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Abstract
In this work, we introduce the class of quantum mechanics superpotentials
W (x) = gε(x)x2n and study in detail the cases n = 0 and 1. The
n = 0 superpotential is shown to lead to the known problem of two
supersymmetrically related Dirac delta potentials (well and barrier). The n = 1
case results in the potentials V±(x) = g2x4 ±2g|x|. For V−, we present the exact
ground-state solution and study the excited states by a variational technique.
Starting from the ground state of V− and using logarithmic perturbation theory,
we study the ground states of V+ and also of V (x) = g2x4 and compare the
result obtained in this new way with other results for this last potential in the
literature.

PACS numbers: 03.65.−w, 11.30.Pb, 11.15.Wx, 03.65.Ge

1. Introduction

Supersymmetric quantum mechanics (SUSY QM) was first introduced by Witten [1, 2], as a
simplified model (a (0+1)-dimensional field theory) to study the possibility of SUSY breaking.
Soon it became a research branch in itself, a way of obtaining new solutions to problems in QM
[3–6]. Of particular interest to our work, we cite many papers in the literature [7–14] devoted
to the development of techniques for treating the anharmonic oscillator V (x) = ω2x2 + g2x4,
and other related potentials, which in general do not have exact solutions.

In this work, we present a new simple class of superpotentials in SUSY QM, in the
form W (x) = gε(x)x2n with n = 0, 1, 2, . . .. The first example of this class, i.e. the case
n = 0, was studied long ago in [15] and revisited in [16, 17]. One of our results is an analytic
solution for the ground-state wavefunction of the potential V (x) = g2x4 − 2g|x|, an amazing
result, considering that analytic solutions do not exist for anharmonic oscillators. Another
result is a new perturbative solution for the ground state of the potential V (x) = gx4, starting
from the solution for the potential V (x) = g2x4 − 2g|x|. The excited states of the potentials
V±(x) = g2x4 ± 2g|x| are also studied by a variational approximation.

This paper is organized as follows. In section 2, we make a brief introduction to the
well-known case of superpotentials, which are monomials of odd powers of x, as well as to
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the SUSY breaking ones, which are monomials of even powers of x. More details of these
solutions can be found in [3, 18]. In section 3, we study solutions related to the class of
simple superpotentials of the form W (x) = gε(x)x2n (n = 0, 1, 2, . . .), where ε(x) is the sign
function. The simple analytical solution for the ground state of the corresponding SUSY system
is shown, the already known case n = 0 is revised and the case n = 1 is studied in more detail.
The first one is the illustrative example of the Dirac delta well and barrier potentials, which
are shown to be SUSY partner potentials associated with the superpotential W (x) = gε(x).
The second one, W (x) = gε(x)x2, allows us to find an analytical solution for the ground state
of the potential V (x) = g2x4 − 2g|x|. In sections 3.1 and 3.2, we study the excited states of the
potentials V±(x) = g2x4 ± 2g|x|, which are derived from W (x) = gε(x)x2. After discussing
that exact solutions for the excited states cannot be obtained, we apply a variational method
(section 3.1) to find approximate solutions for the energy levels and the wavefunctions. In
section 3.2, a new perturbative approach to the ground state of the potentials V (x) = gx4 and
V (x) = g2x4 + 2g|x| is presented. Finally, a discussion of the results is presented in section 4.

2. Our notation and definitions on SUSY QM

Let us briefly summarize some main concepts in SUSY QM. For simplicity, we will work in a
system of units with Planck’s constant set as � = 1 and the particle mass set as m = 1/2 (i.e.
2m = 1). We start by defining the operators A† and A:

A† = W (x) − ip and A = W (x) + ip, (1)

where W (x) is a given function of x and p = −i d/dx is the momentum operator. From these
operators, we can construct two Hamiltonians:

H− = A†A and H+ = AA†, (2)

which in terms of p and W (x) result in H± = p2 + V±. The potentials V± are given by the
equations (W ′ ≡ dW/dx)

V±(x) = W (x)2 ± W ′(x), (3)

which are Riccati’s equations.
These equations can be understood in two ways. One way is: given W (x), we can define

the Hamiltonians H± with potentials V±(x). The other is: given the potential V−(x) (or V+(x)),
by solving one of the Riccati equations, W (x) can be found, the operators A and A† can be
constructed and the partner potential V+(x) (or V−(x)) can be found.

