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I. INTRODUCAO

Seja M uma variedade Riemanniana e F uma fo-
lheagao de M com singularidades isoladas. Para X em
M-SingF indicamos por |x(x)| o modulo da curvatura geodési-
ca, em x, da folha que passa por X. A curvatura total de

F, k(r)el0; + =1, &, por definicio, o valor da integral

[ k(x) |
M

Em [L.L.1], R. Langevin e G. Levitt demonstram
“"que se M e uma superficie de curvatﬁra constante -1 e F e
uma folheag3o de M com singularidades do tipo sela, entao
a curvatura total de F & maior do que ou igual a (12 log2-
6 log3). [X(M)].

Em [L.L.21, R. Langevin e G. Levitt mostram
que se F & uma folheagao orientavel do disco D2c R?, tan

gente ao bordo, entao k(F) 2 2n-4.

Nos dois trabalhos citados sao exibidas as fo-

lheagdes que minimizam a curvatura total.

Neste trabalho demonstraremos os seguintes re-

sultados na linha dos trabalhos acima:
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Teorema 1: Seja D uma regiao do plano R? , homeomorfa ao

disco D2 e limitada por uma curva regular,
aD, e seja F uma folheagac de U, tangehte ao bordo, com
singularidades de indice positivo. Entdo k(F) %(3D)-2d,
onde £(3D) & o comprimento do bordo de Dedé@&o diame-
tro (ou diametro geodésico) de D. (Veja definigdo de dia

metro interior no paragrafo III).

Teorema 2: Seja ACC R2 uma regiao homeomorfa  ao anel

{(x,y) € RZ |0<r g x2+y? < r2} com bordo  dA
formado por duas curva regulares, C, (externa) e C, (in-
terna) e seja F uma folheagao de A, tangente ao bordo, sem

singularidades. Entao

k(F) » 2(C;) + 2(C,) - 2d onde d & o compri-

_mento da envoltdria convexa geodésica interior de C,. (Ve

ja definicdo no paragrafo V).

Definiremos a nogao de quase-fo1heag50 e mos-
traremos que em cada um dos casos acima o minimo da curva
tura total & atingido numa quase-folheagdo de D ou A, res

pectivamente.

I1 - QUASE-FOLHEAGOES

Uma quase-folheaqio de uma regiao D pode ser
pensada como uma folheagao de D que possui um conjunto

critico C, onde a folheagdo @ "angulosa", mas de modo que
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possamos calcular a "curvatura da folheagao acumulada em

\ A\

No que segue D sera sempre uma regido do plano

cA. |

\
Y
|
_%

- figura 1

homeomorfa ao disco D2 = {(x,y) § R?| x2+y2 ¢ 1}, com bor

do D, curva regular.

Definigdo. Se F & uma folheacao de uma regido D = R%e L

@ uma reta do plano entio |ul(F;L) € NUl=} e
o numero de pontos de contado entre L e F. Analogamente
se 1 & um intervalo aberto em Rz , lul(FsL) 8 o numero de

de pontos de contato entre 1 e F.

-

Definigao: Uma quase-folheagao de uma regiao D = R2? 3

uma terna (F(“); F; C) onde F(") e uma se-
qliencia de folheagoes de D tangentes ao bordo de D, C- e
um conjunto finito de curvas e F uma folheagao de D-C ve-

rificando:

(1) F(") > F em D-C, na topologia c2.



(11) Para todo segmento I do R2 , existe o limite

2im1u|(F(n);I). Este limite sera indicado

1 el

por |u|(FsI).

(111) k(F(")) < M, para algum me RY independente de n.

Se F & uma folheagd3o por retas de D-C, entao

(F(n);F;C) seri dita quase-folheagao geodésica.
Quando nao houver possibilidade de confusao in

dicaremos a quase folheagao por F.

N T
</

(n)

(b)

;(n)

figura 2



Por analogia ao Teorema da Troca (Exchange
Theorem) [BLR] definimos a curvatura total k(F) da qua-

se-folheagao F por

k() = [ ul(F3L) dnlL).
G

Da condigao III da definigao de quase—folhedgio e do Teo

rema da Convergencia Dominada de Lebesgue segue que

k(F)

[ Iul (sLydm(L) = gim [l Man(e) = sim [0 -

n-ooo
G D

vim k(™).
Moo

Uma folheagao F(") determina, de modo natural,uma distri-
buicao de curvatura TF(“) (em nosso caso esta distribui-

qao 5 uma medida) em D: a cada ¢: R2 » R, € de supor-

te compacto, F(“)(¢) = f o(x) k] (x).

