic Engineering and Sanitation, SGo Carlos School of Engineering, Av. Trab. Sdo Carlense, 400 - Centro, Sdo
Carlos, 13566-590, Sdo Paulo, Brazil

b University of Texas at San Antonio, College of Engineering and Integrated Design, School of Civil & Environmental Engineering and Construction

Management, One UTSA Circle, BSE 1.310, San Antonio, 78249, TX, United States of America

¢ University of Arizona, Department of Hydrology and Atmospheric Sciences, James E. Rogers Way, 316A, Tucson, 85719, AZ, United States of America

d Vanderbilt University, Department of Civil and Environmental Engineering, Jacobs Hall, Office # 293, 24th Avenue South, Nashville, 37235, TN, United States
of America

ARTICLE INFO ABSTRACT
This manuscript was handled by Andras Bar- Detention ponds can mitigate flooding and improve water quality by allowing the settlement of pollutants.
dossy, Editor-in-Chief, with the assistance of Zhenx- Typically, they are operated with fully open orifices and weirs (i.e., passive control). Active controls can

ing Zhang, Associate Editor. improve the performance of these systems: orifices can be retrofitted with controlled valves, and spillways

Keywords: can have controllable gates. The real-time optimal operation of its hydraulic devices can be achieved with

Model Predictive Control techniques such as Model Predictive Control (MPC). A distributed quasi-2D hydrologic-hydrodynamic coupled

Detention ponds with a reservoir flood routing model is developed and integrated with an MPC algorithm to estimate the

Valve actuators operation of valves and movable gates in real-time. The control optimization problem is adapted to switch

Runoff control from a flood-related algorithm focusing on mitigating floods to a heuristic objective function that aims to

Detention time increase the detention time when no inflow hydrographs are predicted. The case studies show the potential
results of applying the methods developed in a catchment in Sao Paulo, Brazil. The performance of MPC
compared to alternatives that do not change the operation over time with either fully or partially open valves
and gates are tested. Comparisons with HEC-RAS 2D indicate volume and peak flow errors of approximately
1.4% and 0.91% for the watershed module. Simulating two consecutive 10-year storms shows that the MPC
strategy can achieve peak flow reductions of 79%. In contrast, the passive scenario has nearly half of the
performance (41%). A 1-year continuous simulation results show that the passive scenario with 25% of the
valves opened can treat 12% more runoff compared to the developed MPC approach, with an average detention
time of approximately 6 h. For the MPC approach, the average detention time is nearly 14 h, indicating that
both control techniques can treat similar volumes; however, the proxy water quality for the MPC approach is
enhanced due to the longer detention times achieved.

1. Introduction States (Smith, 2024). It is expected that new strategies for flood adapta-

tion will be required to cope with more extreme and frequent events in

Floods are becoming more frequent due to urbanization and cli- the coming fiecades. Such strategies include implementing and retrofit

mate change (Miller and Hutchins, 2017; Lu et al., 2022; Gao et al., stormwater infrastructure such as reservoirs, channels, tunnels, and vol-

ume reduction techniques that promote runoff infiltration (Zahmatkesh
et al., 2015).

Retrofitting new infrastructure in urbanized areas is often infeasible

or cost-prohibitive, especially in large and dense urban centers (Cook,

2020). Estimates indicate that more than USD 1 trillion between 1980
and 2013 were indirectly associated with flood damages (Winsemius
et al., 2016). Severe storms and inland flooding combined caused more
than USD 650 billion between 1980 and 2023, only in the United
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2007) due to the lack of physical space. A common characteristic
in large and older cities is the occupation of floodplains and areas
along rivers and creeks, which restrict the implementation of new
infrastructure such as online reservoirs or even off-line systems (Walsh
et al., 2001). Alternatively, retrofitting existing stormwater systems
with techniques that allow for increased performance without requiring
new areas, such as real-time control (RTC), is a viable alternative to
mitigate the impacts of climate change and urbanization in stormwater.

RTC in stormwater reservoirs can provide multiple benefits related
not only to flood control (Gomes Junior et al., 2022; Wong and Kerkez,
2018; Sadler et al., 2020), but also to water quality (Oh and Bartos,
2023; Sharior et al., 2019) and erosion control (Schmitt et al., 2020).
RTC works by controlling a physical system (e.g., reservoirs, channels)
by changing the flow area of a hydraulic device (e.g., orifice valves,
spillway gates) through actuators to establish a controllable operation
that typically has only one goal (e.g., peak flow mitigation) (Oh and
Bartos, 2023).

However, proof-of-concept of stormwater RTC applications is yet to
be limited in the literature, although an extensive literature exists for
Combined Sewer Overflows (CSO) (Zhang et al., 2023; Van der Werf
et al., 2023; Van Der Werf et al., 2022; Castelletti et al., 2023; Duchesne
et al., 2001; Jean et al., 2022). Often, existing studies of stormwater
RTC are limited to modeling studies for flood control only (Schmitt
et al., 2020; Wong and Kerkez, 2018), with results for very specific
case studies or with limited modeling approaches that might not apply
to other real-world cases (Webber et al., 2022). To address a more
generalizable methodology for stormwater RTC in small catchments,
a physically-based model that couples RTC techniques in a framework
with a quasi 2-D watershed hydrodynamic model and reservoir routing
modeling is developed. The RTC technique employs a Model Predictive
Control (MPC) algorithm to manage the functioning of valves and gates
in stormwater reservoirs to reduce floods and improve water quality.

MPC is a control technique that seeks to optimize a system’s per-
formance based on predictions of future states in a feedback loop. In
the case of stormwater systems, MPC is usually used associated with
weather forecasting that would predict rainfall intensity. By solving
multiple optimization problems for each new rainfall forecast, the MPC
can define an optimized control strategy that is aligned with the flood
control objectives of the system (Gomes Junior et al., 2022).

By retrofitting existing reservoirs with RTC coupled with MPC tech-
niques, decision-makers, planners, and designers can increase flood
performance without requiring new areas to construct reservoirs. With
the advent of the Internet of Things (IoT), inexpensive sensors, and free
available GIS datasets, one can increase the efficiency of reservoirs by
simply applying a valve and gate operating system (Wong and Kerkez,
2018).

In general, the recent literature combines data-driven, artificial
intelligence, and ruled-based approaches, with some studies using
physics-based modeling and optimization-based algorithms. Recent
studies apply RTC using data-driven algorithms such as reinforcement
learning and artificial neural networks. The research developed in Mul-
lapudi et al. (2020) applies a reinforcement learning technique for
flood mitigation to control valves in stormwater reservoirs, which
requires data observation, relatively high computational cost and data
storage. Similarly, Zhang et al. (2018) developed a neural network to
estimate turbidity and TSS concentrations, focusing on developing a
water quality-based RTC. Both studies do not provide a fully mathe-
matical description of flood and water quality processes and focus on
data observation. Although a shift from the computational paradigm
towards the data-centric in water engineering is occurring (Fu et al.,
2024), the availability of enough data to develop data-driven models
can be a problem in developing countries.

