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Abstract 

Annotated Logic wa.s introduced in (Sub87] a.s a. logic programming language 
to implement reasoning with uncertainty for knowledge-based systems. Later, it 
wa.s shown to be a.dequa.te to formalise systems in which inconsistencies ca.n be 
present, without trivialising its reasoning (technically coined "para.consistent sys­
tems" {Cos63]). This Logic wa.s generalised in (BS88], but its foundational aspects 
were only developed yea.rs later [CSV91, CAS91], when annotated propositional a.nd 
first-order calculi were presented. They a.re non-classical logics obtained from a. 
positive logic with implication to which is added a wea.k negation opera.tor. 

Recently, Annotated Logic has been advocated to be better suited to reason about 

uncertainty than with uncertainty [CdS96]. It ha.s a.lso been proposed a.s a UBeful 
language to reason about arguments, rather tha.n to reason with (logical) arguments 
a.bout objective facts [CCdS97] .. 

In the present article we restate First-order Annotated Logic a.s a simple two­
sorted classical first-order language. Our goal is to expose some relations between 
this Logic and correspondence (i.e. relational) theories of truth (Vis97], thus sug­
gesting the application of this Logic as a. flexible tool to build rela.tiona.l theories of 
uncertainty. 

1 Introduction 

Annotated Logic wa.s introduced in [Sub87] a.s a. logic programming tool to implement 
reasoning with uncertainty for knowledge-based systems. The flexibility a.nd practical 
a.pplica.bility of this tool wa.s nicely explored a.nd extended in a. series of articles (KS89, 
KS92, KL92, Thi95, NS92, NS90b, NS90a., NS91). 

Later, Annotated Logic wa.s shown to be adequate to formalise systems in which incon­
sistencies can be present, without trivia.lising its reasoning (BS87) (viz. "para.consistent 
form.al systems• [Cos63, Cos74]). This Logic was genera.lised in (BS88), but its founda­
tional aspects were only developed years later (CSV91, CAS91), when annotated proposi­
tional a.nd first-order calculi were presented. They are non-cla.ssica.l logics obtained from 
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a positive logic with implication to which is added a weak negation operator, whose se­
mantics is specified as a function on a complete lattice of truth-values. 

Recently, Annotated Logic has been advocated to be better suited to reason about 

uncertainty than with uncertainty [CdS96}. It has also been proposed as a useful language 
to reason about arguments, rather than to reason with (logical) arguments about objective 

facts [CCdS97]. 
In the present article we restate First-order Annotated Logic as a simple two-sorted 

classica.l first-order language. Our goal is to expose some relations between this Logic and 

correspondence (i.e. relational) theories of truth [Vis97], thus suggesting the application 

of this Logic as a flexible tool to build relational theories of uncertainty. 

In section 2 we briefly review First-order Annotated Logic as it was presented in 
[CAS91, Abe92, Car96). In section 3 we reconstruct this Logic as a two-sorted first-order 
logic. Finally, in section 4 we present some discussion and our proposed relation between 
this Logic and a correspondence theory of uncertainty. 

2 The· First-Order Annotated Predicate Calculus 

In this section, we briefly present the First-Order Annotated Calculus Qr [CAS91, Abe92, 
Car96]. This Calculus is based on explicit (i.e. SJ/Tltactic) representations of truth-values, 
which can represent degrees of (un)certainty about the (two-valued) truth of closed for• 
mulae. 

Let I r I be a non-empty set of truth-values and ~ an ordering defined over it, such that 
r =<Ir l,:S> is a finite lattice1

. We denote by Uthe least upper bound operator. The 
elements of r are called annotation constants. In what foll!)WB, we define the associated 
annotated logic programming language Lr. 

In r, we assume the existence of a fixed function ~:Ir j➔ I T 1- Later, we will see that 
this function provides the "meaning" of the (weak) negation operator..., in the system Qr. 

