

A Note on k -decidability
 Manuel Valentim de Pera Garcia
 Instituto de Matemática e Estatística
 Universidade de São Paulo
 Caixa Postal 20570 - São Paulo - Brasil

§0 : Introduction

In [1] Barone-Netto has introduced the concept of k -decidability for germs of $(R^n; O)$ in $(R; 0)$. We say that a germ f has k -jet if there is a polynomial P of degree m , $m \leq k$ such that $\lim_{x \rightarrow 0} \frac{f(x) - P(x)}{\|x\|^k} = 0$, denote by $J(k; n)$ the set of germs who has k -jet (or, $J(k)$ when the context is clear enough) and by $J^k f$ the k -jet of f .

One can be interested in to study when k -jet of a germ f determine if it has a maximum, a minimum or neither (in this case we say that f has a saddle) in O , in this case we say that f is k -decidable.

In his paper Barone-Netto found a necessary and sufficient condition for f be k -decidable, unfortunately it's not an "algebraic condition" on $J^k f$. We think that the "operational complications" of the problem are motived by the "complication" of $J(k)$ and we show in this note that is very difficult to simplify the question, in sense of if we want know about k -decidability of a germ we ought to look $J(k)$ in a whole, since we can't restrict our attention to a "conveniente subset" as, by example, the polynomials of $J(k)$ which are sufficient in the case $k = 2$ (see Remark 4 below).

Namely, we answer the next question: "There exists some polynomial p of degree k , not k -decidable but such that all $f \in J(k+1)$ with $J^k f = p$ has the same behavior that p ?" (or: There are some polynomial p of degree k which is k -decidable in the world $J(k+1)$ but it is not k -decidable?). We give an example of such a polynomial P of 2 variables and degree 5 which has a saddle in O , every f which has 6-jet and $J^6 f = P$ has saddle in O (in particular all germs C^6 with Taylor's polynomial of degree 5 equal to P has this propriety) and is not 5-decidable (of course, this is impossible in one variable).

We include two little remarks (3 and 4) which show that:

- i- our example is the "simplest" we can find in R^2 .
- ii- in the case $k = 2$, the only we have an algebraic criteria to decide k -decidability, it's enough to look by the polynomials of $J(2)$ to see if a germ is or not 2-decidable (see the third paragraph of this introduction).

§1 : An (counter-) Example

Let be $P(x; y) = y^4 - x^4 y$ and $f = y^4 - x^4 y + x^5 z^2$.

Remark 1 If $g \in J(6)$ and $J^6 g = P$ then g has saddle in O .

Take the germ of curve $y = x^{1/4}$ in O .

Write $g = J^6 g + R$, we have:

$$\begin{aligned} J^6 g(x; x^{1/4}) &= P(x; x^{1/4}) + Q(x; x^{1/4}) \\ &= x^{5/4} - x^{5/4} + Q(x; x^{1/4}) \end{aligned}$$

Q is an homogeneous polynomial of degree 6 since $J^6 g = P$, then $Q(x; y) = \sum_{j=0}^6 a_j x^j y^{6-j}$ and $Q(x; x^{1.4}) = \sum_{j=0}^6 a_j x^{j+1.4(6-j)}$.

Then, since in last line $j + 1.4(6 - j) \geq 6$, we see that $J^6 g(x; x^{1.4}) = -x^{5.4} + R_1(x)$ where $\lim_{x \rightarrow 0} \frac{R_1(x)}{x^{5.4}} = 0$.

For this and because $\lim_{x \rightarrow 0} \frac{R(x; x^{1.4})}{x^{5.4}} = 0$ (since $J^6 R = 0$) we have proved that g has a maximum in O when restricted to $(x; x^{1.4})$.

Of course, this shows remark 1. \square

Remark 2 f has a local minimum in O .

\triangleleft In fact, if $f(x_0; y_0) = 0$, with $(x_0; y_0) \neq O$, it's obvious that $y_0 > 0$ and $x_0 \neq 0$, then we have

$$P(x_0; y_0) = y_0(y_0^3 - x_0^4) = -x_0^{5.2} < 0.$$

So $y_0 < x_0^{\frac{4}{3}}$ (\dagger).