The ground state of a SUSY system is defined as the zero energy state of H− (this is
a choice; changing the function W (x) → −W (x) will change the roles of H− and H+).
As H− = A†A, its ground-state wavefunction ψ−

0 (x) can be obtained by imposing that it is
annihilated by the operator A:

Aψ−
0 (x) =

(
W (x) + d

dx

)
ψ−

0 (x) = 0.

The solution is given by

ψ−
0 (x) = N exp

{
−

∫ x

W (y) dy

}
. (4)

This is a good, physically meaningful solution, provided that the function (4) is normalizable.
Otherwise, a zero energy solution does not exist and SUSY is said to be broken. As is easy
to see, superpotentials obeying the rule of being positive (W (x) > 0) for x > 0 and negative
(W (x) < 0) for x < 0 shall manifest SUSY.
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Then, starting from W (x), we have two partner Hamiltonians H− and H+, one of them
(H−, in our choice) having a ground state ψ−

0 with energy E−
0 = 0 and a tower of other states:

bound states with energies E−
n > 0, n = 1, 2, 3, . . . , or scattering states with energies E− > 0.

The Hamiltonian H+ has bound energy levels E+
n−1, n = 1, 2, 3, . . . , with energies related to

the energies of H− by the relation: E+
n−1 = E−

n or scattering energies E+ > 0. Moreover, the
eigenfunctions of H− and H+ are related according to

ψ+
n−1 = (

E−
n

)−1/2
Aψ−

n , (5)

ψ−
n = (

E+
n−1

)−1/2
A†ψ+

n−1. (6)

The simplest class of superpotentials manifesting supersymmetry are monomials of odd power
in x:

W (x) = gx2n+1, n = 0, 1, 2, . . . . (7)

Using the Riccati equation (3), we have, for the partner potentials,

V±(x) = W (x)2 ± W ′(x) = g2x4n+2 ± g(2n + 1)x2n. (8)

The ground (normalizable) state of H− = p2 +V−, with the energy E−
0 = 0 (see equation (4))

is given by

ψ−
0 (x) = N exp

{ −gx2n+2

(2n + 2)

}
. (9)

The first example of a superpotential of the class (7) is W (x) = gx. In this case, the associated
partner potentials are

V±(x) = g2x2 ± g, (10)

which are simply the potentials of two harmonic oscillators of the same frequency, with a
constant energy shift g added or subtracted. The ground state of H− have E−

0 = 0. Its excited
states and the states of H+ are given by E−

n = E+
n−1 = 2ng, for n = 1, 2, 3, . . ..

We will not pursue the study of this class of superpotentials because they are well known.
We only mention that the next example of this class, W (x) = gx3, corresponds to the potentials
V±(x) = g2x6±3gx2 and their ground-state solution is given by (9) with n = 1.

On the other hand, the class of superpotentials that are monomials in even powers of x,
does not give a normalizable zero energy solution to (4) and SUSY is broken. However, we can
introduce the sign function ε(x) and consider superpotentials of the form W (x) = gε(x)x2n.
For this class of superpotentials, a normalizable ground state exists and SUSY is not broken.
Thus, in the following, we study this class of superpotentials, specially the n = 0 and n = 1
cases.