The language Lr of Qr is a first-order language with equality, formed by the following 
primitive symbols: 

1. A COWltable set of variable symbols, named individual tJariablu; 

2. Logical connectives .... , /\ , V, ➔; 

3. Quantifiers Y, 3; 

4. Equality =; 

5. Auxiliary symbols: parentheses, comma; 

6. The elements of r, named annotation constants; 

7. For each na.tura.l number n < w, a collection of function symbols of arity n. Function 
symbols of e.rity O are also called individual constants; 

1Tbe theory ii originally defined for complete lattice.. In the present article, since we are conaidering 
Arillicial Intelligence applica.tiona, we are oommilied lo language. that can be implemented and have their 
reuoning procedures effectively computable. Since every finite lattice is oomplete, we restrain oureelvea 
lo the cue of finite Jutic:ea, thus uauring that every value in ( T I can be effectively generated. 
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8. For each natural number n < w, a collection of predicate symbols of arity n. 

The symbols described in the items 1 to 5 are logical symbols, a.nd they are present in 
every first-order language with equality. The items 6 to 8 describe the non-logical symbols 
which characterise LT. 

Terms in LT are defined as usual. Formulae are inductively defined as follows: 

1. Hp is an n-ary predicate symbol, µ is an annotation constant and t1, ••• , tn are 
terms of LT, then p(ti, ... , t,.) : µ is called an annotated atom or atomic formula. 
Expressions of the form p(ti, ... , t,.) are called atoms of LT; 

2. If ti, t 2 are terms, then t1 = t2 is an atomic formula; 

3. If A is a formula, then (--iA) is a formula; 

4. If A and B are formulae, then (A AB), (AV B) and (A ➔ B) are formulae; 

5. If A is a formula and v is an individual variable, then (Vv )A and (3v )A are formulae. 

Intuitively, an annotated atom p(t1 , ••• , t,.) : µ may be interpreted as the truth-value 
of p(ti, ... , t,.) is at least µ. The annotation may also represent a degree of belief (or 
uncertainty, or reliability) associated to the atom by a reasoning agent. For example, 
A : µ can be intuitively interpreted as it is believed that the truth-value of A is at leastµ. 

We say that A is a closed formula if A does not contain any free occurrence of a 
variable. We denote by ('v')A the universal closure of A. 

Definition 2.1 (Hyper-literal) If p(t1 , ... , t,.) : µ is an annotated atom and k is a nat­
ural number, then a hyper-literal is inductively defined as follows: 

1. -.0p(ti, ... , t,.) : µ = p(ti, ... , t,.) : µ; 

£. --,*p(t1, ... , t .. ) : µ = --,(__,*-1p(t1, ... , t,.) : µ), k ~ 1. 

A formula is called complez if it is not a hyper-literal. 

[t is worth mentioning that it is not possible to redefine all the logical connectives of 
the 111.DgUage from only two connectives (A and --,, for example), as in the classical case. 
This is because the negation works differently for hyper-literals and complex formulae. 

In particular, we use additional connectives as abbreviations of certain expressions, 
such as the bi-conditional ( +-+ ). 

We will now define a semantics for LT. 

Definition 2.2 {Structure) A structure A for LT is formed by the following objects: 

1. A non-empty set IAI, called domain or universe. The elements in IA! are called 
individuals of A. 

£. For each function symbol f of LT, a function fA : I A I" ➔ I A 1- In particular, for 
each individual constant c of LT, c4 is an individual of A. 

9. For each predicate symbol p of LT, a function 'fl" : I A I" ➔I -r j. 
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Let V and T be the sets of variables and terms of Lr, respectively. If A is a structure 
for Lr ands : V -+I A I valuation over the variables for A, thens : T -+I A I is a valuation 
over the terms obtained as usual. 