Now choose $\epsilon > 0$ small enough to do $x^{5.2} > x^{\frac{15}{4}}$, if $0 < |x| < \epsilon$. Finally we see that if $|x_0| < \epsilon$ by (\dagger) we have $y_0 x_0^{\frac{4}{3}} < x_0^{\frac{15}{4}} < x_0^{5.2}$, and this is a clear contradiction with our assumption $f(x_0; y_0) = 0$, soon f has a local minimum in O . \square

Remark 3 In R^2 if first non null jet is of order 2 this anomalous behavior can't happen, in fact we have the

Lemma If $f \in J(k; 2)$ $k \geq 2$ with $J^2 f \neq 0$ then if f is not k -decidable then there are two polynomials P_1 and P_2 such that $J^k f = J^k P_i$ $i \in \{1; 2\}$, one of P_i has an extreme and other has saddle in O .

Notice that the lemma is false in R^3 , to see this take $f(x; y; z) = z^2 + P(x; y)$ where P is the polynomial given in Remark 1.

\triangleleft Really this is a very simple application of splitting lemma.

We observe first that if a germ h has k -jet null the same is true for $h \circ \psi$, where ψ is a germ of C^∞ diffeomorphism of (R^2, O) into itself. This shows that if h is k -decidable the same is true for $h \circ \psi$ (this is true if $\psi \in J(k)$).

Of course, we need to proof the lemma only by $J^k f$, then we can assume that f is a polynomial of degree k .

If f isn't 2-decidable and $J^2 f \neq 0$ we can suppose that $J^2 f$ has a non strict minimum at O , then by Milnor splitting lemma (see [2]) there is a change of coordinates C^∞ in R^2 such that in new coordinates $f(\xi; \eta) = \xi^2 + g(\eta)$ where g is a C^∞ function of one variable with $J^2 g = 0$.

Then $g \in J(k) \subset C^\infty$ and $J^k g = 0$.

In fact, this is obvious since f isn't k -decidable, and this doesn't depend on coordinates as we have already observed.

Now take $Q_1(\xi; \eta) = -J^{k+1}g + \eta^{k+1}$ and $Q_2(\xi; \eta) = -J^{k+2}g + \eta^{k+2}$ we see that $J^k Q_i = 0$ and one of the functions $f + Q_i$ has a minimum while the other has a saddle in O and both are $(k+i)$ -decidable.

Finally return to the old variables $(x; y)$, it's clear now that $J^k Q_i$ is null by the initial observation we have do, and the same observation shows that $f + Q_i$ is $(k+i)$ -decidable, then $P_i = J^{k+i}(f + Q_i)$ are the desired polynomials. \triangleright

Remark 4 Note that if $f \in J(2)$ and f isn't 2-decidable than we have two polynomials P_1 and P_2 one of them has saddle in and other has extreme in O and $J^2 P_i = J^2 f$.

To see this is enough remember that then $J^1 f = 0$ and $J^2 f$ is a homogeneous polynomial of degree 2 semi-defined (otherwise f would be 1 or 2-decidable).

So $P_i = J^2 P + (-1)^i(x^4 + y^4)$ are the desired polynomials.

Remark 5 It's easy to see by similar arguments that $P(x; y) = (y^4 - x^3)^2 + x^2 y^{12}$ and $J(x; y) = P(x; y) - x^{14}$ given another example of same kind that Remark 2, where P has a minimum 14-decidable in world $J(15)$ but it isn't 14-decidable.

Acknowledgment The author is grateful to Dr. Angelo Barone-Netto for the useful talks about this subject and the incentive to write this note.

References :

- [1] Barone-Netto, A. - Jet-Detectable Extrema - *Proc. of American Math. Soc.* - vol 92, n. 4 - pp 604-608;
- [2] Milnor, J. - *Morse Theory* - *Annals of Math. Studies*, n. 51 - Princeton Univ. Press - 1973.