3. The class of superpotentials of the form W (x) = gε(x)x2n

The case n = 0 must be treated separately. So, let us consider the superpotential

W (x) = gε(x), (11)

where g is a positive constant. For this superpotential (11), the Riccati equations (3) give the
following SUSY partner potentials:

V±(x) = W (x)2 ± W ′(x) = ±2gδ(x) + g2, (12)

where δ(x) is the Dirac delta function. V− is a delta well, while V+ is a delta barrier, with the
energy of the ground state displaced by g2. The corresponding Schrödinger equations are

− ψ±′′(x) ± 2gδ(x)ψ±(x) = (E± − g2)ψ±(x). (13)

3
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Their solutions are well known [15–17]. The well (V−) has a single bound state with energy
level E−

0 = 0, binding energy g2 and wavefunction given by

ψ−
0 (x) = √

ge−g|x|. (14)

All the other eigenstates are plane waves in continuous spectra of energies, the lowest one
starting with E = g2. Simple scattering solutions of the well V− and the barrier V+ can be
written as

ψ±
I (x) = A± eikx + B±e−ikx, x � 0, (15)

ψ±
II (x) = C± eikx + D± e−ikx, x � 0, (16)

where k =
√

E± − g2 with E± > g2 and the respective constants are related according to the
boundary conditions ψII(0) = ψI(0) and ψ ′

II(0) = ψ ′
I (0) ± 2gψ(0) required by the Dirac

delta potential.
In summary, the Hamiltonian H− has one ground state with energy E−

0 = 0 and continuum
of states with energies E− > g2 and H+ has a continuum of states with E+ > g2.

To see the role of the supersymmetry in this system, let us consider a particle crossing the
well (or hitting the barrier), coming from x = −∞, such that we can choose D± = 0. With
the appropriate boundary conditions through x = 0, we can determine B± and C±, getting the
scattered and the transmitted solutions as functions of the incident amplitudes A±. The results
can be written as

ψ±
I (x) = A±

{
eikx + i

(∓g)

k(
1 − i (∓g)

k

) e−ikx

}
, x � 0 (17)

ψ±
II (x) = A±

1(
1 − i (∓g)

k

) eikx, x � 0. (18)

It is easy to verify that the solutions ψ− and ψ+ are related by the supersymmetry
equations (5) and (6). For example, by applying the operator A to ψ−

I (x), we obtain

Aψ−
I (x) ∝

(
gε(x) + d

dx

) {
eikx + i

g
k(

1 − i g
k

) e−ikx

}

∝
{

eikx + i
−g
k(

1 − i−g
k

) e−ikx

}
∝ ψ+

I (x),

explicitly showing the manifestation of the supersymmetry of the system.
Let us now consider the superpotential

W (x) = gε(x)x2, (19)

where g is a positive constant. The two partner potentials are given by

V±(x) = W (x)2 ± W ′(x) = g2x4 ± 2g|x|. (20)

In these potentials, a term δV = ±2gx2δ(x) has been dropped. The reason is that for the
wavefunctions involved in this problem its action is null. As the potentials V±(x) → ∞ for
x → ±∞, the spectra of H± = p2 +V± are discrete and their eigenfunctions are normalizable.
If δV is treated as a perturbative correction to H±, its action would be non-null only if∫ ∞
−∞ dx x2δ(x)|ψ(x)|2 	= 0. But this condition requires a wavefunction that near x = 0

behaves like f (x)/x with f (0) 	= 0, which is non-normalizable and is not in the spectra of
H±. On the other side, treated as part of H±, the term δV could give non-trivial boundary
conditions for dψ/dx at x = 0. To study this possibility, we must integrate the Schrödinger

4
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Figure 1. Partner potentials V−(x) and V+(x) associated with the superpotential W (x) = gε(x)x2.

equation in the interval x = (−ε, ε), for ε → 0. A non-null effect of δV only comes if∫ ε

−ε
dx x2δ(x)ψ(x) 	= 0, which would require ψ(x) behaving like f (x)/x2 with f (0) 	= 0 that

is also, out of the spectra of H±.
A representation of these potentials is given in figure 1. As can be seen, V+ is a single-well

potential and V− is a double-well potential symmetric in x. The corresponding Schrödinger
equations read (

− d2

dx2
+ g2x4 ± 2g|x|

)
ψ±(x) = E±ψ±(x). (21)

The wavefunction for the ground state of the double-well potential V−(x) = g2x4 − 2g|x| has
the energy E−

0 = 0 and is easily obtained from the equation

0 = Aψ0 =
(

gε(x)x2 + d

dx

)
ψ0.