Definition 2.3 Let A be a structure for LT, .9 a valuation for A and A a formula of Lr. 
Then A f= A[s] ia defined a., /ollou,s: 

1. If A i., an atomic formula p(ti, ... , t,.) : µ, then A F A[s] iff P"'(s(ti), ... , a(t,.)) ~ µ. 

e. If A isa hyper-liteml..,i:p(t1, ... ,t,.): µ,k:::: 1, then AF A[.s] iff A\= _,1:-1p(t1,, .. ,t,.): 
Nµ, 

9. If A i.s (,F), where F is a complu formula, then A F A(s] ifJ it i.s not the case 
that A I= F[.,). 

,I. For the other formulae, A F A[.s] is defined as usual. 

If A F A[s], we say tha.t A satisfies A for s. We usually write A ~ Al-'] when it is 
not the case that A I= A[s]. If A f= A[s] for every , : V ➔I A I, we say that A is a model 
of A and denote by A I= A. A formula. A is sa.id to be logically valid (I= A} if A F A 
for every structure A for Lr. If r is a set of formula of Lr, we say that A is a semantic 
consequence of r (r I= A) if, for every structure A such that A I= B for every formula 
BE r, then A I= A. Hr = 0, then r I= A iff I= A. 

In this system, c.oncepts such as free and bounded variable& in a formula, free occur­
rencci of a variable in a formula and substitution of a term for a free variable are natural 
extensions of the analogous concepts from the First-Order Classic Predicate Calculus. So, 
we denote by A.,[t) the formula resulting from substituting the term t in A for the free 
occurrences of v, when t is replaceable for v in A. When it is cleat from the context which 
variable is being substituted, we write A[t]. 

lo figures 1 and 2 we present, respectively, an axiom system and inference rules for 
the Predicate Calculus Q-r. In [Abe93, CAS91), we find a proof of the soundness and 
completeness of this axioma.tisa.tion with respect to the semantics proposed above. 

Let A, B, C be arbitrary formulae, F, G be c.omplex formulae, p be a predicate symbol, 
t;, 1 S i S n be terms, >.,µ, µ;, 1 S i :5 m be annotation constants and u, v individual 
variables of Lr. 

1. A-+ (B ➔ A) 

2. (A ➔ (B ➔ C)) ➔ ((A ➔ B) ➔ (A ➔ C)) 

3. ((A ➔ B) ➔ A) -+ A 

4. (A I\ B) ➔ A 

5. (A I\ B) ➔ B 

6. A ➔ (B ➔ (A I\ B)) 
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7. A ➔ (AV B) 

8. B ➔ (AVB) 

9. (A-+ C) ➔ ((B-+ C) ➔ ((AV B)-+ C)) 

10. (F ➔ G) ➔ ((F-+ -iG)-+ -iF) 

11. F-+ (-iF-+ A) 

12. FV-iF 

13. A[t]-+ (3v)A(v) 

14. (Vv)A(v)-+ A[t] 

15. p(t1, ... , t,,) : J_ 

16. p(t1 , ... , t,,) : µ -+ p(ti, ... , t,,) : .X, µ ~ .X 

17. (-i"p(t1, .. ,,t,.): µ) ++ (..,"-1p(t1, .. ,,t,,): ~ µ), k ~ 1 

18. (p(ti, ... , t,,) : µ, I\ ... I\ p(ti, ... , t,,) : µm) -+ p(ti, ... , t,,) : µ, µ = u~,µ; 

19. V = V 

20. (v = u) ➔ (A(v) ++ A.,'(u]), 
where A..'(uJ is the formula that results from substituting u for some of the free 
occurrences of v in A such that u is replaceable for v in A. 

Figure 1: Axiom System for the Predicate Calculus Qr 

Inference Rules: 

1. A ~-+ B {Modus Ponens) 

A(v) -+ B f · B 
2. (3v )A( v) ➔ B, such that there are no free occurrences o v m . 