Em D C, F determ1na uma distribuigao de curvatu

ra T  de modo analogo:

T.(6) = | #(x).IKI(x) &
C

pDas condigoes I, Il e 111 segue que existem, no

sentido de distribuigoes, 0sS 11m1tes gim  To(n) ©

| 1 R
Lim (TF‘“) - T;) que sao também medidas, em nosso Caso.
n-+o

0 suporte da distribuigao T = 1im(TF(n)-TF) esti contido

n-re

no conjunto critico C porque g 5 5. com classe ¢2, fora




de C [L1].

Se F & uma quase-folheagao geodésica, a curva-
tura total de F esta concentrada em C, € pode ser calcu-
Y lada de uma maneira simples, a partir do angulo 6 deter-

minado em cada ponto de C pelas retas da quase-fo]heagéo

e por C.
/ / |
= ¢ . xa(x) . C

figura 3

Toda reta pertencente a 8(x) e passando por X

tem contato com F.

/7

figura 4
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NN\

figura 5

Seja L uma reta do plano passando por X e C, e
suponhamos que L e F tenham contato; indicando por ds o

elemento de arco em C tem-se

N
N A(x)
. \\ al(x) .
| \\()\\
figura 6 '

A medida das retas que passam por ds e sio paralelas a L

e
sen & ds-
s
Como toda reta pertencente ao angulo 6(x) tem contato a
g _ medida do conjunto de retas que passam por ds e tem con

tato com F e

1T-G1
( I sen¢(x) dx ) ds = (cos o, + COS a,) ds
a
2



Logo se F € geodésica

J lu|(FiL) = J (cos a, + cos a,) s 0 <apj,a, £

6 C

Assim nos exemplos anteriores tem-se

27
J cos —%— + cos 0 = 1 ds = 2m.

J
0

1

(a) k(¥F)

c
(b) k(F) Icos a, + cos 0 =2 J [cos(m- %%)+1] d¢ = 2rm-4.
C

0

I11 - CURVATURA TOTAL

Teorema: Sejam D uma regiao do plano RZ2, homeomorfa ao
disco D2, com bordo 3D, curva regular e F uma
folheagao de D, tangente ao bordo com singularidades de in

dice positivo. Entao

k(F) > 2(C) -2d,

onde &(C) & o compr1mento do bordo C e d € o diametro geo
désico de D: d = sup{d(x;y); X x,yED, onde d(x;y) & o com-

primento da geod&sica D, ligando x e y}.

Demonstragdo: Podemos supor que F tenha 2 singularidades

do tipo "por-do-sol":




centro—lndlce 1

Singularidades de Indice +1 ou % podem ser transforma-
das em singularidades do tipo por-do-sol, atraves das
operagoes jndicadas abaixo aumentando-se a curvatura to

ta] de F, tao pouco quanto se queira.

fonte/pOsO : 2 pores-do-sol
{ndice 1
@f R
espinho - Indice =—%ﬂ 1 por-do-sol

—————

2 pores—do-sol
2 espinhos

figura 8

De uma maneira mais geral, qualquer singulari-
dade civilizada, isto e, tal que a oscilagao do campo de
retas restrito a qualquer circuleo centrado no ponto sin-
gular seja uniformente majorada, pode ser substitq?dapor
um pogo ou um por-do-sol aumenténdo-se a curvatura total

tao pouco quanto se queira.

Vamos substituir a folheagao numa vizinhanga
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de raio r do ponto critico x, por uma das duas folhea-

¢oes padroes seguintes

e o 1
Indice 1 : ! fndice —5=

figura 9
Seja 6, a fungao angulo no circulo bordode D,
das folheagoes padroes acima e 6, 3 funcgao angulo deter-
minada por F. 8, & de oscilagao majorada e & homotopica
a uma das fungoes 6, definidas acima. Existe homotopia
entrele0 e 6, com oscilagdo majorada (por exemplo usando

interpolagao linear de fungoes de recobrimento de ©

8,).