The result (already normalized) is given by

ψ0(x) =
(

3

2

)1/3 g1/6

� (1/3)1/2 e−g|x|3/3. (22)

This is an interesting result. As is well known, exact analytic solutions for the ground (or any
excited) state of the potentials V (x) = g2x4 or V (x) = ω2x2 + g2x4 cannot be obtained. So,
this exact solution for the potential V− is somewhat surprising. Another characteristic of this
solution is that it represents a single-lump centered at x = 0 (which is a local maximum of
V−) and it is not in the form, as naı̈vely expected, of two lumps centered at the two symmetric
minima, x = ±(1/2g)1/3, of V− notwithstanding the fact that, in one dimension, any attractive
well supports at least a bound state. This happens because the ‘volume’ of each well is not
big enough to support a bound state. (This can be seen in a WKB analysis of the potential, or
even more simply, by the Heisenberg uncertainty principle. We should only observe that this
well size �x(�E )1/2 is independent of g.)

Let us now look for the excited states solutions. Inspired by the analytic method to solve
the one-dimensional simple harmonic oscillator and by the form of the solution (22), we try a
solution of the form1

ψ(x) = F(x) e−g|x|3/3. (23)

1 In the case of the simple harmonic oscillator, we suppose that the solutions are of the form H(x)e−x2/2 and, imposing
that these solutions are square integrable, the functions H(x) become restricted to be the Hermite polynomialsHn(x2).

5
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Substituting (23) in the Schrödinger equation (21), it becomes

F ′′ − 2gε(x)x2F ′(x) + EF(x) = 0. (24)

For the simple harmonic oscillator, the same steps would lead us to the Hermite equation.
In our case, we obtain equation (24), which is, for a particular choice of parameters, the
triconfluent Heun equation [19].

We can go on to look for solutions to equation (24) through a power series method.
Assuming that F(x) can be written as

F(x) =
∞∑
j=0

a jx
j (25)

and substituting this expression for F(x) in the differential equation (24), we find
∞∑
j=0

j( j − 1)a jx
j−2 − 2gε(x)

∞∑
j=0

ja jx
j+1 + E

∞∑
j=0

a jx
j = 0.

Renaming indices and rearranging terms, we have

2a2 + Ea0 +
∞∑
j=1

[( j + 2)( j + 1)a j+2 − 2gε(x)( j − 1)a j−1 + Eaj] = 0.

Then, given a0 and a1, this equation is satisfied if the coefficients aj, j � 2, are given by the
three-term recursion relations:

a2 = −E

2
a0, j = 2, (26)

a j = 2gε(x)( j − 3)a j−3 − Eaj−2

j( j − 1)
, j � 3. (27)

The corresponding recursion relation for the the harmonic oscillator potential is a simple
two-term recursion relation. To obtain a normalizable solution, we choose the values of E so
as to terminate the series in a polynomial. In this way, we get the set of discretized values
of the energy spectrum and the corresponding wavefunctions that turn up to be the Hermite
polynomials (see footnote 1).

In our case, the recurrence relation (27) is a three-term recurrence relation and there is no
way of choosing a subset of values of E to terminate the series in polynomials, so as to have
a normalizable solution. Then, no analytic solution can be found, and in the next sections,
we move to looking for approximate solutions. In section 3.1, a variational approximation is
studied, and in section 3.2, a perturbative approximation is discussed, which will also allow
us to study solutions for the potential V (x) = gx4.

3.1. Looking for approximate solutions by a variational method

Let us first apply a variational method. The trial function that we are going to use is

φ(x) =
m∑

j=1

α j f j(x), (28)

where j = 1, 2, . . . , m and the coefficients α j ∈ C are the variational parameters. The functions
f j(x) are chosen to be

f j(x) = x j−1 e−g|x|3/3. (29)

6
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This trial function corresponds to the one previously used in the power series method, with
the additional restriction of being a finite polynomial of degree m − 1, instead of an infinite
series in x.