3. B~ (v~f~~v)' such that there are no free occurrences of v in B . 

Figure 2: Inference Rules for the Predicate Calculus Qr 
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In [CCdS], Annotated Logic was investigated as a formal model that can be used to 
represent various types of incomplete and uncertain information. The fundamental idea 
is that it can be properly "instantiated' to represent specific formalisms a.nd consequently 
adapted to simulate different automated reasoning systems in Artificial Intelligence. This 
"instantiation" is done through the specification of the lattice of truth values -r and of the 
function~. 

As an example, a simplified version of necessity measures [DP87) is presented in 
[CdS96] to reason about uncertainty. The language is based on a partially ordered struc­
ture N of values that assign a degree of certainty or quality to a given proposition: the 
greater the degree, the greater is the certainty or credibility of the associated information. 
So, the necessity associated to a proposition pis the degree to which p ca.n be considered 
necessarily or certainly true. 

This language is the annotated language itself, where -r is instantiated as the structure 
}/ and the function ~: J.f ➔ J.f is an arbitrary wea.k negation function conveying the 
intuitive meaning of "not being certain" about a statement. It allows solving problems 
such as "if the necessity of A is n1 (A: n1), and the necessity of A being n2 implies that 
the necessity of B is n3 (A: n2 ➔ B: n3), then can we conclude that B haa necessity n4, 
such that the value of n4 is constrained by the values of n1, n2, n3 ff'. 

3 A Two-Sorted Reconstruction of Qr 

In (CCdS97) it was suggested that, since Annotated Logic had an explicit (i.e. syntactic) 
representation of truth-values, it was useful to reason about truth valuations of arguments, 
thus it was a language to reason about arguments rather ~an to reason about objective 
facts. 

This is a.kin to what is suggested in (Vis97], who argues for correspondence (i.e. re­
lational) theories of truth as opposed to "disquotational" ones. Very briefly, this means 
that 

"p" is true +-+ p 

is not always necessarily the case. Hence, given p, we may still be interested about 
the relation between "p• and its truth-valuation. ff we generalise the set of possible 
valuations for "p" to a finite lattice of truth values, then we can present Annotated Logic 
a.s a formal example to support this argument. Furthermore, if we consider - as proposed 
in the initial presentations of Annotated Logic (Sub87] - that this lattice of truth values 
characterise degrees of belief on logical statements, then we can introduce Annotated Logic 
as a correspondence theory of uncertainty. 

A direct consequence of this is that Annotated Logic then becomes a logic of relations 
between logical statements and their truth-valuations (or degrees of belief). By replacing 
the word "relations" by "predicates", we feel tempted to reconstruct Annotated Logic as 
a predicate language whose terms are object-level relations and their corresponding truth 
values. The resulting language, however, would no longer be first-order. 

Alternatively, we reconstruct this Logic as a two-sorted, first-order predicate language 
[Coh89, Coh87, EFT94, Gal86), in which one sort refers to object-level relations and the 
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other sort refers to truth values. This reconstruction is very straightforward and can be 
presented as follows. 

The syntax of the language is given by: 

1. A set of individual variables, defined as the union of the following sets: 
• A countable set of variable symbols, named individual annotation variables-, 
• A countable set of variable symbols, na.med individual object variables; 

2. Logical connectives ..,, fl, V, ➔; 

3. Quantifiers V, 3; 

4. Equality =; 

5. Auxiliary symbols: parentheses, comma.; 

6. A set of function symbols, defined a.s the union of the following sets: 
• For ea.ch natura.l numbers m, n < w, a collection of functional annotation sym­

bols of a.rity m + n. Functional annotation symbols of a.rity O a.re also ca.lied 
individual annotations; 

• For ea.ch natural numbers m, n < w, a collection of functional object symbols 
of a.rity m + n . Functional object symbols of a.rity O are also ca.lled individual 
constants; 

7. For ea.ch natural numbers m, n < w, a collection of predicate symbols of a.rity m + n. 

Terms are inductively defined as individual variables or applications of function sym­
bols on terms. An annotation term is an individual annotation variable or the applica,. 
tion of a functional annotation symbol, otherwise it is an object term. A term is well­
sorted if it is an individual variable or a function symbol of arity m + n applied to terms 
ti, ... , t.,., t.,.+I, ... , t.,.+n in which ti, ... , t.,. are object terms and tm+i, ... , tm+n are annotation 
terms. 

