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ABSTRACT: In this article, we introduce a diagnostic platorm comprising an optical microscopy image analysis system coupled
with machine learning. Its ecacy is demonstrated in detecting SARS-CoV-2 virus particles at concentrations as low as 1 PFU
(plaque-orming unit) per milliliter by processing images rom an immunosensor on a plasmonic substrate. This high perormance
was achieved by classiying images with the support vector machine (SVM) algorithm and the MobileNetV3_small convolutional
neural network (CNN) model, which attained an accuracy o 91.6% and a specicity denoted by an F1 score o 96.9% or the
negative class. Notably, this approach enabled the detection o SARS-CoV-2 concentrations 1000 times lower than the limit o
detection achieved with localized surace plasmon resonance (LSPR) sensing using the same immunosensors. It is also signicant
that a binary classication between control and positive classes using the MobileNetV3_small model and the random orest
algorithm achieved an accuracy o 96.5% or SARS-CoV-2 concentrations down to 1 PFU/mL. At such low concentrations,
straightorward screening o newly inected patients may be easible. In supporting experiments, we veried that texture was the main
contributor to the distinguishability o images taken at dierent SARS-CoV-2 concentrations, indicating that the combination o ML
and image analysis may be applied to any biosensor whose detection mechanism is based on adsorption.
KEYWORDS: plasmonic substrates, immunosensor, SARS-CoV-2 virus, computer vision, machine learning

The need or rapid, reliable, and cost-eective diagnostic tools
to detect viral inections has been highlighted by the COVID-
19 pandemic. Various biosensing platorms, including those
based on plasmonic nanomaterials, have been developed to
detect the SARS-CoV-2 virus. These plasmonic platorms
exploit the unique optical properties o nanostructures to
detect viral particles with high sensitivity through localized
surace plasmon resonance (LSPR).1−5 The sensitivity o these
sensors depends on the shit in LSPR spectra upon binding
target molecules to unctionalized nanostructures.6 Since each
type o plasmonic structure has a specic LSPR band, the
analysis process is specic to each nanostructure. In addition,
the response o the LSPR spectrum is dierent at each point;
i.e., the maximum peak o the band does not always provide
the most sensitive response.7 While LSPR-based detection

oers high sensitivity, it requires expensive spectrometers,
limiting its widespread adoption in clinical settings8 or in
point-o-care (PoC) devices. Other techniques or optical
detection in plasmonic biosensors, such as surace-enhanced
Raman scattering (SERS),9,10 uorescence microscopy,11 and
ellipsometry,12 use sophisticated equipment that is rarely
available in hospitals.
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Highly sensitive immunosensors have been proposed or the
SARS-CoV-2 virus with diverse detection methods, including
amperometry, electrochemical and electrical impedance
spectroscopies, colorimetry, and the use o electrical measure-
ments with eld eect transistors (FETs). These sensors had
limit o detection (LOD) values on the order o 100 to 101
PFU/mL.13−17 It is not straightorward to determine the
number o virus particles in clinical samples that would
correlate with these limits o detection because this number
depends on the type o body uid and the stage o the
inection. Samples rom inected patients collected rom the
respiratory tract, nasopharynx, and saliva can contain virus
particles corresponding to the range o 101 to 106 plaque-
orming units per mL (PFU/mL).18
An alternative approach involves optical microscopy, which

is available in laboratories and hospitals and oers a more
aordable solution compared to spectroscopies. Image
processing o plasmonic biosensors has been made mostly
with handcrated algorithms that consider only statistical
measurements o the RGB (“red−green−blue”) inten-
sities.4,11,19 Detection o the SARS-CoV-2 virus using
plasmonic sensor imaging, or example, was demonstrated by
Liang et al.4 using substrates ormed by gold nanocups. The
image analyses selected color characteristics o the RGB
histograms and the values o hue o the images converted rom
the RGB space to the HSV (hue, saturation, and value) space.
The binary classication was made with the support vector
machine (SVM) method, obtaining 97% accuracy. Only the
average color variation inormation was used to train the
classication model, without considering texture and spatial
inormation on the image. Since ecient computer vision
algorithms exist or eature extraction in images, both based on
convolutional neural networks (CNNs) and handcrated
extraction algorithms,20−23 we believe that they could be
combined with machine learning (ML) to automate diagnosis
procedures.
In this paper, we demonstrate that ML and image analysis o

plasmonic biosensors can yield a high perormance, even
higher than that using LSPR. This will be shown with a
plasmonic immunosensor ormed on gold nanoislands to
detect SARS-CoV-2 virus particles.

■ MATERIALS AND METHODS
B270 glass slides, 1.0−1.2 mm thick, were acquired rom Schott. The
antibodies against anti-SARS-CoV-2 Spike glycoprotein S1 mAb
[CR3022] (ab273073) were purchased rom ABCAM (USA). 11-
MUA (11-mercaptoundecanoic acid), EDC (N-(3-dimethilamino-
propyl)-N′-ethylcarbodiimide hydrochloride), and NHS (N-hydrox-
ysuccinimide) were obtained rom Sigma-Aldrich (USA). Washing
procedures employed isopropanol 99.5% (Synth, Brazil) and ethanol
99.8% (Exodo Cientica, Brazil), while aqueous solutions were
obtained rom a Milli-Q water purication system with 18.2 MΩ·cm
resistivity (Millipore Integral 10). The phosphate buer saline (PBS)/
MgCl2 buer was prepared with NaCl 137 × 10−3 mol L−1, Na2HPO4
10 × 10−3 mol L−1, KH2PO4 1.7 × 10−3 mol L−1, and KCl 2.7 × 10−3