Physics-based models coupled with control techniques can be a so-
lution for the generalization and wider application RTC for stormwater
flood management. The Storm Water Management Model (SWMM),
which uses 1D Saint-Venant-Equation solver for channel flood routing,
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has also been applied in several studies for RTC of stormwater systems.
Research conducted in Maiolo et al. (2020) coupled SWMM to simulate
movable gates in conduits and reduce peak flows. Other studies, such
as those presented in Bartos and Kerkez (2021), demonstrate the use of
digital twins of the catchment for flood modeling and, more recently,
for pollutant modeling (Kim and Bartos, 2024).

The research presented in Bilodeau et al. (2018) evaluated peak
flow reduction and detention time using PCSWMM, and the results
obtained show that both objectives can be satisfied with RTC. The
study presented in Wong and Kerkez (2018) also coupled the SWMM
solver with a reactive control (i.e., a control not based on future
predictions) algorithm that controls the valve opening in stormwater
reservoirs through reactive optimization control, indicating that the
RTC, even when not applied with predictive controllers, can provide
better performance than passive cases. The use of MPC as control
technique, however, is shown to be more adaptative to a wide range
of forecast and can outperform reactive and passive scenarios and most
cases (Gomes Junior et al., 2022).

One issue with implementing RTC in stormwater reservoirs arises
when they are connected in a cascade system and the control is central-
ized per reservoir. Research conducted in Ibrahim (2020) linked this
problem and developed a hybrid approach for systems with various
reservoirs that can have feedback according to the applied controls.
As in previous studies, this research utilized conceptual hydrological
models that may be sensitive to different catchments and necessitate
thorough data-driven calibration for parameters that are not directly
measured.

In addition to the applications of RTC in stormwater systems and its
potential benefits, implementing RTC in a real-world system still has
some drawbacks. One of the issues of RTC is how municipalities would
accept a technology to automatically manage flood control measures,
such as valves, gates, and pumps. Research conducted in Naughton
et al. (2021) showed that municipalities are reluctant to implement
RTC for reasons such as operational and maintenance costs. However,
the RTC of stormwater reservoirs has been shown to enable stormwater
reservoirs to reach 80% TSS removal in Wisconsin, meeting local water
quality criteria (Naughton et al., 2021). RTC in stormwater reservoirs
coupled with physics-based modeling of the watershed is promising
for optimizing reservoir performance for floods and runoff quality
treatment (Oh and Bartos, 2023). However, the application of MPC
requires a relatively rapid model (i.e., plant model in control theory)
of the underlying flood routing and water quality transport and fate
systems, which can be very complex due to the non-linear flood routing
and infiltration models that might be required to simulate real-world
cases.

It is observed from the aforementioned literature a trend of using
simplified plant models (i.e., a typical model that only captures the
most significant part of the complete system dynamics of watersheds
and reservoirs) to delineate the hydrodynamic and pollutant transport
and fate phenomena. Data-driven algorithms and black-box models
are also becoming more common with monitoring and data-gathering
advances. These techniques are more feasible when high-fidelity and
frequent observations of flow discharges, water levels, and pollutant
concentrations are available, which is a drawback for poorly monitored
stormwater systems. A more accurate description of plant dynamics is
developed to be less dependent on field-specific observations and to
create a more generalizable method that could be case study-free.

Naturally, some degree of parameter estimation is required, such
as soil properties and land roughness; however, these have physical
meaning and are relatively simpler to estimate with freely available
GIS datasets than site-specific parameters used in a black-box model,
for example. The model capabilities are expanded by using the most
physics-based parameters possible to allow for generalization and a
wider application. However, even though our ability to explain hydro-
dynamic processes is increasing, simulating water quality without field
observations is still complex.
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In the proposed approach, the detention time is used, that is, the
time in which stormwater runoff is stored in the reservoir while no
inflow is entering, as a proxy metric related to water quality. Relatively
higher detention times increase the proliferation of diseases by the
action of bacteria, while relatively lower detention times do not allow
enough time for the sedimentation of particulate, for example. Thus,
one can define optimal detention time (i.e., usually between 18-h to 36-
h) as an alternative to modeling the complex dynamics of water quality
and be able to allow RTC of stormwater runoff pollution by allowing
sedimentation while avoiding undesirable biologic treatment.

With that mentioned, the objectives of this paper are twofold:

+ Develop and validate an integrated optimization framework mod-
eling of watershed and reservoir dynamics that allows integrated
real-time control of water quantity and water quality in flood
control reservoirs.

» Evaluate how the developed approach would perform against
passive scenarios with the valve fully or partially opened for
discrete critical events and one hydrological year of continuous
simulation.

Achieving these objectives leads to the fundamental contributions
of this paper, described as follows:

» The model developed in Gomes Junior et al. (2022) is expanded
to include a quasi 2-D kinematic-wave state space hydrodynamic
model. Valve and gate control are included as control variables
and spatial modeling of rainfall and evapotranspiration. More-
over, modeling reservoirs with variable stage-area and stage-
porosity is allowed to simulate low-impact development tech-
niques.

A proof-of-concept of the developed model by comparing results
with the HEC-RAS 2D full-momentum model to provide a vali-
dation scenario for the hydrological simulations of the watershed
model is performed.

An adaptive MPC optimization problem that switches the weights
and the objective function according to future predictions of
inflows, allowing flood and water quality-based control, is devel-
oped.

A novel smart control technique is developed to mitigate both
major and minor floods, while also facilitating the removal of
pollutants by increasing detention times.

2. Material and methods

An enhanced version of the real-time control stormwater model
(RTC-SM) presented in Gomes Junior et al. (2022) is developed. Three
novel advancements were included and are briefly described here and
later detailed in this section. These advancements are important to
adapt the previous model (Gomes Jtnior et al., 2022) to broader case
studies where a more detailed water balance modeling is required, in
addition to being able to simulate reservoirs with complex bathymetry.
First, the watershed model now accounts for evapotranspiration mod-
eling using the Penman-Monteith method (Sentelhas et al., 2010). Sec-
ond, the model was expanded to include groundwater replenishment
using the properties of the uppermost soil layer and saturated hydraulic
conductivity to derive replenishing rates (Rossman and Huber, 2016).
Third, the reservoir model can now account for stage-varying areas,
allowing the simulation of real-world natural reservoirs with complex
bathymetry.

Using mostly physics-based models, the RTC-SM model solves wa-
tershed, reservoir, and 1-D channel routing. The watershed is dis-
cretized into finite cells, and flow is assumed to route toward the
steepest surface elevation gradient. Infiltration is modeled using the
Green-Ampt model (Green and Ampt, 1911), and transformation of
water depth into flow is performed using the non-linear reservoir
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Fig. 1. Hydrologic conceptual model where ¢, and gq,, are inflows and outflows
[L T'], i, is the rainfall intensity [L T~'], ety is the real evapotranspiration [L T'],
f is the infiltration rate [L T~'], f, is the groundwater replenishing [L T ', v is
the suction head acting at the wetting front [L], h, is the effective water depth
[L] while A is the total depth [L], h, are the losses through plant interception and
initial abstractions [L], and L(¢) is the effective depth of the saturated zone [L]. Two
fundamental equations are solved for the atmosphere-soil (1) interface and the wetting
front-soil interface (2).

model (Rossman, 2010). A gradient boundary condition is assumed at
the watershed outlet, which discharges into a stormwater reservoir.

