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•• QUASE-FOLHEACOES E INTEGRAIS DE CURVATURA NO PLANO 
. , 

I. I NTRODU ÇAO 

Remi Langevin 

CZaudio Possani 

Seja M uma variedade Riemanniana e f uma fo-

lheação de M com singularidades isoladas. Para X em 

M-Singf indicamos por lk(x)I o mõdulo da curvatura geodési­

ca, em x, da folha que passa por x. A curvatura totai de 

f, k(f}6[0; + 00 ], e, por definição, o valor da integral 

J l k{x) [ ; 

M 

Em [L.L.l], R. Langevin e G. Levitt demonstram 

· que se M ê uma superfTcie de curvatura constante -1 e F e 

uma folheação de M com singularidades do tipo sela, então 

a curvatura total de f ê maior do que ou igual a (12 log2-

61og3). I X(M) I . 

Em [L.L.2], R. Langevin e G. Levitt mostram 

que se f ê uma folheaçáo ·orientãvel do disco D2 c m2 , tan 

gente ao bordo, entao k(f) ~ 2n-4. 

Nos dois trabalhos citados sao exibidas as fo­

lheações que minimizam a curvatura total. 

Neste trabalho demonstraremos os seguintes _re­

sultados na linha dos trabalhos acima: 
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Teo:rema 1: Seja D uma região do plano 1R 2 
, homeomorfa ao 

disco D2 e limitada por uma curva regular, 

ao, e seja fuma folheaçãL de~, tangente ao bordo, com 

singularidades de indice positivo. Então k(f) 3 t(aD)-2d, 

onde t(aD) e o comprimento co bordo de o e dê o diâme- · 

tro (ou diâmetro geodêsico) de D. (Veja definição de diã 

metro interior no parãgrafo Ili). 

Teoz>ema 2: Seja AC 1R 2 uma região homeomorfa ao anel 

{(x,y) 6 1R 2 jO<r 1 ~ x2 +y 2 ~ r 2 } com bordo aA 

formado por duas curva regulares, C1 
(externa) e C

2 
(in­

terna ) e s e j a f um a f o 1 h e a ç ã o d e A , ta n g e n te a o b o r d o , sem 

singularidades. Então 

onde dê o compri­

mento da envoltõria convexa geodésica interior de C2
• (V~ 

ja definição no parãgrafo V). 

Definiremos a noçao de quase-folheação e mos­

traremos que em cada um dos casos acima o minimo da curva 

tura total e atingido numa quase-folheação de D ou A, res 

pectivamente. 

II QUASE-FOLHEAÇOES 

Uma quase-folheação de uma região D pode ser 

pensada como uma folheação de D que possui um conjunto 

critico C, onde a folheação ê •angulosa", mas de modo que 
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possamos calcular a "curvatura da folheação acumulada em 

e". 

figura 1 

No que segue D serã sempre uma região do plano 

homeomorfa ao disco 02 = {(x,y) $ ~ 2 1 x2+y 2 ~ 1}, com bar 

do D, curva regular. 

Definição. Se f e uma folheação de uma região O e IR 2 e L 

e uma reta do plano então l µ I (f; L) 6 IN U{ 00 } e 

o numero de pontos de contado entre· L e f : · Analogamente 

2 

se I e um intervalo aberto em~ , l µj(f;L) e o numero de 

de pontos de contato entre I e f. 

De f inição: Uma quase-fol,heação de uma -- D e: 1R2 reg1ao e 

uma terna (f{n); f ; e> onde f(n) e uma se-

qüência de folheações de D tangentes ao bordo de o, e e 

um conjunto finito de curvas e fuma folheação de 0-C ve­

rificando: 

, (I) ,(n) ♦ f em D-C, na topologia c2 • 
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(II) Para todo segmento I do IR 2 ~ existe o limite 

tim lµ l (F(n);I). Este limite sera indicado 

n+oo 

por lµ l lf;I). 

(III) k (f ( n}) < M, para a 1 gum M6 IR+ independente de n. 

Se f e uma folheação por_ retas de D-C, então 

(f{n);f;C) serã dita quase-fotheação geodésica. 

Quando nao houver possibilidade de confusão in 

dicaremos a quase folheação por f. 

(a) 

figura 2 
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Por analogia ao Teorema da Troca (Exchange 

Theorem) [BLR] definimos a aurvatura totaZ k(f) da qua­

se-folheação f por 

k(f) = f lµ j (f; L) dm(L). 