mol L−1, adjusted to pH 7.4 and added with MgCl2 1.0 × 10−3 mol
L−1. The SARS-CoV-2 B.1 strain (HIAE-02-SARS-CoV-2/SP02/
human/2020/BRA; GenBank MT126808.1) was isolated rom
Brazil’s second conrmed COVID-19 case, and the respiratory
syncytial virus was rom subgroup A (RSV A2 strain). For viruses’
stock preparation, Vero cells (ATCC CCL81) were inected at a
multiplicity o inection (MOI) o 0.1 or 1 h with gentle agitation at
15 rpm. Ater this adsorption phase, the cells were washed with
prewarmed PBS, cultured in DMEM with 10% heat-inactivated etal
bovine serum and 1% penicillin−streptomycin, and incubated at 37

°C in 5% CO2. The supernatant was collected 2 to 3 days
postinection and stored at −80 °C. Virus inactivation was achieved
through ultraviolet (UV) irradiation under biosaety conditions
ollowing Patterson et al.24 The titration o the virus was determined
using plaque-orming unit assays. The viruses’ strains were sourced
rom the Laboratory or the Study o Emerging Viruses (LEVE) at the
Institute o Biology, UNICAMP, Brazil.

Immunosensor Fabrication on AuNI/Glass Plasmonic Sub-
strates. Glass slides with dimensions o 25 × 8 × 1.0 mm were
cleaned in an ultrasonic thermal bath at 65 °C or 20 min in neutral
detergent solution Extran MA02 (rom Merck Supelco) diluted with a
ratio o 1:10 v/v ultrapure water or 10 min and isopropanol (99.5%
Synth, Brazil) or 10 min. The substrates were then treated with UV/
ozone or 10 min, rinsed in Milli-Q ultrapure water, and dried under a
nitrogen ow. A 6 nm thick gold lm (Au/glass) was deposited with
the MB-Evap evaporator inside a LabMaster 130 Glovebox (MBraun)
at a chamber pressure o 1 × 10−6 mbar at a lm growth rate o 0.03
nm/s. The speed and thickness o the gold lm were controlled
during deposition by using a quartz crystal microbalance (QCM)
inside the evaporation chamber. The Au/glass lms were annealed
inside mufe urnace model EDGCON 5P (EDG, Brazil) at 600 °C
or 2 h. This method was adapted rom Tesler et al.25 Ater thermal
annealing, the resulting plasmonic AuNI/glass substrates were cleaned
with ultrasonic thermal bath in isopropanol or 10 min and ultrapure
water or 10 min, dried under a nitrogen ow, and sterilized in UV/
ozone or 10 min. The nal cleaning processes removed the remaining
dust particles rom the manuacturing processes and loosely adhered
AuNIs rom the glass surace. They also sterilized the plasmonic
surace or biosensing. The morphology o the resulting AuNI/glass
substrates are shown in Figure S1 o the Supporting Inormation. We
ormed an 11-MUA sel-assembled monolayer (SAM) on the AuNIs'
surace by incubation o the plasmonic substrates in 11-MUA/ethanol
10 mM solution or 24 h at room temperature (25 °C). The SAM-
coated substrates were rinsed in pure ethanol and dried under a N2
ow. We activated the carboxylic acid (−COOH) terminals using the
EDC/NHS reaction, immersing the substrates in a solution o 0.1 mol
L−1 EDC and 0.1 mol L−1 NHS with equal volumes, ollowed by a 30
min incubation at room temperature. Then, the substrates were
immersed in ultrapure deionized water and dried under a N2 ow.
The anti-SARS-CoV-2 mAb antibody corresponding to the Spike S1
protein o the SARS-CoV-2 virus was immobilized by dropping a 0.1
mg/mL solution in PBS/MgCl2 ollowed by a 2 h incubation at room
temperature.

Detection Procedures with the Plasmonic Immunosensor.
The immunosensor was immersed in a tube containing 1 mL o the
test solution or 30 min at room temperature (25 °C). Next, the
sensor was rinsed in a PBS/MgCl2 buer solution and dried using a
N2 stream. We perormed LSPR measurements beore and ater the
tests in the same region o the immunosensor. Optical microscopy
images were acquired beore and ater the tests. We characterized the
LSPR spectrum using the UV−vis ber optic spectrometer (400−
1000 nm) model USB4000 (Ocean Optics) with the tungsten halogen
light source model LS-1 (Ocean Optics). The light source was
collimated into an approximately 3 mm diameter beam, according to
the scheme in Figure S2a in the Supporting Inormation. We used a
sample holder with a translational stage to acquire the LSPR spectrum
at the same region o the sensor beore and ater the tests. The spectra
were analyzed with programs in Python to extract 10 eatures rom the
LSPR band: Peak_λ, Peak_abs, FWHM_λ, FWHM_abs, in1_λ,
in1_abs, in2_λ, in2_abs, valley_λ, and valley_abs. Here, whm is
the ull width at hal-maximum. The eature peak reers to the
maximum absorbance o the LSPR band. Features in parts in1 and
in2 correspond to the inection points on the let and right sides o
the LSPR band, respectively. The details about the eatures are given
in Figure S4 in the Supporting Inormation. A single variable analysis
was perormed with plots or the eatures peak_λ and peak_abs. The
multidimensional inormation in the 10 eatures extracted rom the
LSPR spectra was analyzed using the dimension reduction and
inormation visualization method Interactive Document Mapping
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(IDMAP)26,27 with the sotware PEx-Sensors (details o the IDMAP
method are included in the Supporting Inormation).
Optical Microscopy, Computer Vision, and Machine