The reservoir can be modeled as either a stage-varying area and
volume or as a prismatic reservoir. Moreover, it can be modeled with
stage-varying porosity (e.g., porosity varying with depth in case the
reservoir has layered soils) or with 100% void content (that is, regular
detention ponds). In other words, the model can be used to simulate
real-time control modeling of infiltration Low Impact Developments
(LIDs) stormwater control measures such as bioretentions and per-
meable pavements. Although the model can simulate 1-D channels
using the diffusive wave model, this feature is not investigated in this
paper (Gomes Junior et al., 2022).

2.1. Watershed hydrologic and hydrodynamic modeling
The overall mass balance differential equation is written for all

cells of the domain and accounts for the surface and the groundwater
replenishing mass balance as follows (see Fig. 1):

Oh (1) .
= = A = Qou D) + 1, = erg () = () (1a)
af4(0)

==l 1, (1b)

The water balance in the watershed cells is calculated from in-
flows, outflows, rainfall, evapotranspiration, and infiltration. For a
given cell (i,j) in the catchment domain, using a finite-difference
forward Eulerian scheme, the mass balance is discretized into:

out

B+ 1) = B30 + A1 g0 + 1500 = e (0 = g (0 = FiK))  (22)
St = 100+ a £t - 1), 2b)

where f, is the cumulative infiltrated depth [L] 4r = model time-step
[T], k = time-step index [-].

The full derivation of the hydrological inputs, such as evapotranspi-
ration, Green-Ampt (Green and Ampt, 1911) infiltration modeling, and
groundwater replenishment rate, is described in Supplemental Material
(SM).

To solve Eq. (2a), g;, and g, are calculated from a momentum
equation. Manning’s equation is used as flow-depth relationship cou-
pled with the non-linear reservoir method to allow modeling of losses
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to initial abstraction, such that:

max(hi*j — pi 0)5/3

W 0’ ii\!/?

dl = — (s7) " (3a)
B L \5/3

- max(h'd-hgl,o) ap

q'yd:T(s‘g) 4x, (3b)

where s; is the friction slope, assumed as the bottom slope, n is the
Manning’s roughness coefficient [T L~'/3], Ax is the pixel x discretiza-
tion [L], and Ay is the pixel y discretization [L]. From now on a raster
flood model with Ax = Ay is assumed.

The kinematic wave approach is computationally faster than diffu-
sive (Gomes et al., 2023) local-inertial (Bates et al., 2010), and full
dynamic models (Brunner, 2016); however, it is not appropriate in
complex terrain with low relief or where phenomena such as backwater
effects govern the hydrodynamics (Neal et al., 2012). Besides these
limitations, for catchments with relatively steep terrain gradients, the
kinematic-wave approximation presents accurate results (Yu and Duan,
2014).

From the previous equation, it is observed that the hydraulic radius
is assumed to be the effective depth of the water (h — hy), which is
more applicable in shallow water approximations when smaller depths
and larger grid dimensions are used in the simulation (Akan and Iyer,
2021). The friction slope used in Eq. (3) must be positive and directed
toward the central cell’s downstream cell, assuming all cells have an
assigned flow direction.

The mass balance equation shown in Eq. (2a) requires the calcula-
tion of intercell flows and a flow direction matrix for the x—x and y—y
directions. The procedure to derive these matrices is detailed in the SM.
In addition, the procedure to estimate the adaptive time-step based on
the Courant-Friedrichs-Levy (CFL) (Courant et al., 1928) is presented
in the SM.

2.2. Reservoir model

The reservoir receives inflow from the watershed, which can be
calculated by solving Eq. (3) for the outlet cell i,. Therefore, the
reservoir net inflow can be calculated as:

5,0 = g, (k) + (1500 = €50) o (K, @

where ¢ is the watershed outflow [L T~!'] (normalized by reservoir
area), il'J [L T-'] is the rainfall intensity in the reservoir, e; [L T']1is
the evaporation, and w, := f(h"(k)) is the depth-varying reservoir area
[L21.

The derivation of », is made from known stage X area values. A
continuous function of the reservoir area in terms of water depth is
built for each known stage x area value. A detailed explanation and
mathematical derivation of this procedure is shown in the SM. For
simplicity of notation, assume w,(h) = w, and n(h) = .

By solving a mass balance equation in Eq. (5) and an energy
equation in Eq. (6), one can determine the reservoir outflow as
follows (Gomes Junior et al., 2022):

AN o
o) (600 = 00 0) ®

Rk + 1) = k' (k) + (

u (k)k, (Z;(k))avifhr(k) <p. else
o (PG00, 0, 0,8 ) = o o 6)

u ok, (R 0)) ™ + ok, (BEGK) )
where k, [L3~% T~!] and k, [L?>~% T~!] are the orifice and spillway lin-
ear rating-curve coefficients, and «, [-] and «, [-] are the exponents of
these rating-curves. The variable ?1; (R*(k)) = max (h*(k) = (hg + hy) .
0), is the effective water depth at the orifice [L], A, is orifice depth
from the bottom [L], h,, = 0.2d,, d,, is the hydraulic diameter of the
orifice [L], ?1; (h"(k)) = max(h' (k) — p,0), is the effective water depth at
the gate [L], where p is the spillway elevation [L], o := f (h"(k)) is
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the reservoir stage-area function [L2], u, is the valve openness [-], and
u, [-] is the gate openness.

By calculating the Jacobians of Eq. (6), one can derive a linearized
model for the reservoir outflow that considers control in valves and
gates by performing a Taylor’s series 1st-order approximation. Let a(k)
be the Jacobian of Eq. (6) with respect to A", (k) the Jacobian with
respect to u,, and y(k) the Jacobian with respect to u,, presented as
follows:

a(k)

9ghy (H(K), uy (K), uy (k)
ohr

ag—1

= au kg (%V(k))a"*l + agug (), (25(1@)

(7a)
B(k)
———
g’ (R (k),u, (k) L (n ay
0—uv =k, (hv(k))
(k)
—TN—
g5 (h" (), us(k))
dug

(7b)

=k, (25(/@)%, 70)

which ultimately turns out in a linearized model around an equilibrium
point Xoq = [, u, u;‘]T that collects the reservoir depth, valve and gate
openness as follows:

e(k) aw
—

——
= q;ul (hfr) + alhr:h;,u\,:u:‘,,uszuf (hr(k) - hfr)
Blk) 7(k)

Gt (B (K, xeq)

— —
+ ﬁlh‘:h‘;,uv:ut (uv(k) - ui) + ﬂlh“:h;,uv=u§ (us(k) - uf) ’
(8)

where the orifice is defined by parameters k, and «, and the gate is
described by k, and «.