0 e

Num anel de largura 6 << r 2 homotopia 9, de-
termina um campo de retas nos circulos concentricos de
raio entre r e r-§. A curvatura total da folheagao as-

cim determinada & majorada por

[lkl < [/kz + k2 = ]'ngad e |l

anel anel anel

As componentes de grad 6 em coordenadas pola-

30

res (p:¢$) sao gg e P 3p Ent3o vale a seguinte majo-




i1
raéio

e (e e e

anel anel anel

Pela definicao do campo essas duas integrais

sio de mesma ordem de grandeza que r.

Agora colocamos no disco de centro x e raio r
uma das folheagdes padroes e fazendo r tender a zero, Ob
temos folheagoes com um pogo do tipo padrao ou um por-do
sol do tipo padrdo e com curvatura total tao proxima da

curvatura total de F quanto quisermos.

A demonstragao do teorema est3 baseada no Teo-
rema da Troca ([L-2] ou [BLRI). Seja y a geodésica in-

terior a D ligando os dois pores-do-sol,

figura 10
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Vamos determinar 0 numero de contaéos de uma
reta L, do plano, e ¥. Sa\vo'num conjunto de retas de
medida nula, L encontra D num numero finito de segmen-
tos. Em cada segmento que niao encontra Yy ha pelo menos
um contato entre F e L. De fato se AB & um segmento de
LND que nao encontra v, entao o bordo C e AB determinam
dois "discos" no plano e como ABNy=¢, os dois pores-do-

sol estao num mesmo disco.

No disco que nao contem oS pores-do-sol a fo-

lheagdo € orientavel e a situacio estd descrita abaixo

*/ e

figura 11

Assim ha pelo menos um ponto de contato em AB.
Indicando por n(L) numero de segmentos em que L encontra
D e nao corta y e por s(L) o numero de segmentos em que

L encontra y temos

|ul (F5L) 2 n(L), @

L(C) = = {; s(nc) = [ nL) * s(L)  [sl.
L .
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Dad

L(C) = I n(L) + [ s(L)

G G
. L(C) < j lul(FsL) + j s(L) = [ |ul (FsL) + 2L(Y)
G G G

e portanto k(F) = IIul(F;L) > L(C) -2d
5 _

onde d @ o diametro interior de D.

IV - MINIMO DA CURVATURA TOTAL

Mostraremos neste paragrafo que em D sempre
existe uma quase-folheagao F que minimiza a curvatura to

tal, isto e,

k(F) = L( D) - 2d.

Lema 1: Quaisquer que sejam p e q em D, existe uma uni-
ca geodésica y = D, ligando p e q.

A existencia desta geodésica esti demonstrada em [H, pg.

184]. Para um estudo da existéncia de geodésicas em ca-

sos mais gerais ver LA,A].

A unicidade segue do fato de D ser simplesmente conexa:
1 Se y, e v, forem geodésicas ligando p e g, yl;Yzc D, en-

tao a curva fechada vy, U Y, 1imita uma regiao R homeomor

fa a um disco, com R < D. Existira entao um arco AB, lo

calmente convexo em 3R. Suponhamos K§c:yl. A curva Y,
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obtida de v, trocando-se AB pelo segmento AByesta conti
do em R, liga p e q e tem comprimento menor que Y, 0

que e impossivel.

figura 12

"Em D sejam P e Q dois pontos tais que a geodesica y 1i-
gando P e Q seja um diametro interior de D. P e Q estao.
necessariamente em 3D. Todo ponto x € D pode ser unido
a P por uma (unica) geodésica Yy contida em D. Estas

geodésicas determinam uma folheagao de D-3D, por retas.

Lema 2. A folheagao de D-3D, por retas, determinada aci

ma & uma quase-folheagao F de D.