Learning Methods. Optical microscopy images were obtained
with the Zeiss Axio Lab.A1 transmission optical microscope (Carl
Zeiss) with the Zeiss A-Plan 40×/0.65 objective, C-mount adapter
with 0.63× magnication, and CMOS sensor model AxioCam ERc 5s.
The images have 1920 × 2560 pixels corresponding to a eld o view
o approximately 165 × 220 μm. The total magnication is equivalent
to that observed in the eyepiece (400× magnication). Various
computer vision and machine learning (ML) algorithms were
compared or the classication o optical microscopy images o the
plasmonic immunosensor. Computer vision methods to extract
eatures take images as inputs and return a eature vector (also called
an image descriptor) or each image. We employed ve handcrated
methods: LBP (Local Binary Pattern),28 CLBP (Complete Local
Binary Pattern),29 GLCM (Gray Level Co-occurrence Matrix),30

GLDM (Gray Level Dierence Method)31 and RGB5D-LBP (RGB to
5D Local Binary Pattern). These algorithms (with the exception o
RGB5D-LBP) are only applied to grayscale images, so we need to
convert the images beore applying these eature extractors. RGB5D-
LBP was developed in this work based on the algorithm MCLBP
proposed by Shu et al.32 by combining the classic LBP components o
the three RGB channels and two perpendicular LBP components in a
square predened pattern coordinate. This eature extractor was
conceptualized to be applied on three-channel images. Further details
on the handcrated methods are given in the Supporting Inormation.

We also employed 12 eature extraction methods based on deep
learning models and convolutional neural networks (CNN):
DenseNet121,33 EcientNetV2_B0, EcientNetV2_B1, Ecient-
NetV2_M, EcientNetV2_S,34 MobileNet,35 MobileNetV2,36 Mobi-
leNetV3 small,37 ResNet18, ResNet34,38 VGG16, and VGG19.39 The
network parameters o these architectures were imported (pretrained
models) rom the corresponding models trained with the ImageNet40

database. These CNN architectures were congured or eature
extraction by removing the classication layer and adding the “Global
Average Pooling” ater the last convolutional tensor layer. CNN-based
extractors can be applied to RGB or grayscale images. The parameters

o the CNN layers were not adjusted during the training o the ML
algorithms. These CNN architectures were chosen based on the GPU
memory requirement, processing times, and the dimensionality o the
descriptors being up to 1280. Further details about the CNN
architectures used are given in the Supporting Inormation.

The image descriptors were used in training our machine learning
models: LDA (linear discriminant analysis),41 KNN (K-nearest
neighbors), SVM (support vector machines), and RF (random
orest).42 LDA was applied with the least-squares solution solver
(lsqr) and shrinkage using the Ledoit−Wol lemma.43 In KNN, we set
K = 5, and the SVM uses a linear kernel. The parameter o the RF was
200 trees, max_eatures = “sqrt” (in each search or the best split, it
considers a number o eatures equal to the square root o the total
number o eatures), and the other parameters were kept as the
deault by using scikit-learn implementation, version 1.4.1.

The pipeline o image classication or the plasmonic immuno-
sensor is shown in Figure 1. A brie description o the ML classiers
algorithms is ound in the Supporting Inormation. A set o images is
taken and organized into dierent classes. We apply computer vision
methods to extract eatures o the images; then or each method, we
obtain a set o eature vectors. The eature vector set corresponding to
each computer vision method is used to train the machine learning
models LDA, KNN, SVM, and RF. To evaluate each model, we
perormed stratied veold repeated three times cross-validation,
measuring the ollowing metrics: accuracy, recall, precision, F1 score,
negative predictive value, and true negative rate o the test sets. For
unbalanced data sets, it is recommended to perorm stratication in
each cross-validation iteration to ensure that the number o samples in
each class maintains the same proportion as in the original data set.
The details about the stratied k-old process are included in the
Supporting Inormation, which also contains the equations o the
metrics considered.

We employed IDMAP to project the n-dimensional predicted
probabilities (where n is the number o classes considered) or each
sample predicted by the ML classiers. This method o inormation
visualization creates a 2D map by conserving the dissimilarity o the
points in the predicted probabilities space. In this analysis, the ML
algorithm was trained with the entire data set, and then we applied the

Figure 1. Diagram o image classication processes (“pipeline”) using computer vision and machine learning techniques.
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trained algorithm to perorm predictions or all samples in the data
set. The predicted probabilities were then applied to the IDMAP
method. The objective o this analysis is to visualize how the ML
algorithm classies each sample, the separation o the clusters o well-
classied samples (higher concentrations), and the conusion in the
classication o samples corresponding to tests in the lower-
concentration dilutions. It is also possible to visualize outliers. Since
this analysis is aimed at ML explainability and visualization o the
prediction inormation or all samples in the data set, we did not
separate the data in training and validation sets.

