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Abstract

Annotated Logic was introduced in [Sub87)] as a logic programming language
to implement reasoning with uncertainty for knowledge-based systems. Later, it
was shown to be adequate to formalise systems in which inconsistencies can be
present, without trivialising its reasoning (technically coined “paraconsistent sys-
tems” [Cos63]). This Logic was generalised in [BS88], but its foundational aspects
were only developed years later [CSV91, CAS91), when annotated propositional and
first-order calculi were presented. They are non-classical logics obtained from a
positive logic with implication to which is added a weak negation operator.

Recently, Annotated Logic has been advocated to be better suited to reason about
uncertainty than with uncertainty [CdS96]. It has also been proposed as a useful
language to reason about arguments, rather than to reason with (logical) arguments
about objective facts [CCdS97]..

In the present article we restate First-order Annotated Logic as a simple two-
sorted classical first-order language. Our goal is to expose some relations between
this Logic and correspondence (i.e. relational) theories of truth [Vis97], thus sug-
gesting the application of this Logic as a flexible tool to build relational theories of
uncertainty.

1 Introduction

Annotated Logic was introduced in [Sub87] as a logic programming tool to implement
reasoning with uncertainty for knowledge-based systems. The flexibility and practical
applicability of this tool was nicely explored and extended in a series of articles [KS89,
KS92, KL92, Thi95, NS92, NS90b, NS90a, NS91].

Later, Annotated Logic was shown to be adequate to formalise systems in which incon-
sistencies can be present, without trivialising its reasoning [BS87] (viz. “paraconsistent
formal systems” [Cos63, Cos74]). This Logic was generalised in [BS88], but its founda-
tional aspects were only developed years later [CSV91, CAS91], when asnotated proposi-
tional and first-order calculi were presented. They are non-classical logics obtained from



a positive logic with implication to which is added a weak negation operator, whose se-
mantics is specified as a function on a complete lattice of truth-values.

Recently, Annotated Logic has been advocated to be better suited to reason about
uncertainty than with uncertainty [CdS96]. It has also been proposed as a useful language
to reason about arguments, rather than to reason with (logical) arguments about objective
facts [CCdS97].

In the present article we restate First-order Annotated Logic as a simple two-sorted
classical first-order language. Our goal is to expose some relations between this Logic and
correspondence (i.e. relational) theories of truth [Vis97], thus suggesting the application
of this Logic as a flexible tool to build relational theories of uncertainty.

In section 2 we briefly review First-order Annotated Logic as it was presented in
[CAS91, Abe92, Car96]. In section 3 we reconstruct this Logic as a two-sorted first-order
logic. Finally, in section 4 we present some discussion and our proposed relation between
this Logic and a correspondence theory of uncertainty.

2 The First-Order Annotated Predicate Calculus

In this section, we briefly present the First-Order Annotated Calculus Q7 [CAS91, Abe92,
Car96]. This Calculus is based on explicit (i.e. syntactic) representations of truth-values,
which can represent degrees of (un)certainty about the (two-valued) truth of closed for-
mulae.

Let | 7 | be a non-empty set of truth-values and < an ordering defined over it, such that
7 =<| 7 |, <> is a finite lattice!. We denote by U the least upper bound operator. The
elements of 7 are called annotation constants. In what follows, we define the associated

annotated logic programming language Lt.
In T, we assume the existence of a fixed function ~:} 7 |—=| 7 |. Later, we will see thai

this function provides the “meaning” of the (weak) negation operator ~ in the system Q7.
The language Lt of Q7 is a first-order language with equality, formed by the following

primitive symboals:

. A countable set of variable symbols, named individual variables;

Logical connectives =, A,V,—;

. Quantifiers V, 3;

Equality =;

Auxiliary symbols: parentheses, comma;

. The elements of 7, named annotation constants;

. For each natural number n < w, a collection of function symbols of arity n. Function
symbols of arity 0 are also called individual constants;

UThe theory is originally defined for complete lattices. In the present article, since we are considering
Artificial Intelligence applications, we are commitied to languages that can be implemented and have their
reasoning procedures effectively computable. Since every finite lattice is complete, we restrain ourselves
to the case of finite lattices, thus assuring that every value in | 7 | can be effectively generated.