Demonstracdo: 0 conjunto critico @ C = 3D, F @ a folhea
¢ao por retas determiﬁada acima. Para de
finirmos a seqllencia de folheagoes F(n) procedemos como
seque: todas as folheagdes terdo 2 pores-do-sol,em P e
Q. Como P e Q pertencem a 3D, as folheagoes F(n) serao
orientaveis e podemos defini-las atraves de campos de ve

tores.
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Seja V. a vizinhanga tubular de 3D em D de
0 .
raio €. Em D-3D F determina um campo de vetores c*,

X. Em D-V_ , tomamos Y =X. EmV , colocamos uma
€n n €n/
2

folheagao com dois pores-do—so], paralela a 3D, conforme

modelo abaixo, © definimos Ynlv como sendo 0 campo
€n/2
induzido pela folheagao.

NS

n/o

.-L.L_._L

P
figura 13

Estendemos o campo Y, definido acima, a
v -V , de modo que Y nio tenha singularidades em
€ € n
n n/2 .
D: tomamos Y _em V -V , que varie linearmente nas
n En Enlz

secgoes ortogonais 3 curva o que limita V_ jnternamente,
‘ n
e coincida em a(vs - VS ) com o campo Yn como foi de-

n n/
2 (n)

finido acima e em sequida tomamos a folheagao F como

sendo a folheagao induzida por Y, -

A folheagao construida acima e de classe ct, e

- - I . . .
de classe € fora das curvas que limitam jnternamente as
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vizinhangas tubulares V_ € V€
n. n/s

"2

se fizermos e tender a 0, entao £(") tenderd

3 F em D-C e existe

gim u| (7™ ).

n->e

Para concluirmos a demonstracao do teorema A
basta mostrarmos que com excecao de um conjunto de medi-
da nula de retas do plano, toda reta L do plano verifica
a seguinte propriedade: L N D & formada por um numero fi

nito de segmentos de reta e

a) se um segmento AB nio encontra o diametro y entao ha
exatamente um ponto de contato entre L e F, em AB, is

to @, |u|(F ;AB) = 1.

b) se ABnn Yy # ¢ entio |u| F;AB) = 0.

Dai seguira por um raciocinio semelhante ao da demonstra

¢ao do teorema do paragrafo III que k(F) = 2(3D)-2d.




Seja portanto uma reta L

mento, em LN D, tal que ABNy = ¢.

17

do plano e AB um seg-

Em D - V_ ,L e F(n) nao possuem contatos pois

n
¢(") & formada por retas. AB divide D en dois discos ho

meomorfos ao disco D2c R2 , um dos

nem Q.

quais nao contem P

Neste disco cada folheagao F(n) & orientavel e

lu](F(n); L) = 1, para n suficientemente grande, e por-

tanto |u|(F;L) = 1.

N AL

‘figura 1

Se ABNny¢“# ¢ entao P e

/)

Q estiao de lados opos-

tos de AB e ul(F(");L)=O para n suficientemente grande.

portanto |u|(Fs,L) = 0. (Veja fig. 19).

\
\
\

\

\
\
l
/

g

figura 16
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Observagao: com um pouco mais de paciéncia-poder?amos

construir uma aproximagio de classe ¢” para

‘a quase-fo]heagio F.

vV - 0 ANEL

— —

Seja A uma regiao homeomorfa ao anel {(x,y) €
6 R2 |0<r, < x%+y2g r,} com bordo 3A formado por duas

curvas regulares, C, (externa) e C, (interna).

Um conjunto X = A € convexo por geodésicas em
A se para todo par de elementos x e y em X, as geodesi-

cas unindo x a y em A est3o -contidas em X. -

Definig&o: a envoltoria convexa geodésica interior de
um conjunto Uc A, & 2 intersecgao de todos

os conjuntos X < A, convexos por geodeésicas tais que

UcX.

Com pequenas modificagoas nos argumentos ja utilizados

demonstraremos O

k4

Teorema 2: Seja A uma regiao homeomorfa a um anel, como

acima,

(a) Se ¥ uma folheagao de A, sem singularidades, tangen-
te ao bordo entdo k(F) 2 2(Cy) + (c,) - 2d, onde d
& o comprimento da curva y que limita exteriormente
a envoltoria convexa geodésica interior de C; em A.

(veja fig. 16).
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(b) Existe uma quase-folheag&o F de A que minimiza a cur

vatura total, isto 8, k(F) = 2(C,) + 2(C,)-2d.