The handcrated extractors were executed using programs in
Python version 3.9 with Scikit-image library v. 0.20.44 The methods
based on deep learning and CNN were implemented with programs
in Python v. 3.9 using the libraries Keras v. 2.10.0, TensorFlow v.
2.10.1, and PyTorch v. 2.0.0 (pytorch-cuda v. 11.7). The ML models
were implemented using the library Scikit-learn v. 1.4.1.45 The
handcrated eature extractors were executed in a laptop with
processor Intel core i7-6700HQ CPU with our 2.6 GHz physical
cores and 16 GB o RAM memory. The CNN eature extractors
require a larger amount o dedicated memory, especially in the case o
very large images (1920 × 2560 pixels and three channels). We ran
the CNN eature extractors using the Google Colabcloud processing
platorm,46 which oers ree use o a Jupyter notebook running
Python language v. 3.10.12. The computational resources comprised
an Intel Xeon CPU with two cores o @2.20 GHz, 13 GB RAM, 78.2

GB disk space, and an NVIDIA Tesla T4 GPU with 16 GB dedicated
memory (VRAM).

■ RESULTS AND DISCUSSION
The main aim in this study is to demonstrate that diagnosis can
be made by combining image analysis and machine learning, in
which optical microscopy images are taken rom the
immunosensors ater they are exposed to the samples under
analysis. Since we used immunosensors that can also be used
or detection using LSPR spectroscopy, we rst present the
results rom LSPR, which will then be compared with those
rom image analysis.

Detection with LSPR Spectroscopy. Detection was
perormed with samples o various concentrations o
inactivated SARS-CoV-2 virus, inactivated RSV, and blank
tests with the PBS/MgCl2 buer. The UV−vis LSPR spectra o
the immunosensors were acquired beore (state = probe or
sensor) and ater the detection tests. The changes in the
spectra were examined with 10 eatures extracted rom the
LSPR band, as ollows: wavelength and absorbance o the peak,
whm, in1, in2, and valley (see Figure S4 in the Supporting
Inormation). Figure 2 shows the spectral changes ater tests
with various concentrations o the SARS-CoV-2 virus. A

Figure 2. LSPR spectra or the immunosensor beore and ater positive tests with dierent concentrations o the SARS-CoV-2 virus.

Figure 3. Calibration o the LSPR response in the positive tests or the eatures peak_λ and peak_abs (red dots). We included in the respective
graphs the responses in the blank control tests (gray dots) and the negative control tests with the RSV virus (green dots).
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redshit o the LSPR band was observed with increasing
concentrations owing to the increase in the reractive index o
AuNIs resulting rom the adsorption o SARS-CoV-2 virus
particles. Such adsorption occurs through the binding o spike-
S1 proteins on the virus outer membrane and the anti-SARS-
CoV-2 mAb monoclonal antibodies immobilized on the
immunosensor.
The most distinctive response o the immunosensor was

observed or the eature Peak_λ, which is illustrated in Figure 3
together with Peak_abs. The red dots represent the mean and
standard deviation o LSPR responses in the positive tests with
dierent concentrations o the SARS-CoV-2 virus. The green
dot corresponds to the negative control tests with RSV virus
particles, while the blank tests obtained with PBS/MgCl2
buer are represented by the gray dot. We estimated the
detection limit or eatures Peak_λ and Peak_abs according to
IUPAC standards as being the mean plus 3× the standard
deviation o the responses in the blank tests perormed on 20
dierent sensors. The signal level o the LoD was 1.1 nm and
0.011 AU (absorbance units) or Peak_ λ and Peak_abs,
respectively, shown on dashed lines in Figure 3. The mean
response o Peak_λ or 1 × 103 PFU/mL SARS-CoV-2 is

above the LoD signal, but with a standard deviation below the
detection level. Thus, we are unable to detect SARS-CoV-2 at
concentrations below or equal to 1 × 103 PFU/mL. For
Peak_abs, the response was less sensitive, yielding a higher
LoD. The deviations in the measurements may depend not
only on the errors on the detection process but also on the
dierences in sensitivity between dierent plasmonic immu-
nosensors o the same batch. The plasmonic substrates used in
this study have a characteristic dispersion o 61 ± 21 nm in
AuNI diameter and 52 ± 27 nm or interparticle distances
(edge−edge) in the same batch (Figure S1 in Supporting
Inormation). Figure 3 also serves to demonstrate the
specicity o the immunosensor. The LSPR responses or
eatures Peak_λ and Peak_abs in the tests with the RSV virus
are below the detection level and close to the signal levels in
the blank control tests. The specicity is higher when Peak_abs
is considered since both the mean and standard deviation were
below the corresponding LoD. It is worth noting that the LoDs
estimated or the other LSPR eatures were higher, as indicated
in Figure S3 o the Supporting Inormation.
We also analyzed the immunosensor specicity taking into

account the 10 eatures extracted rom the LSPR spectra using

Figure 4. 2D IDMAP projection o the 10 eatures extracted rom the LSPR spectra in the tests perormed. Each dot represents a measurement,
and each type o test was marked with a dierent color. For heuristic analysis purposes, we included a dotted dividing line separating the regions
that contain mostly positive tests rom those that contain mostly negative control tests.