Therefore, tunning the orifice and gate parameters with different
values allows the model to simulate rectangular, circular, or vari-
able shape orifices while gates can be modeled as open spillways
(i.e., Thompson Spillway a, = 3/2) or as controllable gates simulated
as orifices (i.e., «g = 1/2). The linear parameters k, and k, are the
multiplication of all linear terms and terms inside exponential equa-
tions that are not a function of the representative water depth in the
hydraulic equations. For the orifice case, k, = c;a,,+/2g, where ¢, is
the orifice discharge coefficient [-], a, 7 is the orifice area [L?], and g
is the gravity acceleration [L T~2]. More details on the modeling of the
governing coefficients can be found in Gomes Junior et al. (2022) and
French and French (1985).

Substituting the inflow discharge from the watershed [Eq. (4)],
which is input data for the reservoir model derived from the watershed
model, the linearized outflow discharge [Eq. (8)] derived from Egs. (6)
and (7), and tracking the outflow discharge as the output of the
reservoir model, a reservoir state-space model is developed, such that:

R+ D] _ [AGo BY(k) B (k) Pk (k)
= h'(k k (k cd
[q:,m(k), [C(k) o+ [DV(k)] Wk + [DS(k) (k) + [e(xeq(k»]
©)

where the tracked state is the reservoir water depth (h"(k)) and the out-
put is the reservoir outlet discharge (¢ ,) being controlled by the valve
(u,) and gate (u) openings. The first row represents a mass balance
equation, whereas the second row is an energy balance equation. Time-
varying single matrices A(k), B"(k), B%(k), CV(k), C*(k), D"(k), D*(k)
are derived taken the linear terms of A" or u,, or u, from Egs. (5) and
(6). The source and linearized terms ¢(k) collect the inflow discharge
from the watershed, and the operational point substitution results in the
linearized outflow discharge equation in Eq. (6). Similarly, e(k) collects
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Inflow Hydrograph
Relatively Large Reservoir
Relatively Small Reservoir
 —)
’_m

Elapsed Time

Flow Discharge

Fig. 2. Inflow and outflow hydrographs of a relatively large and relatively small
stormwater reservoir with water quantity and quality control, where 4¢, is the required
detention time. The factor «, can be tuned and be used to represent a desired peak
flow reduction under minor flood events with maximum predicted inflows smaller or
equal than ¢}, . The relatively large reservoir can store all inflow hydrograph and later
release after a detention time threshold is reached, while the relatively small reservoir
does not have the storage capacity to do so and has to be operated focusing on flood
mitigation.

the application of the operational point into the linearized terms of the
discharge, in Eq. (6).

The previous derivation of the state-space model in Eq. (9) can be
easily expanded to more reservoirs and watersheds using topological
relationships (Gomes Junior et al., 2022).

2.3. Model predictive control

2.3.1. Objective function
The operation of stormwater reservoirs can have multiple goals. For
flood control, reservoirs should be operated to mitigate peak flows.
One way to attenuate peak flow using active control techniques is
to transform the reservoir operation into a minimization of flood
costs (Gomes Junior et al., 2022). Flood costs can be either the cost of
flood damage or can be abstracted to include various flood-related costs
such as (i) valve operation (i.e., control energy), (ii) maximum water
level at the reservoir, or (iii) violation of maximum tolerable outflow.
These objectives can be grouped into a single-objective function given
by:
Ny-1 5 )
min Y J(hf(k + Duy(k + 1), ug(k + 1)) = Au{kuz +p, [ 4], )

Uykolsk =0 2

s a0, )

* Pak (”max (qi‘( = Greg o0 “ )
+ pus ([ max @, = a5 0)| ) a0

where J is the cost function [-] and their weights are given for the
control input (p,), for the depths of the surface of the water in the
reservoirs (p,) and for the exceedance of the maximum tolerable flow
(pg)- N, is the prediction horizon, du,; = [du,, ... Au,x Y, Augy, =

(Auyy .. dugy 17 by = [hf,...thp,IJT, 4 = 1+ G, ,l] 5 45 ()

is the time-varying reference outflow.

The problem constraints are given by the physics of the system
dynamics, and the control signals u, have each entry between 0 and
1, such that the valves can only be fully or partially opened. Therefore,
the solution of the minimization function of Eq. (10) is mathematically
constrained by:

subject to: Eq. (9) (11a)
Aty < Au(k) < Auy,, (11b)
u,(k),uyk) e U :=R €[0,1] (11c)
h'(k)eX =R e[0,h ] (11d)

where 4 is the maximum reservoir depth [L].
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Fig. 3. Inflow hydrograph and the definition of the maximum inflow ¢, for each
prediction horizon p,. The weights to be used in Eq. (10) are defined by each maximum
inflow g, for each prediction horizon as shown in Eq. (12). Therefore, the control
theoretical goal is changed according to the predicted flood magnitude. Note that qfn
violates the threshold for large flood ¢:* , increasing the focus of the control for flood
mitigation, while ¢!, for example, has a maximum predicted inflow in the prediction
horizon smaller than the threshold for minor floods.

The reference outflow qref(k) [L? T~!] represents the operational
tolerable flow. A heuristic approach to change the reference outflow
according to the maximum inflow (q; ,) predicted in the control hori-
zon k is designed. The goal is to deﬁne a control that could work for
large storms and minor events. The reference g, ; changes according to

the predicted inflows and can be written as:

if
. a, max (q; ), if max(qf ) < gy, (12a)
; /- Elsewhere
e = 10'p,,, if max(q} ) < q%., (12b)
& 10%p,, Elsewhere
, 10%p,, ifmax (g} ) = qi, (120)
o 0, Elsewhere

where a, represents the tolerable maximum reservoir outflow peak /
maximum inflow from the upstream catchment at the control horizon.
In other words, (1 — a,) represents the minimum peak flow reduction
goal applied only in cases where the maximum predicted inflow on the
control horizon is smaller than ¢* . If the predicted maximum inflow is
greater than ¢* , one can assume that this is a large event and limit the
maximum outflow to ¢¥* instead of trying to reduce only a percentage
of the maximum flow. An illustrative example of the maximum flows
predicted in a prediction horizon is shown in Fig. 3.

The aforementioned parameters are defined according to the reser-
voir goals and can be parameterized for different reservoirs, water-
sheds, and local regulations of maximum outflows. The problem is
formulated as a non-linear, non-convex optimization problem by choos-
ing these constraints and details. In this model, two solvers for the
solution of Eq. (10) were implemented, the patternsearch and the
fmincon solvers. Previous modeling results using globalsearch and
genetic algorithms resulted in overly expensive time solutions and
were not utilized in this investigation. All optimization results pre-
sented in this paper are using the fmincon algorithm from Matlab.

Instead of starting the optimization with randomly multi-start points
focusing on finding global minima, initial points are created based on
simple ruled-based logic. The rationale behind this is to start with initial
points with no valve operation (i.e., no control effort), but that would
explore the whole decision space. Given several random inputs (n,) for
the multi—s?art search, a series of inputs U, = [u(l), ug']T are created,
with u6 = nL,[leXd Vie[l,n]eN,,, and the optimization problem is

run for each of them. Afterward, the model chooses only the solution
with a smaller objective function value, given by Eq. (10).