For the harmonic oscillator with a very similar choice of the trial function we would find
exact solutions. In that case, the variational parameters would be, except for the normalization,
the coefficients of the Hermite polynomials Hn(x2).

Before proceeding, let us consider a convenient change of variables. As can easily be
seen, by making the rescaling x → g−1/3x, it is possible to factor out of the Hamiltonians H±
the constant g2/3:

H± = g2/3

(
− d2

dx2
+ x4 ± 2|x|

)
. (30)

So, in the rest of this section, we will work with g = 1 and after finding the energy eigenvalues,
we can restore the dependence of the energy levels in g by multiplying the results by a factor
of g2/3. The restoration of the corresponding wavefunctions (or trial functions) can also be
obtained by rescaling x → g1/3x in the results.

To go on with the variational method, we construct the expectation value of the energy
with these trial functions:

E = 〈φ|H±|φ〉
〈φ|φ〉 =

∑m
k=1

∑m
l=1 αkαl 〈 fk|H±| fl〉∑m

k=1

∑m
l=1 αkαl 〈 fk| fl〉 (31)

and minimize E with respect to the parameters αl . This condition gives the system of linear
equations:

m∑
l=1

((H±)kl − ESkl )αl = 0, (32)

where we used the notation Hkl = 〈 fk|H| fl〉 and Skl = 〈 fk| fl〉. The values of E that minimize
the above system of equations are the eigenvalues of the matrix

Mkl = (ESkl − (H±)kl ) (33)

and are obtained by solving the equation det M = 0. The wavefunctions corresponding to each
of these eigenvalues are obtained by substituting the value of E in the linear system above and
solving for the parameters αk. The matrix elements that we need to construct Mkl are

Skl = 〈 fk| fl〉 =
∫ +∞

−∞
dx e− 2

3 |x|3 xk+l−2, (34)

(H±)kl = 〈 fk|H±| fl〉 =
∫ +∞

−∞
dx e− 2

3 |x|3 [−(l − 1)(l − 2)xk+l−4 + 2(l ± 1)ε(x)xk+l−1]. (35)

For (k + l) odd, the integrands in (34) and (35) are odd functions and Skl = (H±)kl = 0.
Otherwise, for (k + l) even, we find

Skl =
(

3

2

) k+l−4
3

�

(
k + l − 1

3

)
(36)

(H±)kl = −2

(
3

2

) k+l−3
3

[
(l − 1)(l − 2) − (l ± 1)(k + l − 3)

(k + l − 3)

]
�

(
k + l

3

)
. (37)

7
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Table 1. Energy values associated with H− calculated for different numbers of variational
parameters.

m E−
0

a E−
1 E−

2 E−
3 E−

4 E−
5 E−

6 E−
7

1 0.000 00
2 0.000 00 2.044 41
3 0.000 00 2.044 41 5.765 41
4 0.000 00 1.978 52 5.765 41 10.001 91
5 0.000 00 1.978 52 5.541 35 10.001 91 14.941 74
6 0.000 00 1.971 15 5.541 35 9.494 46 14.941 74 20.370 28
7 0.000 00 1.971 15 5.513 02 9.494 46 14.065 58 20.370 28 26.299 53
8 0.000 00 1.969 91 5.513 02 9.413 70 14.065 58 19.029 62 26.299 53 32.643 99
9 0.000 00 1.969 91 5.508 42 9.413 70 13.901 48 19.029 62 24.431 94 32.643 99

10 0.000 00 1.969 63 5.508 42 9.398 68 13.901 48 18.734 98 24.431 94 30.187 55
a For this level, the variational method provides the exact solution.