Table 1. Distribution o Immunosensor Images or the Tests, Concentrations, and Classes

test, conc (PFU/mL) class N ML distinguishable 2-Class N_binary

SARS-CoV-2, 1 × 105 CoV(5) 43 distinguishable positive 211
SARS-CoV-2, 1 × 104 CoV(4) 40 distinguishable positive
SARS-CoV-2, 1 × 103 CoV(3) 21 distinguishable positive
SARS-CoV-2, 1 × 102 CoV(2) 20 distinguishable positive
SARS-CoV-2, 1 × 101 CoV(1) 21 distinguishable positive
SARS-CoV-2, 1 × 100 CoV(0) 66 distinguishable positive
SARS-CoV-2, 1 × 10−1 CoV(−1) 40 not distinguishable
SARS-CoV-2, 1 × 10−2 CoV(−2) 60 not distinguishable
SARS-CoV-2, 1 × 10−3 CoV(−3) 42 not distinguishable
SARS-CoV-2, 1 × 10−4 CoV(−4) 40 not distinguishable
sensor, probe probe 286 distinguishable rom the positive classes negative 501
blank, PBS/MgCl2 blank 140 distinguishable rom the positive classes negative
RSV, 1 × 105 RSV 39 distinguishable rom the positive classes negative
RSV, 1 × 104 RSV 16 distinguishable rom the positive classes negative
RSV, 1 × 103 RSV 20 distinguishable rom the positive classes negative
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the Interactive Document Mapping (IDMAP) technique26,27

to reduce the dimensionality. Figure 4 shows the 2D projection
o the data where each dot represents an LSPR spectrum.
Dierent colors were used to identiy dierent SARS-CoV-2
concentrations and control tests. A dashed line was included to
help distinguish the data points. Positive controls with higher
concentrations (1 × 105 and 1 × 104, and most o the tests at 1
× 103 PFU/mL) were projected on the let side. The points
corresponding to positive control with lower concentrations (1
× 101 and 1 × 102, and some tests with 1 × 103 PFU/mL
concentration) were projected on the right side in the same
region o the negative control tests. Thereore, these low-
concentration samples could be considered as alse-negative
results; one point or the RSV tests was projected on the let
side o the line, being considered as a alse-positive result. The
arbitrarily positioned dividing line allows us to analyze the
specicity o the plasmonic immunosensor and its limitations
when LSPR spectroscopy is used or detection. We did not
apply machine learning methods to classiy the samples
because the amount o LSPR data is limited.

Classifcation o Immunosensor Images Using Com-
puter Vision and Machine Learning. We acquired 858
optical microscopy images (400× magnication) o the
plasmonic immunosensors ater the tests with SARS-CoV-2
virus at concentrations rom 1 × 10−4 to 1 × 105 PFU/mL,
blank tests with pure PBS/MgCl2, control tests with RSV virus
at concentrations rom 1 × 103 to 1 × 105 PFU/mL, and the
images o the class Probe corresponding to the images o the
immunosensor beore the tests. The number o images and the
classes are detailed in Table 1. Some microscopy images o the
immunosensors are included in Figure S6 o the Supporting
Inormation. We employed 17 computer vision methods to
extract eatures rom each image, 5 o which are handcrated:
LBP, CLBP, GLCM, GLDM, RGB5D-LBP, and 12 are based
on CNN: DenseNet121, EcientNetV2_B0, Ecient-
NetV2_B1, EcientNetV2_M, EcientNetV2_S, MobileNet,
MobileNetV2, MobileNetV3 small, ResNet18, ResNet34,
VGG16, and VGG19.

The ML algorithms LDA, KNN, SVM, and RF were trained
to classiy the images in multiclassication and binary
classication problems. The combination o all eature
extraction methods with each ML classier provides a set o
48 models based on CNN eature extraction and 44 models
based on handcrated eature extractors. Hence, a total o 92
image classication models were compared. We evaluated all
models with cross-validation (stratied veold, repeated three
times), and the mean and standard deviation o the metrics
were calculated. The pipeline and details o this method are
listed in Figure 1. The metrics used to analyze the perormance
o the models in multiclassication are accuracy and F1 score.
To determine which model perorms better in detecting the
SARS-CoV-2 virus, we consider the accuracy score. The
accuracy metric describes the model’s ability to dierentiate
the samples among all the classes considered in the training
and prediction. The F1 score metric is dened as the harmonic
mean between the precision and recall. This metric is more
representative in the evaluation o the multiclassication
problems since it considers both the recall and precision. It
accounts or the perormance o the model in distinguishing
each individual class. The F1 score o the negative class can be
used as a proxy o the selectivity or the ability o the sensor to
predict the negative measurements correctly (minimized alse
positives) and not attribute the positive tests to the negative
class (minimizing alse negatives).
The image classication models were initially trained and

evaluated or the multiclass problem considering all 10 positive
tests, with the ollowing classes: CoV(−4), CoV(−3),
CoV(−2), CoV(−1), CoV(0), CoV(1), CoV(2), CoV(3),
CoV(4), and CoV(5), corresponding to the SARS-CoV-2
dilutions rom 1 × 10−4 to 1 × 105 PFU/mL, and a negative
class composed by merging the tests Blank, RSV (the three
dilutions), and Probe in the same negative class. This 11-class
problem was a hard training task or all o the models. The
diculty to classiy the positive class concentrations is
evidenced by the low values o accuracy and F1 scores in
Table 2. The maximum accuracy among the 92 models tested
was only 77.1 ± 2.4% or the eature extractor based on the