Finally, to accomplish proxy water quality goals (i.e., increase de-
tention time), a routine that identifies the maximum inflow in the
prediction horizon is developed, and if this quantity equals O, the
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Fig. 4. Study area map in Sdo Paulo City - Brazil. The reservoir has an inlet channel and receives headwater from the Aricanduva-I watershed. During large events, runoff is

spilled by a rectangular crest spillway.

detention time starts to be counted. At the beginning of this phase, the
valves are closed (that is, u, (k) = 0), and if no other event occurs during
a maximum detention time period (4t¢,), the outflow is released by
opening the valves at a capacity equal to ¢;'. This can be the threshold
for minor flood events or can also be tuned as a flow used to avoid
erosion, for example. By limiting the outflow to ¢, the valve opening
can be calculated as:

q*
e = min (——.1), as)
' ko\/hE
where k, = cya.,;1/2g is the orifice coefficient, ¢, is the discharge

coefficient, a, is the effective area of the orifice, g is the acceleration of
gravity and A is the reservoir water depth at the end of the detention
time.

During wet weather periods, that is, periods where the inflow is
smaller than a pre-defined flow threshold (i.e., typically < 2 m? - s~!
depending on the catchment area) during the prediction horizon, the
MPC stops the algorithm and switch the problem to a fully water
quality-based control. However, if some of the predicted inflows are
positive, the algorithm returns to flood-based control by seeking the
minimization of Eq. (10). This simple heuristic rule allows us to change
the problem control from a flood-based control approach during wet
weather events to a water quality-based control approach during dry
weather periods, while avoiding releasing high flows by limiting the
valve opening up to a certain openness where the maximum flow
released is smaller than g .

A conceptual example of two reservoirs receiving the same inflow
hydrograph is shown in Fig. 2 to illustrate the idea of the MPC approach
with proxy water quality control. In Fig. 2, each notable point is
described as follows. Point 1 represents the maximum inflow peak

discharge, which is larger than the threshold for large flood events g* .
The smaller reservoir cannot hold the total inflow hydrograph volume
and has to start to release flows in 2 to allow a desired peak flow
mitigation in 3; that is, the maximum peak flow released in 3 follows
the desired peak flow factor for minor floods a,. This factor is tuned
to allow peak flow mitigation under relatively small events, which
is a drawback of passive reservoirs designed only for relatively large
events and, hence, with relatively large orifices that cannot mitigate
small inflow discharges. After the inflow hydrograph stops in 4, both
reservoirs have closed the orifice valves. The larger reservoir, however,
always had the valves closed since it had enough capacity to store the
hydrograph volume.

After reaching the detention time Aty with no predicted inflow hy-
drographs in this period, both reservoirs now open the valves, releasing
a maximum flow ¢!, also tuned to represent a desired outflow rate that
can be designed to avoid erosion or regulate a minimum flow discharge.
The smaller reservoir has a faster stage-area function, providing a larger
variation in the depth with a relatively smaller variation in volume,
which explains the faster release of the flow, while the larger reservoir
takes longer to release all flow hydrograph. Both cases show how the
designed MPC approach can enhance flood dynamics.

2.3.2. Performance indicators

To evaluate the performance of the MPC strategy, active-controlled
results are compared with a baseline scenario corresponding to the
passive scenario, that is, the spillway gate and the valve are fully open.
To quantify peak flow mitigation, duration curves corresponding to
the frequency of discharges and depths are derived, and the average
flow discharges and the root mean squared water depths are calculated
during a 1-yr continuous simulation.
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Fig. 5. Land use and land cover map (a), hypsometric map of the watershed (b). Elevation was filled and resampled to 50 m. Following this, the D-8 watershed algorithm was
run, and the watershed boundary was created. All other maps were derived by clipping available rasters into this resulting polygon.

For water quality, the detention time and the released volume
through the valve are tracked to calculate the average detention time as
a proxy representation of the outflow runoff water quality, calculated
as a function of the product between the runoff volume of the outflow
and its detention time. In summary, the average detention time can be
defined as the weighted average between the runoff volume released
by the valve and the detention time associated with the release. The
treated (i.e., the volume that passed through the bottom orifice) is given
by:

k k
Vou (k) = / B0t =Y ¢ ()t a4
0 i=0

By calculating the product between the runoff volume and the
detention time and dividing by the runoff volume, one can derive the
average detention time calculated as:

DI ROYING

Aiy(k) = Vo
out

, (15)
where 4t4(k) is the average detention time for step .

In a theoretically large reservoir where flooding is not a concern,
the average detention time will be equal to the expected detention time
At,. The controller is designed to prevent floods, so it may switch from
quality-based control to flood control if inflows are predicted before
At,, which can reduce the average detention time.

The detention time is only tracked and updated when the prediction
inflow hydrograph within the control horizon is null, and the reservoir
water depth is greater than 0.2d;. In other words, the detention time
is only calculated when no flows are predicted, and the water depth
is enough to begin to be released by the reservoir passively. In cases
of predicting inflow hydrographs or with a water depth stored in the
reservoir, the detention time is constantly updated. Following this idea,
the treated volume V,, from Eq. (14) is also only calculated when these
conditions are met.

2.4. Study area

The Aricanduva-I watershed drains 4.7 km? from the headwaters of
the Aricanduva River. Since the urbanization of the Sdo Paulo city, this
area has suffered many problems due to extreme hydrological events.
A detention reservoir (on-line) responsible for storing 200,000 m> of
stormwater runoff (normal capacity below the spillway) discharges
through a rectangular orifice (1 m x 1 m) operated passively, that
is, no orifice control is currently implemented. An emergency spillway

can be used during large events, discharging the overflow directly into
the downstream drainage system (de Hidraulica, 2020), as presented in
Fig. 4.

The following numerical case studies investigate the system’s per-
formance if the orifice and the spillway were controlled through active
valves and gates. The digital elevation model (DEM) collected from
airborne LiDAR surveys available on the GeoSampa portal (PMSP,
2017) and the land use and land cover data were retrieved from
the Dynamic World database, which classifies the entire world into
eight main classes (Brown et al.,, 2022). This information is pre-
sented in Fig. 5. To treat the DEM and enhance flow continuity and
pathways, a GIS pre-processing in the raw DEM data is performed.
Using the topotoolbox (Schwanghart and Scherler, 2014) one can fill
sinks, smooth streams, and impose minimum slopes using functions
fillsinks, klargestconncomps, and imposemin (Schwanghart and
Scherler, 2014). The watershed is mostly described by the headwaters
of the Aricanduva River and, therefore, has a relatively steep average
slope of approximately 20%, indicating that gravitational effects prob-
ably govern the hydrodynamics of the catchment. Additionally, this
catchment does not have the influence of other upstream reservoirs that
would play a role in water storage within the catchment.

2.4.1. Watershed properties

The soil Green-Ampt of suction head, saturated hydraulic conduc-
tivity, effective moisture content, and initially stored depth were esti-
mated as 31.5 mm, 2.54 cm h™!, 0.476, and 5 mm, respectively based on
literature data (Rossman and Huber, 2016). The Manning’s roughness
coefficient values were estimated for each LULC of Fig. 5, resulting in
0.015, 0.06, 0.03, 0.12, 0.03, 0.05, and 0.016 s m~'/3 for Water, Trees,
Grass, Crops, Shrub/Scrub, and Built Areas, respectively (Downer et al.,
2006).