G 

Da condição III da definição de quase-folheição e do Teo 

rema da Convergência Dominada de Le~esgue segue que 

k(f) = f jµj (f;L)dm(L) = tim Jlµ I (f(n);L)dm(L) = tim Jlk(n)l(x) = 
~ 

~D 

G 

Uma folheação f(n) determina, de modo natural,uma distri­

buição de curvatura Tfcn> (em nosso caso esta distribui-

çao e uma medida) em D: a cada~= ~2 
(D 

-+ lR , e de supor-

te compacto, TyCn)(4>) = J <P(x) l kl {x). 

D 
Em 0-C, 'F determina uma distribuição de curvatu 

ra Tf de modo anãlogo: 

Das condições I, II e III segue que existem, no 

sentido de distribuições, os limites tim 
n-+a> 

tim (T,cn> - Tf) que são também medidas, em nosso caso. 

n- . 

O suporte da distribuição T = tim{Tf(n)-Tf> estã contido 
n-+m 

no conjunto crítico C porque ;<n>-+ f · com classe c2 , fora 
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de e [Ll]. 

Se f e uma quase-f~lheação geodêsica, a curva­

tura total de festa concentrada em C, e pode ser calcu­

lada de uma . maneira simples, a partir do ângulo e deter­

minado em cada ponto de C pelas retas da quase-folheação 

e por e. 

e 

figura 3 

X 

Toda reta pertencente a 8{x) e passando por x 

tem contato com F. 

e 
figura 4 
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figura 5 

Seja L uma reta do plano _ passando por x 6 C, e 

suponhamos que L e f tenham contato; indicando por ds o 

elemento de arco Pm C tem-se 

A medida das retas que passam por ds e sao paralelas a L 

e 

sena ds. 

Como toda reta pertencente ao ingulo e(x} tem contato a 

medida do conjunto de retas que passam por ds e têm con 

tato com f ê 

w-a 1 

{ J sen~{x) dx ) ds = (cos a 1 i cos a 2 ) ds 

ª2 
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Logo se f - geodes i_ ca e 

f jµl(f;L) = f (cos a 1 + cos ª2) • Q ~ <ll'Cl 2 ~ TT 

G e 

Assim nos exemplos anteriores tem-se 

. (a) k(f) f cos 
1T +coso 

f 2 TT 
1 ds 2n. 

= z- = ·= 
J 

e o 

TI . 

(b) k (f) = f cos ª1 + cos o = 2 J [e-os (n- +)+1] dcp = 2n-4. 

e o 

III - CURVATURA TOTAL 

Teorema: Sejam D uma regiio do plano ~~ homeomorfa ao 

disco 02
1 com bordo ao, curva regular e f uma 

folheação de D, tangente ao bordo com singularidades de in 

dice positivo. Então 

k(f) -~ t(C) -2d, 

onde t(C) e -0 comprimento do bordo Cedê o diimefro ge~ 

dêsico de D: d= sup{d(x;y) -; x,j6D, onde d(x;y) e o com­

primento da geodêsica y D, ligando x e y}. 

Demonstração: Podemos supor que f tenha 2 singularidades 

do tipo "por-do-sol": 
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Singularidades de indice +l ou} podem ser transforma­

das em singularidades do tipo por-do-sol, atravês das 

operaçoes indicadas abaixo aumentando-se a curvatura to 

tal de f, tão pouco quanto se queira. 

fonte/poço 

índice 1 

espinho - Índice=+ 

centro-índice 1 
2 espinhos 

figura · 8 

2 pores-do-sol 

1 por-do-sol 

2 pores-do-sol 
. . 

De uma maneira mais geral, qualquer singulari-

dade civilizada, isto ê, tal que a oscilação do campo de 

retas restrito a qualquer clrculo centrado no ponto sin­

gular seja uniformente majorada, pode ser substituldapor 

um poço ou um por-do-sol aumentando-se a curvatura total 

tão pouco quanto se queira. 