Table 2. Metrics or the Multiclassication Using MobileNetV3_small + SVM Considering Diferent Numbers o Positive
Classes (10, 9, ···, 4) and 1 Negative Class
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CNN model MobileNetV3_small with the SVM classier
(model MobileNetV3_small + SVM). This may be explained
by the inclusion in the data sets o very low concentrations,
which may be below the limit o detection using image
analysis. We recall that the LoD was 1 × 103 PFU/mL when
the LSPR spectra were used, corresponding to class CoV(3).
In an attempt to determine the lowest concentration that

could be correctly classied by the combination o image
analysis and ML, we perormed multiclassication tasks in
which we progressively eliminated the lowest concentrations.
The results o the multiclassication tasks are given in Table 2.
The original multiclassication problem contains 11 classes: 10
positive classes (SARS-CoV-2 dilutions rom 1 × 10−4 to 1 ×
105 PFU/mL) and 1 negative class. The accuracy and the F1
scores or each class or the original multiclass problem are
included in column 10 (number o positive classes). Removing
the lowest concentrated class, CoV(−4), corresponding to the
dilution 1 × 10−4 PFU/mL, we trained and compared the 92
models to classiy 9 positive classes (dilutions rom 1 × 10−3 to
1 × 10−5 PFU/mL) and 1 negative class. The best accuracy
and F1 scores or each class are included in column 9 (number
o positive classes) and so on until removing class CoV(1),
corresponding to the SARS-CoV-2 with concentration 1 × 101
PFU/mL. In this case, we trained the models to classiy the
our positive concentrations, rom 1 × 102 to 1 × 105 PFU/
mL, and the negative class. In all multiclassication tasks, the

highest-perorming model was the MobileNetV3_small +
SVM. The accuracy o this model increased rom 77.1% or
10 positive classes to 91.6 and 94.0% or 6 and 5 positive
classes, respectively. The F1 score o the negative class
(Negative_F1) measures the perormance o the model to
distinguish the negative control tests. It did not vary with the
number o positive classes considered; it was ca. 95%, which
conrms the selectivity o the plasmonic immunosensor using
optical microscopy and image classication with ML. In
contrast, the F1 score o the positive classes was consistently
low or the concentration 1 PFU/mL (class CoV(0)) and
below. Together with the low accuracies or these low
concentrations, one may conclude that they cannot be
distinguished by using the image classication model. From
the analysis o the accuracy and F1 scores or the various
concentrations in Figure S10 in the Supporting Inormation,
we iner that the minimum concentration distinguishable is
either 1 or 1 × 101 PFU/mL, class CoV(0) or CoV(1),
respectively.
The perormance in classication can be visualized in the

conusion matrices in Figure 6, obtained or the best model
(MobileNetV3_small + SVM) trained with dierent numbers
o positive classes. These conusion matrices were constructed
by selecting training and validation sets or which the accuracy
is close to the average accuracies (Table 2). The blue-colored
cells out o the principal diagonal represent the alse positives

Figure 5. Conusion matrices obtained with the best model MobileNetV3_small + SVM, trained with dierent numbers o SARS-CoV-2 positive
test dilutions, by removing the most diluted. The misclassication in the region o lower dilutions is seen in the blue-colored cells out o the
principal diagonal o the matrices when the most diluted concentrations were considered. By removing the tests with smaller concentrations, the
training process is easier, and the conusion matrix reveals a high perormance or image classication o the dierent concentrations and in the
negative tests. The conusion matrix o the problems containing six positive classes and one negative class corresponds to the classication
perormance o the best model trained with images o the sensor in the tests with the SARS-CoV-2 dilution rom 1 × 100 to 1 × 105 PFU/mL. The
six-positive class conusion matrix displays considerable improvement in the classication, and these perormances were used to determine the
minimum concentration distinguishable with image analysis or the plasmonic immunosensor.
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and alse negatives in the predictions. Misclassication occurs
in positive classes corresponding to virus concentrations below
1 × 10° PFU/mL, class CoV(0).
The determination o the minimum concentration distin-

guishable with the ML and image analysis method can be
conrmed using IDMAP to visualize the predicted proba-
bilities or all samples o the data set. The best model was
trained with all samples, and then the trained model was
applied to perorm predictions or all samples in the data set,
including those used or training and testing. Here, we did not
make a train/validation split because we want to visualize how
the model learns with the instances rather than make a
prediction. The predicted probabilities or a given sample are
an n-dimensional vector where n is the number o classes
considered in the training. For example, considering six
positive classes and one negative class in the training, the
predicted probabilities are represented by a seven-dimensional
vector with the probabilities o the sample belonging to each
class. The sample’s predicted class is the class with the highest

predicted probability value. We applied the predicted
probabilities or all samples with the IDMAP method and
created a 2D map that represented the samples as points in
clusters associated with the predicted classes. The true classes
o the samples are represented by distinct colors. Figure 6a−c
shows IDMAP projections o the predicted probabilities
obtained rom the model MobileNetV3_small + SVM trained
with 1 negative class and 10, 8, and 6 positive classes,
respectively. When all concentrations rom 1 × 10−4 to 1 × 105
PFU/mL were used in the training, the model cannot
distinguish the smallest concentrations in Figure 6a, leading
to a silhouette coecient o 0.65, as expected rom the results
in Figure S10 and Figure 5. Figure 6b shows a higher
distinguishing ability, with an increased silhouette coecient o
0.82, or concentrations starting at 1 × 10−2 to 1 × 105 PFU/
mL (eight positive classes). The overlap in Figure 6b also
occurs when the concentration 1 × 10−2 PFU/mL is removed
(see Figure S7 in the Supporting Inormation). A very high
silhouette o 0.93 was obtained or the IDMAP plot or