2.4.2. Reservoir stage-area-volume
The reservoir has the area varying with the water surface depth and
is described by points of depth x area, presented as follows:

2,833.33h" (k) + 50 if A'(k) <09
2,600 + 59,900(A" (k) —0.9) if 0.9 < h"(k) < 1.9

AR (k) = (7 ) . ® (16)
62,500 + 2,080(h" (k) — 1.9) if 1.9 < h"(k) < 4.4

67,700 + 2,080(h' (k) —4.4) if 4.4 < h'(k) <6.9,
where the area values are given in m? and the depth values in m.

The depth-varying volume is calculated from the stage-area relation-
ship by integrating this function in Matlab. A linear variation of the
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area with respect to depth is assumed between two known points of
depth-area, allowing the analytical determination of the function that
describes the area between two known points.

2.4.3. Outlet devices

The reservoir has a 1 m x 1 m orifice located at the bottom and a
spillway at a depth of 44 m with 9 m of crest length. A discharge
coefficient of 0.61 is assumed for the orifice, resulting in k, = 5.4039. If
the spillway was uncontrolled (i.e., g,(k) = k(h(k) — p)!-*), the spillway
coefficient would result in k; = 18.9 (see Gomes Junior et al. (2022)).
However, if the spillway is retrofitted with a controllable device that
vertically changes the effective spillway area by a movable vertical
gate, the orifice equation discharging at the atmosphere equation can
be used, such that:

Gef (k)
——

a.(h) = ¢ (u(les (h) = p) ) 1/ 28 (h0) = p), a7

where u (k) is the control operation between 0 and 1, where O repre-
sents a fully closed gate, and 1 represents a gate open a depth equals
the effective depth in the gate (h(k)—p). Eq. (17) turns out in the format
qs = ky(h — p)% as follows:

k.

s

’ \ 32
0. = el V28 ()= p) . (s)

with ag =3/2.

Therefore, if one models the spillway as a controllable device using
an effective width of 9 m, it results in k; = 27 and a, = 3/2 for a
cq = 0.68.

Although controlling the spillway may be desirable, a higher chance
of overtopping can occur by reducing the spillway capacity during
flood propagation. In cases where the predicted inflow supersedes the
reservoir capacity volume, the model assumes the overtopping volume
as the spillway outflow volume and emits an alert in the model that
this condition is occurring. Typically, this case would have a poor
optimization function value by tunning the weights for exceeding ¢’*
relatively high. This condition is more likely to occur in reservoirs that
are poorly designed.

A summary of the RTC-Stormwater model is presented in Fig. 6.

2.5. Model validation - Comparing kinematic quasi-2D model with full
momentum model

The RTC-SM model is applied and compared to HEC-RAS 2D in the
study area catchment. The hydrographs generated at the catchment
outlet are used as the metric to assess model performance. In this
scenario, infiltration and initial abstraction are neglected, and only the
assessment of the overland flow routing is considered. Moreover, to
test only the capacity of the model to predict flood depths, a constant
Manning’s roughness coefficient of 0.02 s m~!/3 is assumed.

The kinematic wave model is compared with the most advanced
solver of HEC-RAS 6.3 - the Shallow-Water-Equation set solved with the
Eulerian Method (SWE-EM Stricter Momentum) (Brunner, 2016). The
approach is tested by modeling an unsteady-state rainfall of a 100-yr
storm with the Alternated Blocks hyetograph.

To make sure the reservoir storage effects do not affect the hy-
drographs results, an inter-catchment in HEC-RAS is delineated to
represent the contributing storage areas that drain to the entry of the
reservoir, as shown in Fig. 4. Therefore, the effective drainage area was
reduced from 4.70 km? to 4.49 km?2.

In this scenario, all tested scenarios were simulated with a constant
time step that varied according to each model to guarantee numerical
stability. The hydrographs of the simulation are compared, and the
peak and volume errors are calculated. The models were tested with
spatial resolutions of 10 and 30 m.

Journal of Hydrology 643 (2024) 131866

2.6. Scenario 1 - Simulating the water quantity and quality control under
dynamic rainfall events

This scenario modeled the catchment with a cell size spatial reso-
lution of 10 m. A 44-h event is tested consisting of two design storms
of 10-yr, 2-h duration, spanned 6-h each other temporally distributed
with the Alternated Blocks Method. Both design storms have 77 mm
of rainfall volume each. This design event shows how the MPC strat-
egy would work under relatively large events occurring sequentially,
forcing the MPC strategy to perform under critical forecast.

The MPC approach is compared with the passive scenario, which
has valves always open. For the MPC algorithm, a control interval of
1-h, a control horizon of 2-h, and a prediction horizon of 12-h are
considered. Furthermore, the MPC optimization function in Eq. (10)
is solved with the fmincon solver with 120 maximum function evalu-
ations per each initial random initial guess of the solution. Therefore,
assuming 5 initial points, the objective function is evaluated 600 times
per control horizon, and the solution with a smaller cost function is
chosen as the near-optimal control schedule of the prediction horizon.
The objective function is evaluated by solving the reservoir dynamics
for the prediction horizon and collecting the states to allow for a timely
evaluation of the objective function. Therefore, it is important to have
a relatively fast model.

The weights of Eq. (10) are assumed to represent typical detention
pond goals. The detention time (4¢,) is assumed to be 18 h to represent
1.5 prediction horizons of 12-h and be a relatively sufficient time to
sediment solids over the bottom of the detention pond. This parameter
can also be adapted to local requirement conditions. In addition, even
though the desired detention time is 18 h, during inter-flood events, the
water quality focus might switch to flood control focus, not allowing
the total desired detention time.

To measure the efficiency of the strategy, the values of the objective
function given by Eq. (10) are plotted, and the minor and major flood
times are computed. These are defined as the duration of the reservoir
outflow greater than ¢} and ¢.* , respectively.

2.7. Scenario 2 - Simulating the benefits of RTC under 1-yr of continuous
simulation with spatial rainfall and ETP

This scenario fully implements the RTC strategy that couples a wa-
tershed model and a stormwater reservoir model predictive controller
with spatially varied climatologic forcing. The hydrologic and hydrody-
namic processes in the watershed with point-source climatologic data
are simulated, interpolating the variables to all cells in the domain.
This scenario is an example of implementing the model developed in a
real-world scenario and for a continuous simulation.

Records of 10-min interval rainfall from 7 rain gauge stations and
daily climatologic inputs from 3 meteorological gauge stations are
available in the study area and collected for the model inputs, as shown
in Fig. 4(c). The data are then interpolated, and results are obtained
so that each cell of the watershed domain has known interpolated
rainfall and climatologic inputs. For reservoir control strategies, static
approaches of valve full opened (100%) with partial valve openings of
75%, 50%, and 25%, in addition to the MPC control are compared.