Formulae are defined in the usual way. A formula is well-sorted if every predicate 
symbol of a.rity m + n occurring in it is applied to terms ti, ... , tm, tm+i, ... , t,,.+,. a.ud 
t 1, . . • , t.,. are object terms a.nd t,,.+1, ... , t.,.+,. a.re an.notation terms. 

The semantics of this language is based on two disjoint domains A a.nd 0, respectively 
called annotation structure and object structure. 

Definition 3.1 (Two-sorted Structure) A two-sorted stn1cture A, 0 is formed by the 
following objects: 

1. A non-empty set IAI, named annotation domain. 

J!. A non-empty set IOI, named object domain. 

9. For each functional annotation symbol f., a function f.A : I O I"' X I A In ➔ I A I• 
4. For each functional object symbol fo, a function f° : I O Im x I A I" ➔I O I• 
5. For each predicate symbol p, a. function ~-0 : IO rn XI A I" ➔ {true,false}. 
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Concepts such as 11aluations for variables a.nd tenns, satisfiability, 11alidity a.nd semantic 

consequence for well-sorted formulae are defined as UBual, respecting the two sorts A and 

0. 
The axioms and inference rules for this logic are the classical ones - also respecting 

the sorts. 
Thia concludes the presentation of our classical two-sorted first-order language. From 

this language, we now formulate 11. theory corresponding to the annotated logic Qr. We 

start by selecting the fun_ction and predicate symbols to be as follows: 

1. The only functional annotation symbols occurring in the theory are: 

(a) individual annotations; 

(b) ~, such that the a.rity of~ is O + 1, i.e. it is a unary function from annotatioM 
to annotations; a.nd 

( c) LI, such that the arity of LI is O + 2, i.e. it is a binary function from annotatioM 

to annotations; 

As we will see in the axiomatisation of this theory, ~ will be employed to represent 

the weak negation and LI will be employed to represent the least upper bound of the 

lattice of annotations. Two selected and distinct individual annotations - denoted 

a.s T a.nd J. - a.re aasumed to belong to the set of functional a.nnota.tion symbols of 
the theory; 

2. All the predicates occurring in the theory have a.rity m + 1, m ~ 0, except for the 

predicate :S of a.rity O + 2. It is a binary predicate on annotations used to represent 

partial order between a.nnota.tion terms as expected; all other predicates in the theory 
have a.rity. · 

The axioms for this theory are presented in figure 3. 

Let A, B, C be arbitrary formulae, F, G be arbitrary formulae with at lea.st one occur­

rence of one of /\, V, ➔ or one of the quantifiers, p be a. predicate symbol, t;, 1 :S i :S n be 

terms of appropriate aort, ..X, µ, µ;, 1 :S i :S m be individual annotation variables a.nd u, v 

individual object variables. 

1. A ➔ (B-+ A) 

2. (A-+ (B ➔ C)) ➔ ((A ➔ B) ➔ (A ➔ C)) 

3. ((A ➔ B) ➔ A)-+ A 

4. (A/\ B) ➔ A 

5. (A/\ B) ➔ B 

6. A ➔ (B ➔ (AA B)) 

7. A ➔ (AV B) 
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• • 
8. B ➔ (AV B) 

9. (A ➔ C) ➔ ((B ➔ C) ➔ ((AV B) ➔ C)) 

10. (F ➔ G) ➔ ((F ➔ -,G) ➔ -.F) 

11. F ➔ (-.F ➔ A) 

12. FV-.F 

13. A[t] ➔ (3v )A( v) 

14. ('v'v)A(~) ➔ A[t) 

15. p(ti, ... , t,., .1.) 