8. For each natural number n < w, a collection of predicate symbols of arity n.

The symbols described in the items 1 to 5 are logical symbols, and they are present in
every first-order language with equality. The items 6 to 8 describe the non-logical symbols
which characterise L.

Terms in Lt are defined as usual. Formulae are inductively defined as follows:

1. If p is an n-ary predicate symbol, u is an annotation constant and t,,...,t, are
terms of L7, then p(t),...,t,) : p is called an annotated atom or atomic formula,
Expressions of the form p(t,, ...,t,) are called atoms of Lt;

. If 1,1, are terms, then t; = t; is an atomic formula;

. If A is a formula, then (—A) is a formula;

. If A and B are formulae, then (A A B), (AV B) and (A — B) are formulae;

. If Ais a formula and v is an individual variable, then (¥v)A and (3v)A are formulae.

[ L I )

Intuitively, an annotated atom p(ty,...,2s) : p may be interpreted as the truth-value
of p(tiy...,ta) is at least y. The annotation may also represent a degree of belief (or
uncertainty, or reliability) associated to the atom by a reasoning agent. For example,
A : p can be intuitively interpreted as it is belicved that the truth-value of A is at least u.

We say that A is a closed formula if A does not contain any free occurrence of a
variable. We denote by (V)A the universal closure of A.

Definition 2.1 (Hyper-literal) If p(t1,...,1.) : 4 is an annotated atom end k is a nai-
ural number, then a hyper-literal is inductively defined as follows:

L =%p(tyyeytn) 1 o = Pty ees tn) 2 5

2, —Fp(tygty) 1= (=5 1p(t1, ey ta) 1), K> 1.

A formula is called complez if it is not a hyper-literal.

[t is worth mentioning that it is not possible to redefine all the logical connectives of
the language from only two connectives (A and -, for example), as in the classical case.
This is because the negation works differently for hyper-literals and complex formulae.

In particular, we use additional connectives as abbreviations of certain expressions,
such as the bi~conditional (+).

We will now define a semantics for L7.

Definition 2.2 (Structure) A structure A for Lt is formed by the following objects:

1. A non-empty set |A|, called domain or universe. The elements in |A| are called
individuals of A.

2. For each function symbol f of L, a function fA:| A|* | A|. In particular, for
each individual constant ¢ of Lt, c* is an individual of A.

3. For each predicate symbol p of LT, a function p* : | A" 2| 7 |.
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Let V and T be the sets of variables and terms of L7, respectively. If A is a structure
for L7 and s : V —| A | valuation over the variables for A, then s : 7 —| A | is a valuation
over the terms obtained as usual.

Definition 2.3 Let A be a structure for Lt, 8 a valuation for A and A a formula of Lt.
Then A |= Als] is defined as follows:

1. If A is an atomic formula p(ty,...,t,) : p, then A |= Als] :ﬁp"(s(tl),...,a-(t..)) > u.

2. If A is a hyper-literal ~*p(ty, .. tn) : i,k > 1, then A |= Als] iff A E =Fp(ty, ..., 1) :
~ U

3. If A is (=F), where F is a complez formula, then A |= A[s] iff it is not the case
that A = Fls].

4. For the other formulae, A |= Als] is defined as usual.

If A | Als], we say that A satisfies A for s. We usually write A }= Als] when it is
not the case that A = Als]. If A |= A[s] for every s : V —| A |, we say that A is a model
of A and denote by A = A. A formula A is said to be logically valid (= A)if A = A
for every structure A for Lr. If T’ is a set of formula of L, we say that A is a semantic
consequence of I' (I |z A) if, for every structure A such that A |= B for every formula
Bel,then A A IIT =0, thenT E Aiff E A

In this system, concepts such as free and bounded variables in a formula, free occur-
rence of a variable in a formula and substitution of a term for a free variable are natural
extensions of the analogous concepts from the First-Order Classic Predicate Calculus. So,
we denote by A,[t] the formula resulting from substituting the term ¢ in A for the free
occurrences of v, when ? is replaceable for v in A. When it is clear from the context which
variable is being substituted, we write A[t].