Vamos substituir a folheação numa vizinhança 
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de r~io r do . ponto critico x, por uma das duas 

ções oadrões seguintis 

folhea-

Índice 1 

figura 9 

Índice 1 
2 

Seja e
1 

a função ângulo no circulo bordo de ºr' 

das folheações padrões acima e 8
0 

a função ângulo deter­

minada por f. 8
0 

ê de oscilação majorada e e homotõpica 

a uma das funções 8 1 definidas acima. Existe homotopia 

entre e0 
e 8 1 

com oscilação majorada (por exemplo usando 

interpolação linear de funções de recobrimento de e0 e 

. e i) . 
, 

Num anel de largura ô<< r a homotopia e+ de-

termina um campo de retas nos circulas concêntricos de 

raio entre r e r-ó. A curvatura total da folheação as­

sim determinada e majorada por 

anel anel anel 

As componentes degrade em coordenadas pala-

( ) - . ae ae E - 1 · t · 
res p;~ sao ~ e p ~- ntao va e a segu1n e maJo-
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raçao 

f lkl ~ J ,:~ 1 + Jr 1 ~~ 1 

anel anel anel 

Pela definição do campo essas duas 

são de mesma ordem de grandeza quer. 

11 

integrais 

Agora colocamos no disco de centro x e raio r 

uma das folheações padrões e fazendo r tender a zero, ob 

temos folheações com um poço do tipo padrão ou um por-do 

sol do tipo padrão e com curvatura total tão prõxima da 

curvatura total de F quanto quisermos. 

A demonstração do teorema estã baseada no Teo­

rema da Troca ([L-2] ou [BLR]}. Seja y a geodésica in­

terior a D ligando os dois pores-do-sol, 

figura 10 
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Vamos determinar o numero de contatos de uma 

reta L, do plano, e f. Salvo num conjunto de retas de 

medida nula, L encontra D num número finito de segmen­

tos. Em cada segmento que não encontra y hã pelo menos 

um contato entre f e L. De fato se Jrn" ê um segmento de 

LílD que não encontra y, então o bordo C e AB determinam 

dois "discos" no plano e como ABíly=t, os . dois pores-do­

sol estão num mesmo disco. 

No disco que nao contêm os pores-do-sol a fo­

lheação e orientãvel e a situação estã descrita abaixo 

B 

figura 11 

Assim hã pelo menos um ponto de contato em AB. 

Indicando por n(L) numero de segmentos em que L encontra 

D & não corta y e por s(L) o n~mero de segmentos em que 

L encontra y temos 

l 1,1J ( f i L ) ~ n ( L ) , e 

L{C) • + ! t(LílC) • f n(L) + s(L) 

G 

(S]. 
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Da'i 

L(C) = J n{L) + 

G 

J s(L) 
G 

L(C) ~ f lµ l (f;L) + J s{L) = J lµl(f;L) + 2L(y) 

G G G 

e portanto k(f) = J lµ l (F;L) >, L{C) -2d 

G 

onde d e o diâmetro fnterior de D. 

IV - MINIMO DA CURVATURA TOTAL 

13 

Mostraremos neste parãgrafo que em D sempre 

existe uma quase-folheação f que minimiza a curvatura to 

ta 1 , is to ê, 

k{f) = L{ D) - 2d. 

Lema 1: Quaisquer que sejam p e q em O, existe uma Gni-

ca geodésica y e D, ligando p e q. 

A existência desta geodesica estã demonstrada em [H, pg. 

184]. · Para um estudo da exist~ncia de geodêsicas em ca­

sos mais gerais ver [A,A]. 

A. unicidade segue do fato de D ser simplesmente conexa: 
' 

-_ Se y 1 
e y

2 
forem geodesicas ligando p e q, . y

1
,y

2
c D, en-

tão a curva fechada y 1 u y 2 limita uma região R homeomor 

-
fa a um disco, com R e D. Existirã então um arco AB, l~ 

-ca lmente convexo em aR. Suponhamos AB e y 1 • A curva y 
3 
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obtida de y 1
, trocando-se ÂB pelo segmento AB1 esta conti 

do em R, liga p e q e tem comprimento menor que y
1

, o 

que e impossivel. 

p 

e 
figura 12 

· Em D sejam P e Q dois pontos tais que a geodésica y li­

gando P e Q seja um diãmetro interior _de D. P e Q estão . 

necessariamente em ao. Todo ponto x 6 D pode ser 

a P por uma (Ünica) geodésica Yx contida em O. 

unido 

Estas 

g~o~esicas determiriam uma folheação de o~ao, por retas. 

Lema 2. A folheação de O-ao, por retas, determinada aci 

ma e uma quase-folheação f de D. 