16. 'v'µ,). (p(ti, ... ,tn,1-') I\).$µ ➔ p(t1,•••,tn,.\}) 

17. \fµ ((-."p(t1, ... ,tn,µ)) ++ (-.•-1p(t1, ... ,tn,~ µ))), k ~ 1 

18. Vµ,). ((p(ti, ... , t,., µ) I\ p(t1 , ••• , t,., >.)) ➔ p(t1 , .•• , t,., µLI>.)) 

19. V = V 

20. µ = µ 

21. (v = u) ➔ (A(v) ++ A.,'(u]), 
where A.,'(u] is the formula that results from substituting u for some of the free 
occurrences of v in A such that u is replaceable for v in A 

22. (µ = >.) ➔ (A(µ)++ A,.'[>.]), 
where Ap'[.~] is the formula that results from substituting >. for some of the free 
occurrences of µ in A such that >. is replaceable for µ in A 

23. 3µ1, ... ,µ.,,.V>. (>. = µ1 V ..• V >. = µ,,.) 

24. 'v'µ1,µ23µs'v'>. (µs $ µ1 /1. µ3 $ µ2 /1. ((>. $ µ1 I\>. $ µ2) ➔ >. $ µ3)) 

25. 'v'µi,µ2,). (µ1 $ (µ1 LI 1-'2) A µ2 $ (µ1 U µ2) /\ ({µ1 $ .\ /\ µ2 $ >.) ➔ (µ, LI µ2) $ >.)) 

26. \fµ (µ $ T) 

27. Vµ (.1. .:5 µ) 

28. "Iµ(µ$µ) 

29. "Iµ,). ((µ $.\A).$ µ) ➔ µ = >.) 

30. 'v'µi,µ2,µ3 ({µ1 .$ µ2 l\µ2 $ µ3) ➔ 1-'1 $ µ3) 

Figure 3: Axiom System for the Two-sorted Theory that Implements QT 
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Intuitively, an annotated atom p(t1, ... ,t.,.): µ in Qr is denoted by p(t1, ••• ,tm,µ) in 
the present language, where ti, ... , tm are object terms andµ is an annotated term. The 
translation of the axiomatisation of Qr to an axiom system for this Two-sorted theory is 
straightfoward, as we can see from axioms 15 to 18 in both theories (figures I and 3). 

It is interesting to observe the interpretation of negation in this theory, ruled by axiom 
17. Following this axiom, we have that negation is interchanged with the application of the 
function ~, thus it is better understood as a function in the theory than as a connective2 

- which is an immediate consequence of treating truth values relationally. This can be 
a.n explanation to why the proper treatment of negation is so distinct from that of other 
connectives in deductive systems - especially the non-classical ones. 

Axioms 23 to 30 are introduced to ensure that the annotations will form a finite lattice 
and that S and LI will convey the intended intuitive meaning for partial order and least 
upper bound of the lattice. 

Implementing a clausal version of the first-order theory presented here a8 e.g. a PRO­
LOG program is straightforward. 

4 Discussion 

We have proposed a reconstruction of the Annotated Logic Qr as a two-sorted, first-order 
classical language. The interest in this reconstruction is three-fold: 

1. the Logic Qr thus presented clarifies its relation with a correspondence theory of 
degrees of belief, hence contributing to the philosophical debate on logical theories 
for uncertain reasoning; 

2. there exist many efficient theorem provers for first-order classical theories, e.g. based 
on Resolution. This presentation of QT makes its implementation using those theo­
rem provers straightforward; 

3. dealing with negative information is a c.omplex philosophical and practical issue 
in many logical systems, including most systems to represent uncertainty. The 
suggestion that negation should be considered a higher-order function rather than a 
c.onnective, supported by this presentation of Qr, may shed some light on why it is 
so difficult to reason with negative information. 

Future articles shall be devoted to more thorough discussions of each of these points. 
Acknowledgements: The authors are partially supported by FAPESP, CAPES and 
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