2.7.1. Climatologic inputs in the watershed model

The inputs for the quasi 2-D hydrodynamic model can be a combi-
nation of distributed or lumped assumptions. Only rainfall and evap-
otranspiration are assumed as the climatologic inputs; however, other
cases and more complex watersheds would require the implementation
of inflow hydrographs as internal boundary conditions (Brunner, 2016).
An Inverse-Distance-Weighting interpolation (IDW) is performed in
the values of each station to estimate spatial values of rainfall and
evapotranspiration over time. This procedure is fully detailed in the
SM.
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Fig. 6. Summary of the modeling aspects of RTC-Stormwater. Part (A) is the watershed model with raster input data representing the terrain’s topography, land use and land
cover, and soils. In addition, spatialized climatologic inputs are considered to represent rainfall and input climatologic data to estimate potential evapotranspiration. Inflow and
outlet boundary conditions can be parameterized. The autonomous watershed model has time-varying rasters of infiltrated surface water, rainfall, evapotranspiration depths, and
flow velocities. Time-varying vectors of stage and discharge are also outputs of the model, and the latter are the input data for the Reservoir Feedback Control Model (B). The MPC
feedback control is presented in Part (B), and the MPC is run considering the inflow hydrograph from the watershed, the cost function and constraints, the current operational
points of the system, and the reservoir input data, which are shown in Part (C). Finally, the control schedule of the valve and gates to minimize the flood cost function, as well

as time-varying plots of the states and outputs, are shown at the end of the simulation.

3. Results and discussion
3.1. Model validation

The results of comparing RTC-Kinematic 2D with HEC-RAS 2D full
momentum under 100-yr storm temporally distributed with the Alter-
nated Blocks method is presented in Fig. 7. An unsteady-state rainfall
of 100-yr of return period often produces an event in which all terms of
the SWE are required, such as local and convective acceleration (Akan
and Iyer, 2021). Comparing a relatively simpler kinematic-wave model
with the full-momentum unsteady state will probably present a sce-
nario with a larger discrepancy between both models and hence, this
analysis is used to assess the model performance to predict the outlet
hydrographs. The results presented in Fig. 7 show a relatively small
error between both models, with both models having a great visual
agreement, especially for 10-m resolution.

3.2. Scenario 1

The modeling results of the Scenario 1 are presented in Fig. 8. Part
(a) shows the inflow and outflow hydrographs for passive and active
MPC-controlled scenarios. The inflow hydrographs had peaks of ap-
proximately 148 m3 s~!, resulting from two consecutive rainfall events
of 2-h and 10 years of recurrence interval. Although the passive sce-
nario shows a great peak flow reduction for the first storm, the second

peak flow was approximately 80 m? s~! compared to 30 m? s~! resulting
from the MPC approach. The passive scenario provided 41% of peak
flow reduction, while the MPC approach provided 79% attenuation.

The MPC approach scenario shows that reservoir outflows are
smaller than 40 m? s~!, that is, smaller than the defined threshold for
large flood events g% (see Fig. 2). The MPC approach predicts the
future inflow hydrograph using a 12-h time span, implements controls
for each hour, and moves 2-h in advance, receiving another forecast of
the inflow hydrograph up to the total simulation time. Therefore, the
MPC controller could predict the second and larger flow wave before
the first inflow hydrograph peak.

Although releasing flows greater than ¢, . would increase the costs
associated with Pqx from Eq. (10), by releasing flows at a rate smaller
than ¢’ , the method avoids a larger penalization from p,.,. The MPC
algorithm decides to release more flows after the first storm to have
available volume and depth to control discharges and flood depths to
the desired levels actively. One can see in Fig. 8(b) that the active
control decides to open the valves and gates during the inter-event
duration to allow more future inflows to be stored in the reservoir and
to be able to temporally partially close the gates and valves during the
second inflow hydrograph to have a better flow mitigation. One can
also see in Fig. 8(c) that the MPC maintains the flow for approximately
18-h and releases it afterward following Eq. (13). The cost functions for
each scenario for each control horizon are presented in Fig. 8(d), with
optimization results of MPC significantly outperforming the passive
scenario.
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Fig. 9. Rainfall ETP and ETR for the hydrologic year of 2018-2019 in the Aricanduva-I Catchment, Sao Paulo. Part (a), (b), and (c) are the 1-yr cumulative rainfall, real
evapotranspiration, and potential evapotranspiration, respectively. Part (d) is the aerial average hyetograph, infiltration, and outlet discharge, where (e) shows the duration curve
of discharge and rainfall, (f) shows a detail of the surface aerial net flux (f), and (g) details the largest event recorded in the year.

3.3. Scenario 2

A summary of the watershed results is illustrated in Fig. 9. The
cumulative values of rainfall, real evapotranspiration, and potential
evapotranspiration are shown in parts (a)-(c) of this figure. A 1-yr
rainfall volume of approximately 1500 mm, a potential evapotranspira-
tion of nearly 1150 mm and a real evapotranspiration of approximately
1000 mm are observed. Some areas had higher real evapotranspiration
values due to water availability in the soil.

Fig. 9 part (d) shows the 1-yr hyetograph and hydrograph, with
details of the event of April 7 highlighted in part (g) and a duration
curve chart of rainfall and discharge shown in (e). To illustrate the
surface aerial average net flux (f), an insert chart is presented in
(f). The surface net flux considers the balance between infiltration
rate and evapotranspiration rate, and details of this calculation are
presented in the SM. The model’s hydrologic-hydrodynamic watershed
modeling component can be used to understand spatialized hydrologic
information such as those presented in Fig. 9.

Using the 1-yr watershed outlet hydrograph shown in Fig. 9, the
MPC algorithm is set to optimize the valve and gate control while
controlling the detention time when no inflows are predicted. The MPC
routine had a computational time of approximately 18 h to optimize
the 4380 control horizons of 2-h for a 1 year of inflow hydrograph.
The objective function was evaluated at least 2 million times, showing
the importance of a fast-cost function.

The detailed event of April 7 (see Fig. 9()g) is expanded up to 11
April to show the performance of the MPC in comparison with other
passive strategies, as shown with the outlet hydrographs for the scenar-
ios with valves 100, 75, 50, and 25% opened in contrast to the MPC
control in Fig. 10. Part (a) shows the inflow and outflow hydrographs,
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with all cases with peak flow reductions larger than 25 m? s~!. Most of
the controls, however, failed to mitigate the peak flows after the first
two peaks. That means that the static operation of the reservoir did not
have a peak flow mitigation effect for minor storms. On the other hand,
the MPC control kept the water up to the expected detention time and
then released it using the threshold for releasing the stored volume (g;).
The valve operation and water depth are shown in Fig. 10(b) and (c),
respectively. These results imply that retrofitted reservoirs with active
controlling capacity (i.e., time-varying controlling devices) can mitigate
large and minor storms. In Fig. 10(c), the stage hydrographs in the
reservoir are depicted. It is noted that the MPC approach held more
water inside the reservoir longer after reaching the first two peaks since
the optimization problem changed from flood to water quality control.
Additionally, a valve opening larger than 25% seems to have minor
mitigation effects for the minor upcoming floods.