DemonstPação: O conjunto critico e C = ao, f e a folhea 

ção por retas determinada acima. Para de - . 
fi n irmos a seqtlênc ia de folheações f { n} procedemos como 

segue: todas as folheações terao 2 pores-do-sol, em · P e 

Q. Como P e Q pertencem a ao, as folheações f{n) serao 

orientãveis e podemos defini-las atraves de campos deve 

tores. 

q 
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Seja V a vizinhança tubular de ao em D de 

En 

raio E0
. Em o-ao F determina um campo de vetores c00

, . 

X. Em D-V ~ tomamos v
0
· = X. Em V , colocamos uma 

En En/2 

folheação com dois pores-do-sol, paralela a ao, conforme 

modelo abaixo, e definimos YnlV como sendo o 

En/2 

induzido pela folheação. 

p 

figura 13 

Estendemos o campo Yn definido acima, a 

VE - VE ·,. de modo que 
n n/ 2 

Y
0 

não tenha singularidades 

campo 

em 

D: tomamos Yn em V 
En 

- V , que varie linearmente nas 

En/ 
2 

secções qrtogonais ã curva cr que limita V internamente, 
En 

e coincida em a{V - V } com 
. En En/2 

finido acima e em seguida tomamos 

o campo Y
0 

como foi de-

a folheação ,{n) como 

sendo a folheação induzida por Yn 

A folheação consiruida acima e de classe c 1 , e 

~-
de classe C fora das curvas que limitam internamente as 
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vizinhanças tubulares V e V 
En En/2 

/ 

. P 
figura 14 

Se fizermos Entender a O, então F(n) tenderã 

a f em D-C e existe 

R.1m lv l (f(n); L). 
n~ 

Para concluirmos a demonstração do teorema A 

basta mostrarmos que com exceção de um conjunto de medi­

da nula de retas do plano, toda reta L do plano verifica 

a seguinte propriedade: Ln Dê formada por um numero fi 

nito de segmentos de reta e 

a) se um segmento AB não encontra~ diimetro y então hi 

exatamente um ponto de contato entre L e f, em AB, is 

to e, 1 µ 1 (F ; AB) = 1 . 

b) se AB n y, ~ então lµI f;AB) = O. 

Oa1 seguirã por um raciocinio semelhante ao da demonstra 

çao do teorema do parãgrafo III que k(f) = .e.(aD)-2d . 
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Seja portanto uma reta L do plano e AB um seg­

mento, em Ln D, tal que AB íl y = <P. 

Em D - VE, L e f(n) não possuem contatos pois 

,(n) ê formada por ~etas. AB divide D em dois discos ho 

meomorfos ao disco D2 c ~ 2 , um dos quais não contêm 

nem Q. 

p 

Neste disco cada folheação F(n) ê orientãvel e 

lµ l (F(n); L) = 1, para n suficientemente grande, e 

tanto jµ j (F;L) = 1. 

por-

Se AB n y / <P então P e Q estão de lados opos­

tos de AB e µ j (f{n);L)=O para n suficientemente grande. 

Portanto jµ I (F; ,L) = O. (Veja fig. 15). 

\ 

figura 16 
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Observação: com um pouco mais de paciência poderíamos 

construir uma aproximação de classe Cm para 

a quase-folheação f . . 

V - O ANEL 

Seja A uma região homeomorfa ao anel {(x,y) 6 

6 1R 2 IO<r 1 ~ x2 +y 2 ~ r 2 } com bordo aA formado por duas 

curvas regulares, C
1 

(externa} e C2 
(intern~}. 

Um conjunto X e A ê convexo por geodêsicas em 

A se para todo par de elementos x e y em X, as geodêsi­

cas unindo x a y em A estão -co~tidas em X. 

Definição: a envoltõria convexa geodêsica interior de 

um conjunto U e A, ê a intersecção de todos 

os conjuntos X e A, convexos por geodêsicas 

U e X. 

Com pequena3 modificaçÕês nos argumentos jã 

demonstraremos o 

tais que 

utilizados 

TeoPema 2: Seja A uma região homeomorfa a um anel, como 

acima, 

(a) . Se fuma folheação de A, sem singularidades_, tangen­

te ao bordo então k(f) ~ i(C 1 ) + (C 2 ) - 2d, onde d 

-e o comprimento da curva y que limita exteriormente 

a envoltõria convexa geodêsica interior de C2 
em A. 