In figures 1 and 2 we present, respectively, an axiom system and inference rules for
the Predicate Calculus Q7. In [Abe93, CAS91}, we find a proof of the soundness and
completeness of this axiomatisation with respect to the semantics proposed above.

Let A, B, C be arbitrary formulae, F, G be complex formulae, p be a predicate symbol,
t;, 1 <1 < n be terms, A, p,p4i, 1 €1 £ m be annotation constants and u, v individual
variables of L7.

1. A= (B — A)
2. (A= (B2C)> (A= B)2(A=0))
3. (A-B)+A)—+ A

4. (ANB)—= A

5. (AAB)—= B

6. A= (B (AAB))



10.
11.
12.
13.
14,
15.
16.
17.
18.
19.
20.

. A= (AVB)
. B (AVB)
(A= C)Y=s{((B-C)3 ((AVB)=0)

(F=G)~ ((F—-G)—-F)

F o (-F > A)

Fv=F

Alt] = (3v)A(v)

(W)A(v) = Aft]

P(t1y eestn) : L

Pte, e tn) 1 1t = Pty eenrtn) 1 Ay 2 A
(=*p(t1y s tn) s p8) & (%5 Mp(t1y g tn) s ~ )y R 2 1
(P(t1s-estn) 1 B A e Ap(teyeenstn) < pom) = P(t1; ooy tn) 2 iy g = Uy pis
v=uv

(v =u) = (A(v) & A[u)),

where A,’[u] is the formula that results from substituting u for some of the free
occurrences of v in A such that u is replaceable for v in A.

Figure 1: Axiom System for the Predicate Calculus Qr

Inference Rules:

1

2.

A——%——ﬂ {Modus Ponens)

A(lv)o B

AV (VWL such that there are no free occurrences of v in B.

B = A(v ]
3. m%{z](;j, such that there are no free occurrences of v in B.

Figure 2: Inference Rules for the Predicate Calculus Q7



In [CCdS], Annotated Logic was investigated as a formal model that can be used to
represent, various types of incomplete and uncertain information. The fundamental idea
is that it can be properly “instantiated’ to represent specific formalisms and consequently
adapted to simulate different automated reasoning systems in Artificial Intelligence. This
“instantiation” is done through the specification of the lattice of truth values 7 and of the
function ~.

As an example, a simplified version of necessity measures [DP87] is presented in
[CdS96] to reason about uncertainty. The language is based on a partially ordered struc-
ture A of values that assign a degree of certainly or quality to a given proposition: the
greater the degree, the greater is the certainty or credibility of the associated information.
So, the necessity associated to a proposition p is the degree to which p can be considered
necessarily or certainly true.

This language is the annotated language itself, where 7 is instantiated as the structure
N and the function ~: N =+ A is an arbitrary weak negation function conveying the
intuitive meaning of “not being certain” about a statement. It allows solving problems
such as “if the necessity of A is ny (A : n1), end the necessity of A being ng implies that
the necessity of B is n3 (A: na — B : ng), then can we conclude that B has necessity ny,
such that the value of ny is constrained by the values of ny,nz,ns .

3 A Two-Sorted Reconstruction of Q7

In [CCdS97] it was suggested that, since Annotated Logic had an explicit (i.e. syntactic)
representation of truth-values, it was useful to reason about truth valuations of arguments,
thus it was a language to reason about arguments rather than to reason about objective
facts.

This is akin to what is suggested in [Vis97}, who argues for correspondence (i.e. re-
lational) theories of truth as opposed to “disquotational” ones. Very briefly, this means
that

“p” is true & p

is not always necessarily the case. Hence, given p, we may still be interested about
the relation between “p” and its truth-valuation. I we generalise the set of possible
valuations for “p” to a finite lattice of truth values, then we can present Annotated Logic
as a formal example to support this argument. Furthermore, if we consider — as proposed
in the initial presentations of Annotated Logic [Sub87] — that this lattice of truth values
characterise degrees of belief on logical statements, then we can introduce Annotated Logic
as a correspondence theory of uncertainty.