Figure 6. IDMAP o the predicted probabilities obtained rom the MobileNetV3_small + SVM. (a) Training the model with 10 positive classes and
1 negative class, corresponding to the concentrations rom 1 × 10−4 to 1 × 105 PFU/mL. (b) Considering only eight positive classes and the
negative class in the concentrations between 1 × 10−2 and 1 × 105 PFU/mL. (c) IDMAP projection o the predicted probabilities with the model
trained with the concentrations rom 1 × 10° to 1 × 105 PFU/mL (six positive classes) and the negative class. In the IDMAP (a, b), the low
silhouette coecient and the intersection between the clusters corresponding to lower concentrations indicate that concentrations were considered
that cannot be distinguished. For concentrations at and above 1 PFU/mL, there are a clear separation and a high silhouette coecient value o 0.93.

Figure 7. Pipeline o a test with a given image o the SARS-CoV-2 detection and concentration estimation using image classication trained
models. The model MobileNetV3_small + SVM was applied to predict the class o a test image, and the model MobileNetV3_small + LDA was
used to predict between positive and negative. We illustrate the image eatures in a bar plot. This vector was applied to the trained ML algorithms
SVM and/or LDA. The probability or the predicted class to be CoV(5) is shown in the tables. It is 71.5% or the SARS-CoV-2 test with the
concentration 1 × 105 PFU/mL in the multiclassication task. The match o the predicted class with the true class demonstrated the accuracy o
the image classication model. The binary model predicts correctly the class o the test image with 99.8% predicted probability.
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concentrations between 1 × 100 and 1 × 105 PFU/mL, where
the classes are projected in well-separated, concise clusters.
The silhouette coecients o the IDMAP projections or
dierent numbers o positive classes are shown in Figure S8,
along with the IDMAP projections in Figure S7 o the
Supporting Inormation. In conclusion, the minimum concen-
tration that can be distinguished through image classication
and immunosensing is 1 PFU/mL.
It is worth mentioning that the handcrated models led to

lower perormances than the CNN models. The highest
accuracy with a handcrated eature extractor was 84.1 ± 2.3%
or RGB5D-LBP combined with the RF classier, owing the
30th best perormance ranking when compared to all the 92
models. Full details o the results with these handcrated
models are shown in Table S2 and Figure S5 in the Supporting
Inormation. The results obtained or multiclassication and
the classication o tests with concentrations as low as 1 PFU/
mL should be interpreted with caution. It may not be
interpreted as the LOD. There is no standard denition to
determine the LOD or detection methods based on ML
classication. The results just demonstrated the ability o the
AI model to learn to distinguish the SARS-CoV-2 tests in the
data set available in this study. We also trained and evaluated
the 92 image classication models or binary classication. The
six positive concentrations o SARS-CoV-2 virus, rom 1 to 1 ×
105 PFU/mL, were included in a single positive class, and the
control tests Blank, RSV, and Probe were included in the
negative class. The number o images and the description o
the classes are given in Table 1. In binary detection, we
evaluated the models using the accuracy, recall (sensitivity),
precision, true negative rate, and the negative predictive value.
The best binary classication model was the CNN-based
MobileNetV3_small + LDA that demonstrated an accuracy o
96.5 ± 1.6%, recall o 92.5 ± 4.1%, and negative predictive
value o 96.9 ± 1.6%. Among the handcrated methods, the
best perormance was obtained with the model RGB5D-LBP +
RF with an accuracy o 90.8 ± 1.9% (29th ranking position
among all models compared). The complete results o the
binary classication models are included in the Supporting
Inormation. The accuracy or binary classication was higher
than that or multiclassication, as expected.
A detection test in a chosen image using image classication

with ML is illustrated in Figure 7 or the true class o
immunosensor image corresponding to SARS-CoV-2 with
concentration 1 × 105 PFU/mL. The eatures extracted using
the MobileNetV3_small, returning a vector with 576 eatures,
are represented in the bar plot. We can perorm multiclass
classication using the trained SVM algorithm yielding the
predicted probabilities or each class. We can also perorm the
binary classication using the trained LDA algorithm. In this
example, the highest probability is 71.5% or the class CoV(5),
determining correctly the predicted class o the test image,
while using the binary model, the result was positive with
99.8% predicted probability.
In subsidiary analysis, we noted that using the RGB images

led to slightly higher accuracy or the CNN and handcrated
methods, as described in the Supporting Inormation with the
discussion o the results shown in Table S5. The small
dierence in perormance indicates that texture and not color
is the main contributor or distinguishing the images o
immunosensors exposed to the dierent concentrations o
SARS-CoV-2.