(veja fig. 16). 
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(b) Existe uma quase-folheação f de A que minimiza a cur 

vatura total, isto ê, k{f) = t(C
1

) + t(C
2

)-2d. 

figura 17 

A parte a) do Teorema 2 repousa na seguinte ob 

servaçao: com exceção de um conjunto de medida nula de 

retas do plano, toda reta L e l 2 , intercepta A num nume 

ro finito de segmentos e se um tal segmento AB não inter 

cepta y, isto e, AB n y = <1> então AB e f têm pelo menos 

1 conta to. Is to ocorre porque se AB n y = <1> então 

{AiB} _e:: C1 ou {A,B} e C2 
e em qualquer caso fica determi 

do um disco do plano como abaixo e jµ I (f;AB) ~ 1. 
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. A 
L 

figura 18 

A partir dai, repetindo os argumentos usados 

na parte a) do Teorema 1, conclui-se que k(f) ~ t(aA) -

- 2d = 1(C 1 ) + 1(C 2 ) - 2d. 

Parte b). Começamos com as observações seguintes: 

(1) Qualquer que seja x S A, existe uma unica geodesi­

ca fechada contida em A, Yx, passando por x . 

figura 19 
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(2) Uma orientação em C
2 

induz uma orientação em Yx• In-

dicamos por Yx o trecho de Yx que une X 

primeiro ponto de e em que Yx encontra 
2 

orientação induzida por c2 

. (3} Se x/y então (a) Yx e Yy 

(b) Yy e Yx 

em y 

ou 

ou 

X 

a te CJx) = 

Cz, com a 

e y nao se encontram no inte­
Y 

rior de A. 

(4) As geodêsicas Yx, x 6 A, determinam uma quase-folhe~ 

ção de A por retas, f. 

Para definirmos a seqõência de folheações f(n) proc~ 

demos de modo anãlogo ao do Lema 2, tomando o cuida­

do de escolher em C1 
e C2 

a mesma orientação. 

(5) Para completarmos a demonstração observamos que se L 

e uma reta generi ca do plano então. L íl A e formada , 

por um nümero finito de segmentos de retas. Seja AB 

um destes segmentos. 

(a) se AB íly = <I> então lul (fn;AB)= 1 para n suficien 

temente grande e po~tanto lul(f;AB) = 1. 

A 

figura 20 
A 
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(b) Se AB então lµ l (f(n); AB) = O para 

ficientemente grande e lµ I (f;AB} = O. 

B 

---
-y~---:/~7-:T­

/ 
/ 

/ 
/ 

I 

figura 21 

22 

n su 
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Desta última observação, segue co~o no Teorema 

Observações: 1) se C2 
e uma curva convexa, então Y= C2 , 

d; t(C 2 ) e t(C 1 ) + t{C 2 } -2d = R.(C 1 )­

- t ( c2). 

2) Nos dois casJs analisados neste trabalho, 

se as regiões D e A forem limitadas por 

curvas convexas então existem folheações 

da região que minimizam a curvatura total. 

K( f ) = .t(C)-2d 

figura 22 

Por outro lado se C = ao, no caso do disco, 

(C = C1 
ou C = C

2 
no caso do anel) não ê uma curva conve­

xa então não existe folheação de D(A) que minimize a cur­

vatura total, isto e, este mínimo ê atingido apenas por 

quase-folheações. 

De fato, suponhamos que f e uma folheação de 

D(A). Se C possui apenas 2 pontos de inflexão e cada um 

ê um por-do-sol, então a geodésica y que os une nao e um 

diâmetro como mostra um câlculo de variações, e da demons 
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tração do Teorema l segue que 

k{f) ~ L(C) · 2L(y) > L(C} -2d 

Podemos supor, portanto que C possui um ponto 

de inflexão regular para f. Seja Ta reta tangente a C 

em P. 

figura 23 

Existe Q numa vizinhança de P tal que a reta 

T' tangente a e em
0

Q encontra Cem pelo menos três pon­

tos, Q, Q' e Q"'. Existe uma folha a de f tal que 

#{cr n T') ~ 2, (n numa vizinhança tubular V de C, de 

raio suficientemente pequeno). 

Seja T" uma reta paralela a T', tangente a cr 

em S, com S 6 V, e seja Q" a intersecção de T" e C (Q" 

numa vizinhança de Q'}. 

Seja G o conjunto de retas do plano que inter­

ceptam os segmentos QQ"' e Q'Q" G ~ um aberto no conjun­

to das retas e se L 6 G então lul{F;L) ~ 2. 
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