A direct consequence of this is that Annotated Logic then becomes a logic of relations
between logical statements and their truth-valuations (or degrees of belief). By replacing
the word “relations” by “predicates”, we feel tempted to reconstruct Annotated Logic as
a predicate language whose terms are object-level relations and their corresponding truth
values. The resulting language, however, would no longer be first-order.

Alternatively, we reconstruct this Logic as a two-sorted, first-order predicate language
{Coh89, Coh87, EFT94, Gal86], in which one sort refers to object-level relations and the
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other sort refers to truth values. This reconstruction is very straightforward and can be
presented as follows. [
The syntax of the language is given by:

1. A set of individual variables, defined as the union of the following sets:
* A countable set of variable symbols, named #ndividual annotation variables;
¢ A countable set of variable symbols, named individual object variables;

[

. Logical connectives =, A, V, —;

3. Quantifiers V, 3;

4. Equality =;

5. Auxiliary symbols: parentheses, comma;

6. A set of function symbols, defined as the union of the following sets;

e For each natural numbers m,n < w, a collection of functional annotation sym-
bols of arity m + n. Functional annotation symbols of arity 0 are also called
individual ennotations;

o For each natural numbers m,n < w, a collection of functional object symbols
of arity m + n. Functional object symbols of arity 0 are also called individual
constants;

7. For each natural numbers m,n < w, a collection of predicate symbols of arity m +n.

Terms are inductively defined as individual variables or applications of function sym-
bols on terms. An annotation term is an individual annotation variable or the applica-
tion of a functional annotation symbol, otherwise it is an object term. A term is well-
sorted if it is an individual variable or a function symbal of arity m + n applied to terms
21, -y tmyEmt1s s tmin i which ¢y, ..., ¢,, are object terms and ém41, ..., tmyn are annotation
terms.

Formulae are defined in the usual way. A formula is well-sorted if every predicate
symbol of arity m + n occurring in it is applied to terms ¢1,...,tm, tmi1y ooy bmpn aud
t1,...,tm are object terms and tm41, ..., tm4n are annotation terms.

The semantics of this language is based on two disjoint domains A and @, respectively
called annotation structure and object structure.

Definition 3.1 (Two-sorted Structure) A two-sorted structure A, O is formed by the
Jollowing objects:

1. A non-empty set | A|, named annotation domain.

2. A non-empty set |O|, named object domain.

8. For each functional annotation symbol f,, a function fA:|O|™ x| A" =| A]|.
4. For each functional object symbol f,, a function f: | O " x| A|* -| O|.

5. For each predicate symbol p, a function pA° : | O |™ x | A{* = {true, false}.
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Concepts such as valuations for variables and terms, satisfiability, validity and semantic
consequence for well-sorted formulae are defined as usual, respecting the two sorts A and

o.
The axioms and inference rules for this logic are the classical ones - also respecting

the sorts.
This concludes the presentation of our classical two-sorted first-order language. From

this language, we now formulate a theory corresponding to the annotated logic Q7. We
start by selecting the function and predicate symbols to be as follows:

1. The only functional annotation symbols occurring in the theory are:

(a) individual annotations;
(b) ~, such that the arity of ~ is 0+1, i.e. it is a unary function from annotations
to annotations; and
(c) U, such that the arity of Ll is 0+2, i.e. it is a binary function from annotations
to annotations;
As we will see in the axiomatisation of this theory, ~ will be employed to represent
the weak negation and L will be employed to represent the least upper bound of the
lattice of annotations. Two selected and distinct individual annotations — denoted
as T and 1 - are assumed to belong to the set of functional annotation symbols of
the theory;

2. All the predicates occurring in the theory have arity m +1,m 2 0, except for the
predicate < of arity 0+ 2. It is a binary predicate on annotations used to represent
partial order between annotation terms as expected; all other predicates in the theory
have arity. ’

The axioms for this theory are presented in figure 3.