Table 2. Energy values associated with H+ calculated for different numbers of variational
parameters.

m E+
0 E+

1 E+
2 E+

3 E+
4 E+

5 E+
6

1 2.314 47
2 2.314 47 6.133 24
3 2.044 93 6.133 24 10.549 40
4 2.044 93 5.636 55 10.549 40 15.634 69
5 1.990 66 5.636 55 9.664 70 15.634 69 21.219 33
6 1.990 66 5.538 88 9.664 70 14.309 56 21.219 33 27.285 56
7 1.976 66 5.538 88 9.465 67 14.309 56 19.369 16 27.285 56 33.765 58
8 1.976 66 5.516 11 9.465 67 13.981 07 19.369 16 24.867 27 33.765 58
9 1.972 35 5.516 11 9.415 24 13.981 07 18.857 87 24.867 27 30.729 24

10 1.972 35 5.510 07 9.415 24 13.893 69 18.857 87 24.136 59 30.729 24

With these results, the matrix M (33) obtains the form

M± =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(M±)11 0 (M±)13 0 · · · (M±)1m

0 (M±)22 0 (M±)24 · · · (M±)2m

(M±)31 0 (M±)33 0 · · · (M±)3m

...
...

...
...

. . .
...

(M±)m1 (M±)m2 (M±)m3 (M±)m4 · · · (M±)mm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (38)

In this matrix, all elements in positions (k, l), such that (k + l) is odd are null, while those
with (k + l) even are given by (33) with Skl and Hkl , respectively, given by (36) and (37). To
find the energy values, we must solve the equation det M = 0.

Tables 1 and 2 show some results found for different number (m) of parameters and for
g = 1. For different values of g, the values in the tables must be multiplied by a factor of g2/3,
as observed above.

The results in tables 1 and 2 reflect the manifestation of SUSY in the system, at least
with respect to the equality between the energy levels E−

n and E+
n−1, n > 0, of H− and H+.

As expected, the ground-state energy of H− is zero and it is not equal to any energy of H+.
Moreover, for n > 0, increasing the number of variational parameters, we find, mainly for the
first levels, energies E−

n more and more closer to E+
n−1.

8
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Figure 2. Scheme for the first five levels of H− (and first five levels of H+) using six variational
parameters.
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(a) Eigenfunctions of H− (b) Eigenfunctions of H+

Figure 3. Eigenfunctions of the first levels of H− and H+ for six variational parameters.

Therefore, the better the trial we make, the closer we are to satisfying the equality between
energy levels. Moreover, because the one parameter trial function for the ground state of H−
has the same form of the exact (analytical) solution, the value E−

0 = 0 found is exact and the
condition of having a zero energy ground state is naturally satisfied.

Figure 2 shows the first energy levels of H− and H+. We must remember that the values
found are better for the increasing number of variational parameters and for the lowest levels.
Thus, for instance, we are supposed to find, for the level n = 4, a worse approximation than
for the level n = 1.

The graphics in figure 3 show the approximations for the first levels eigenfunctions of H−
and H+, respectively. These approximations were found using six variational parameters.

As expected, we note that the eigenfunctions found have well-defined parity, interchanging
even and odd solutions with even solutions for the ground states.

9



J. Phys. A: Math. Theor. 45 (2012) 115307 F Marques et al

3.2. Looking for approximate solutions by a logarithmic perturbation theory

We now apply a variant of the logarithmic perturbation theory (LPT) to our problem. The LPT
is explained in more detail, e.g., in [3, 7–9, 11].

Starting from the known solution ψ−
0 of V−, we can perturbatively obtain the ground state

of V+, or, e.g., of the anharmonic potential V (x) = x4. We start by writing

V (x; δ) = V0(x) + δV1(x), (39)

where

V0(x) = V−(x) = x4 − 2|x| (40)

V1(x) = 4|x|. (41)

Observe that V (x; δ = 1) = V+ and that V (x; δ = 1/2) = x4. As we only know the ground
state of V−, we cannot go beyond the first order in the Rayleigh–Schrödinger perturbation
theory. To bypass this difficulty, we will use the so-called LPT, where only the knowledge
ψ−

0 is required to calculate the ground-state energy level of V (x; δ) to any order in δ (at least
numerically). For that aim, we consider the perturbed Schrödinger equation