Fig. 11 shows the evolution of the treated volume, which is only
calculated when no inflow hydrographs are predicted on the control
horizon and when the water depth is larger than a minimum threshold.
More volume is treated using a valve opening of 25% compared to
MPC; however, as shown in Fig. 12, the MPC approach has a longer
detention time, which is a proxy representation of the water quality
state of the system. The duration curves of the flow discharges and
depths are shown in Fig. 13, indicating the probability of reaching a
flow or depth larger than a threshold. It is observed from Fig. 13(a) that
the passive scenario has a sharp change in the flow duration curve after
2%. The stage duration curve on Fig. 13(b) shows great variability in
the probabilities of exceeding certain depths for the control strategies,
with the MPC scenario presenting larger depths than the other controls.
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Fig. 10. Example of a simple performance evaluation for a rainfall event using static rules of valve partially open with valve openness of 100, 75, 50, and 25% compared to the
MPC controlled valve. Part (a) are the reservoir outlet hydrographs and the inflow hydrograph, while (b) is the control schedule of the MPC approach for this event, and (c) is

the stage hydrograph in the reservoir.
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] ] ] ] ] ] ]
= 20
© Valves 100% Opened
g = = =Valves 75% Opened
E 15 T Valves 50% Opened —
g Valves 25% Opened
= MPC
g 104 -
=2
5]
A
§ (; - Tt T P T e
<0 T T T T T | |

0 50 100 150 200 250 300 350
Elapsed Time [days]
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Fig. 13. Duration curves for 1-yr of continuous simulation, where (a) is flow duration curve for scenarios of 100, 75, 50, and 25% in the valve openness, compared to the MPC

controlled case Part (b) represents the stage duration curve.

4. Conclusions

A watershed-distributed continuous hydrodynamic model coupled
with a reservoir model is integrated, and a model predictive control
algorithm is used optimally to control the valves and gates of a real-
world reservoir. The reservoir control adjusts its objectives based on
predicted inflows. By switching the focus from flood mitigation to
runoff detention, it was possible to achieve flood and proxy water
quality control represented by specific minimum detention times. The
general conclusions of this paper are described as follows:

» Reservoir hydraulic devices typically designed for large storm
events can be adapted to mitigate recurrent small ones if
retrofitted with real-time MPC. The full outflow capacity enables
the conveyance of large flood events as expected; however, in
recurrent events, no flow mitigation would be achieved with a
passive control strategy since valves and gates are always open
and inflows are smaller than the flow capacity. If reservoirs
are retrofitted with the proposed MPC, the operation of valves
and gates can achieve desirable flow mitigation performance
by actively controlling the outflow capacity to meet the flow
mitigation requirements, as illustrated in the scenarios tested.
This conclusion is important for this paper’s case study since
several reservoirs on the path of the Aricanduva River have
reports of poor mitigation effects for recurrent floods.

The MPC strategy presented in this paper allows for balancing
flood mitigation and water quality by shifting the focus of the
control approach based on the predicted hydrograph. Two flood
severity discharges are defined to change the weights of the opti-
mization function according to the predicted inflow hydrographs.
These discharges are tuned and can represent flow thresholds that
local regulation constraints can have (e.g., minor flood threshold,
major flood threshold). If no floods are predicted, then the model
switches to focus on maximizing the detention time up to the
desired maximum detention time defined. The results of this con-
trol approach showed superior performance for flood mitigation
under critical design storms and 1-yr of continuous simulation
compared to passive scenarios. For the continuous simulation,
the volume treated for the MPC approach is similar to the 25%
opened valves scenario that had 6 h of average detention time
compared to the nearly 14 h detention time provided by the
MPC approach. A similar runoff volume is treated for both cases.
This result indicates that not only a superior performance of
flood mitigation is achieved with MPC, but also a better proxy
water quality is obtained since a larger average detention time is
achieved.
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More research is required to investigate the trade-offs among the
MPC control variables of the prediction horizon, control horizon,
and control steps. Although fixed and assumed in this paper,
these parameters change the efficiency of the runoff control of
reservoirs.

In addition to the general conclusions, the model validation, sce-
nario 1, and scenario 2 specific conclusions are:

* Model Validation: The watershed quasi-2D kinematic wave hydro-
dynamic model provided similar results when compared to the
HEC-RAS 2D full momentum solver, with a better performance
when using 10-m resolution than 30-m spatial resolution.
Scenario 1: During two consecutive 2-h, 10-yr storms that oc-
curred 6 h apart, the MPC algorithm effectively managed the
valve and spillway of the detention pond. This not only improved
flood mitigation performance but also ensured that the stored vol-
ume had the desired detention time, as compared to the passive
scenario where the valves and spillways were fully open.
Scenario 2: A 1-yr continuous simulation results indicate that the
MPC can regulate the flow discharges at the cost of generally
maintaining a typical larger water level stored in the reservoir
compared to passive scenarios. The MPC approach outperformed
all passive scenarios regarding flood mitigation and increased
detention times to the desired level.

The results presented show how a detention pond can perform
better in flood mitigation and water quality treatment by changing the
operation of the reservoir from a passive gravity control approach to an
active, real-time operating, control of opening and closing of valves and
gates over time. Sources of uncertainty, such as (i) rainfall forecasting,
(ii) conceptual model simplifications, and (iii) lack of correcting states
with techniques such as Ensemble Kalman Filters, are important aspects
that could be incorporated into future studies.

Future studies must address some important limitations to under-
stand the robustness of MPC applied to real-world stormwater reser-
voirs. First, the uncertainty in the rainfall predictions must be assessed
to understand whether the MPC can still perform better than a pas-
sive scenario under these circumstances. In addition, the hydrological
model itself has its own uncertainty in the conceptualization that can
also underestimate the inflow hydrographs. Therefore, a self-controlled
system that can update states and model parameters with observations
is desired. The hydrological models used to simulate the watershed pro-
cesses provide simple estimates of the system states that can be further
corrected by real-time field measurements, autocorrecting, and auto-
calibrating the model with a Kalman Filter approach. Investigating the
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aforementioned issues is a future direction to improve understanding of
how MPC applied to detention ponds can improve flood mitigation and
water quality treatment. Extensive testing of the model against other
models and with field observations is warranted.

In addition, the proposed control strategy can also be subjected to
failures if extremely large storms are rapidly temporally distributed
within one prediction horizon. For instance, if there is a large hurricane
or a rapidly occurring flash flood within the predicted time horizon,
and the reservoir is currently storing water for water quality purposes,
the system might not be able to handle the event because of its limited
storage capacity. Therefore, the numerical approach presented here can
also be used solely to investigate the effects of flood control or water
quality control instead of both combined.

To successfully adapt the approach presented here to other reser-
voirs, modelers have to tune the weights of the objective functions
representing the trade-offs between the flow mitigation thresholds
for large and minor flood events, the expected detention time, and
ultimately, the expected maximum flow discharge released after reach-
ing the water quality detention time. These parameters can be easily
adapted to local regulations and estimated with hydrological data,
allowing for an improvement in the performance of detention ponds
for flood mitigation and runoff detention.
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