(o]

figura 17

A parte a) do Teorema 2 repousa na seguinte ob
servagao: com excecao de um conjunto de medida nula de
retas do plano, toda reta L < RZ, intercepta A num nume
ro finito de segmentos e se um tal segmento AB nao inter
cepta vy, isto e, ABny = ¢ entio AB e F téem pelo menos
1 contato. Isto ocorre porque se ABny = ¢ entao
{A;B} = C, ou {A,B}c= C, & €m qualquer caso fica determi

do um disco do plano como abaixo e |ul (F;AB} > 1.
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[\ |

B
1 e ;\

figura 18"

A partir daf, repetindo oS argumentos usados

na parte a) do Teorema 1, conclui-se que k(F) > 2(3A) -

- 2d = a(c,) + e(C,) - 2d.

parte b). Comegamos com 35 observagoes seguintes:

(1) Qualquer que seja x € A, existe uma unica geodesi-
i ca fechada contida em A, Yy» passando por X.
- C
1l

figura 19




(2)

(3)

(4)

(5)
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Uma orientacao em C, induz uma orientagao em Y, . In-

dicamos por ¥y, 0 trecho de vy, que une X até C,(x)
primeiro ponto de C2 em que Y, encontra C,, com a

orientacao induzida por C, em v,

ou

<2

Se x#y entao (a) Y4, y
(b) Yy c Yy ou
(c) ?x e §y nio se encontram no inte-

rior de A.

As geodésicas §x’ x 6 A, determinam uma quase-folhea
cao de A por retas, F.

Para definirmos a seqliencia de folheagoes F(n) proce
demos de modo analogo ao do Lema 2, tomando o cuida-

do de escolher em C, e C, a mesma orientagao.

Para completarmos a demonstracao observamos que S€ L
& uma reta genérica do plano entio. L N A & formada
por um niumero finito de segmentos de retas. Seja AB

um destes segmentos.

(a) se ABNy = ¢ entao !ul(F";AB)= 1 para n suficien

temente grande e portanto lu| (F;AB) = 1.

figura 20
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(b) Se AB y # ¢ entao |p|(F(n); AB) = 0 para n su

ficientemente grande e |u|(F;AB) = 0.
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Desta ultima observagao, segue como no Teorema

1, que k(F)- 2(C)) + 2(C,) -2d.

Observacoes: 1) se C, & uma curva convexa, entao Y= C,,

d = 2(C,) e 2(Cy) + 2(C,) -2d = 2(Cy)-

- 2(C,)-

2) Nos dois c€asds analisados neste trabalho,
se as regioes D e A forem limitadas por
curvas convexas entao existem folheagoes

da regizao que minimizam a curvatura total.

1

K(F ) = £(C)-2d K(F) = £(Cy) - £(C,)
figura 22

Por outro lado se c = 3D, no caso do disco,
(C=¢C,ouC-= C, no caso do anel) nao & uma curva conve-
xa entao nao existe folheacao de D(A) que minimize a cur-
vatura total, isto e, este minimo € atingido apenas por

quase-fo]heagaes.

De fato, suponhamos que F e uma folheagao de
D(A). Se C possui apenas 2 pontos de inflexao e cada um

& um por-do-sol, entido a geodésica y que 0s une nao e um

diametro como mostra um cilculo de variagoes, e da demons
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tragao do Teorema 1 segue que

K(F) 3 L(C) - 2L(¥) > L(C) -2d

podemos supor, portanto que C possui um ponto
de inflexdo regular para F. Seja T a reta tangente a C

em P.
Tl

T

figura 23

Existe Q numa vizinhanga de P tal que a reta
T' tangente a C em Q encontra C em pelo menos tres pon-
tos, Q, Q' e Q"'. Existe uma folha @ de F tal que

#(c N TY) 2 2, (e« numa vizinhanga tubular V de C, de

raio suficientemente pequeno).

Seja T" uma reta paralela a 7', tangente a o©
em S, com S € V, e seja Q" a interseccao de T" e C (Q"

numa vizinhanga de Q').

seja G o conjunto de retas do plano que inter-
ceptam os segmentos QQ"' e Q'Q" G e um aberto no conjun-

to das retas e se L € G entdo Jul(F;L) > 2.
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