The antigen detection kits based on ow assays, used or the
rapid qualitative detection o the SARS-CoV-2 virus in
nasopharyngeal uid, have a limit o detection (LOD) in the
range rom 102 to 103 PFU/mL.47,48 In comparison, RT-PCR
assays demonstrate LOD values between 10−2 and 1 PFU/
mL.49 RT-PCR assays are capable o detecting very low levels
o viral plasmid genes, although the ratio o RNA copies to
PFU can vary.50 Our sensor demonstrated the ability to detect
SARS-CoV-2 at concentrations as low as 1 PFU/mL, achieving
perormance comparable with the most sensitive sensors
reported in the literature.13−17 However, the tests were
conducted only with inactivated samples diluted in a PBS/
MgCl2 buer. In clinical applications with real samples, the test
solutions are more complex. Thereore, our sensor could be
urther trained using clinical samples.
In PoC applications, it is relevant to consider the

computational cost o the models, as the processing time and
computational resources required can increase the cost o
testing. In a real application, the ML model is already
optimized, and the test can be perormed with the analysis o a
ew images o the immunosensor. The processing times were
estimated or all models considering the image processing,
eature extraction, and classication. In the classication part,
with a trained ML model, the load and classication o three
images were perormed in less than 0.2 s (results not shown)
or the ML models compared (LDA, KNN, SVM, and RF).
The image preprocessing and eature extraction task are the
main contributors or the detection processing time (see
Tables S6 and S7). The processing times and the number o
eatures or the handcrated texture extractors, running using
only the CPU, were compared in Table S6. For the CNN-
based models, the number o eatures extracted, the number o
FLOPs (“Floating Point Operations”), and processing time
were compared in Table S7. The CNN models were compared
by running with a GPU, NVIDIA Tesla T4 GPU with 16 GB
VRAM, provided by Google Colab 40. The execution time o
the MobleNetV3_small eature extractor was 0.18 s per image.
The handcrated method RGB5D-LBP, using only the CPU,
runs in 9.3 s per image. Although they have exhibited lower
perormance, handcrated methods require less computational
power, potentially rendering them more suitable or use in
embedded systems or portable computers. On the other hand,
methods based on convolutional neural networks have
achieved superior perormance but demand greater computa-
tional power.
In this study, we trained models to classiy sensor images in

their original ormat as captured by the microscope, with
dimensions o 1920 × 2640 pixels, without any preprocessing.
CNN algorithms were used as eature extractors with the rst
input layer matching the original image size. Typically, when
using CNN pretrained models, the images are scaled to 224 ×
224 pixels, as CNN algorithms are pretrained on the
ImageNet40 database with this size. However, we opted to
use the original image ormat because in this conguration, the
pixel distance is approximately 86 nm, which is comparable to
the AuNI average diameter (approximately 61 nm), as seen in
Figure S1. The extracted texture eatures capture the patterns
o intensity uctuations between pixels, which may result rom
the anity and other interactions between the analyte and the
probe molecules on the sensor surace. The possibility o using
lower magnications and even cellphone images is currently
under investigation by our group. Another avenue o
exploration is the use o deeper CNN architectures, such as
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ResNet50, ResNet101, and EcientNetV2_L, among others.
Additionally, customizing the number o layers in a CNN
architecture could help determine the optimal model depth or
extracting the most relevant eatures. We employed traditional
ML models commonly used or small data sets and in texture
analysis, providing satisactory results. I a larger data set was
available, training could be also applied to the CNN
architectures, which could potentially lead to even more
robust models or virus detection. However, it is important to
note that in biosensor research, the availability o samples is
oten limited. Despite these constraints, excellent results in
image classication and, consequently, diagnosis can still be
achieved with a limited data set, as demonstrated in this study.
Combining eature extractors with classiers to create
ensemble models may also improve classication perormance.
Several image analysis strategies can be urther investigated in
this context.

■ CONCLUSIONS
We have shown that diagnostics using immunosensors can be
made by applying machine learning and computer vision
algorithms in analyzing optical microscopy images taken rom
the sensors beore and ater exposure to biological samples.
This was demonstrated with a plasmonic immunosensor made
with AuNI/glass substrates in detecting inactivated SARS-
CoV-2 virus particles. It is signicant that a very low
concentration o 1 PFU/mL could be distinguished rom
higher concentrations and negative controls with the ML-
based image analysis, while the limit o detection (LoD) was 1
× 103 PFU/mL or sensing using LSPR spectroscopy. To the
best o our knowledge, no other studies in the literature
employ the same methodology as ours in the detection o
plasmonic biosensors.
The high perormance mentioned above was obtained by

testing 92 image classication models with eature extraction
made either with deep learning and CNN (48 models) or with
handcrated methods (44 models). The CNN models yielded a
higher perormance than the handcrated ones. As or the ML
algorithms, the highest perormance was obtained with the
model MobileNetV3_small + SVM or multiclassication and
mobileNetV3_small + RF or binary classication. We also
compared image analysis approaches including color eatures
and without them. We noted that the main contribution to a
correct classication comes rom texture, which has important
implications since there are many ecient methods to classiy
images based on texture. One can envisage the extension o the
approach employed here to any type o immunosensor or
genosensors. There is ample evidence in the literature that
detection with these types o sensors is governed by adsorption
processes that will aect texture.3,51 Here, we demonstrated
that changes in images at the micrometer scale can be detected,
but it remains to be checked whether the method can be
extended to images taken with smartphone cameras. Moreover,
the validity o the present analysis, which incorporates CNN
architectures and machine learning classication, is not limited
to the detection o SARS-CoV-2 but can also be applied to
other analytes.
The main challenge or achieving a diagnostic system based

on optical microscopy image analysis with ML, e.g., or PoC
applications, is the amount o data required or training the
models. This requires low-cost sensors, which can be obtained
with the AuNI/glass plasmonic substrates used here.
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