Let A, B, C be arbitrary formulae, F, G be arbitrary formulae with at least one occur-
rence of one of A, V, —+ or one of the quantifiers, p be a predicate symbol, #;,1 <i < n be
terms of appropriate sort, A, 4, ;, 1 < i < m be individual annotation variables and u,v
individual object variables.

—

. A (B A)

. (A= (B2 C) 2> (A= B)(A>C))
.((A=>B)2A)~+ A

.(AAB)— A

. (AAB)—+ B

. A= (B> (AAB))

. A5 (AVB)

N O Ov e L N



12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

22.

23.
24.
- Ve, p2,A (1 S (pUpa) Apa < (U pa) A((n S AApz < A) = (p U pz) < N))
26.
27.

. B+ (AV B)

. (A=2C)=((B=2C)=((AVB)- ()
10.
11.

(F = G) = ((F = ~G) = -F)

F— (-F > A)

FV-F

Alt) = (3v)A(v)

(Vo) A(v) = Alt)

Pty eeyln, L)

Vit A (p(t1, vy tny 1) A X S = Pty ooy tmy A))

Vi ((2*p(ta, oeos tms 1)) 4 (25 p(t1, sty ™ 1)), B 2 1
Yo, A ((p(thy s tny ) A P(R1y s tny A)) = P(21, oeny Bny p LI X))
V=0

B=p

(v=u) = (A(v) & A[u]),

where A,'[u] is the formula that results from substituting u for some of the free
occurrences of v in A such that u is replaceable for v in A

(1= 2) = (A(s) & AS[A]),
where A,'[)] is the formula that results from substituting A for some of the free
occurrences of u in A such that X is replaceable for 4 in 4

sy s VA (A =g Ve VA = i)
Vi, pa3psVA (s S pa Aps S pa A{(A S i A X S pa) = A < i)

Vu(u<T)
Vi (L <p)

- Vo (< p)
29.

VA ((BSAAXS p) 2 p=2)

. Vi, pa, pis (1 < pa A pa < pia) = g < pis)

Figure 3: Axiom System for the Two-sorted Theory that Implements Q7
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Intuitively, an annotated atom p(t1,...,tn) : g in Q7 is denoted by p(ty,...,tm, 1) in
the present language, where 2y,...,t, are object terms and y is an annotated term. The
translation of the axiomatisation of Q7 to an axiom system for this Two-sorted theory is
straightfoward, as we can see from axioms 15 to 18 in both theories (figures 1 and 3).

It is interesting to observe the interpretation of negation in this theory, ruled by axiom
17. Following this axiom, we have that negation is interchanged with the application of the
function ~, thus it is better understood as a function in the theory than as a connective?
— which is an immediate consequence of treating truth values relationally. This can be
an explanation to why the proper treatment of negation is so distinct from that of other
connectives in deductive systems — especially the non-classical ones.

Axioms 23 to 30 are introduced to ensure that the annotations will form a finite lattice
and that < and LI will convey the intended intuitive meaning for partial order and least
upper bound of the lattice.

Implementing a clausal version of the first-order theory presented here as e.g. a PRO-
LOG program is straightforward.

4 Discussion

We have proposed a reconstruction of the Annotated Logic Q7 as a two-sorted, first-order
classical language. The interest in this reconstruction is three-fold:

1. the Logic @7 thus presented clarifies its relation with a correspondence theory of
degrees of belief, hence contributing to the philosophical debate on logical theories
for uncertain reasoning;

2. there exist many efficient theorem provers for first-order classical theories, e.g. based
on Resolution. This presentation of Q7 makes its implementation using those theo-
rem provers straightforward; .

3. dealing with negative information is a complex philosophical and practical issue
in many logical systems, including most systems to represent uncertainty. The
suggestion that negation should be considered a higher-order function rather than a
connective, supported by this presentation of @7, may shed some light on why it is
so difficult to reason with negative information.

Future articles shall be devoted to more thorough discussions of each of these points.
Acknowledgements: The authors are partially supported by FAPESP, CAPES and
CNPq. The second author is supported by CNPq grant 200074/97-0.
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