− � ′′ + (V0 + δV1)� = E� (42)

and write the expansions

E = E0 + δE1 + δ2E2 + · · · (43)

� = exp (S0 + δS1 + δ2S2 + · · ·), (44)

where S1, S2, etc, are functions and E1, E2, etc, are numbers to be determined. By substituting
these expressions in the Schrödinger equation above and equating the terms of the same powers
in δ, we obtain the set of equations:

S′′
0 + S′2

0 = −E0 + V2, (45)

S′′
1 + 2S′

0S′
1 = −E1 + V1, (46)

S′′
2 + 2S′

0S′
2 + S′2

1 = −E2, (47)

S′′
3 + 2S′

0S′
3 + 2S′

1S′
2 = −E3, (48)
...

Starting with E0 = 0 and S0 = −|x|3/3 (i.e., �0(x) = ψ−
0 = N e−|x|3/3), these equations can

be recursively solved to obtain Ek and Sk to the desired order in δ.
Equation (46) can be rewritten as

(S′
1 exp (2S0))

′ = (V1 − E1) exp (2S0). (49)

By substituting S0 = −|x|3/3 and V1 = 4|x| in this equation, integrating both sides in
the interval x = (−∞,+∞) and observing that the integrand of the left-hand side tends
exponentially to zero at both ends of the integration range, we obtain for E1 the result

E1 = 〈ψ0|V1(x)|ψ0〉
〈ψ0|ψ0〉 =

∫ +∞
−∞ dx e− 2

3 |x|3 4|x|∫ +∞
−∞ dx e− 2

3 |x|3

= 4

(
3

2

)1/3
�(2/3)

�(1/3)
= 2.314 47. (50)

10
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Inserting this result for E1 back into the same equation and integrating now in the interval
y = (0, x) we obtain

S′
1(x) = |ψ0(x)|−2

∫ x

0
dy|ψ0(y)|2 [E1 − V1(y)]

= e
2
3 |x|3

∫ x

0
dy e− 2

3 |y|3
[

4

(
3

2

)1/3
�(2/3)

�(1/3)
− 4|y|

]

= −2

(
2

3

)1/3

e
2
3 |x|3

[
�(2/3)

�(1/3)
�(1/3, 2x3/3) − �(2/3, 2x3/3)

]
, (51)

where �(α, x) ≡ ∫ ∞
x dt e−t tα−1 are the upper incomplete gamma functions [20].

The second-order equation (47) can also be written in the form

(S′
2 exp (2S0))

′ = (−S′ 2
1 − E2) exp (2S0). (52)

Integrating this equation in the interval x = (−∞,+∞), and observing that the integrand
of the left-hand side tends to zero at both ends of the integration range, we obtain E2 as an
integral over S′

1:

E2 = −〈ψ0|S′
1(x)2|ψ0〉

〈ψ0|ψ0〉 = − 3

�(1/3)

(
2

3

)1/3 ∫ ∞

0
dx e− 2

3 |x|3 S′
1(x)2. (53)

Substituting (51) into (53), we find

E2 = − 4

�(1/3)

(
2

3

)2/3 {
�(2/3)2

�(1/3)2
I2/3

(
1

3
,

1

3

)
+ I2/3

(
2

3
,

2

3

)
− 2

�(2/3)

�(1/3)
I2/3

(
1

3
,

2

3

)}
,

(54)

where

Iα(x, y) =
∫ ∞

0
dt et t−α�(x, t)�(y, t), x > 0, y > 0, 0 < α < 1. (55)

Evaluating the integrals, expression (54) gives E2 = −0.438 17.
In summary, up to the second order, the ground-state energy of V (x; δ) is given by

E(δ) = E0 + δE1 + δ2E2, (56)

with E0 = 0, E1 = 2.314 47 and E2 = −0.438 17.
For δ = 1, we obtain for the ground-state energy of V+, the result E+

0 = 1.876 30.
For δ = 1/2, we find the result Ex4

0 = 1.047 69 for the ground-state energy of the the
quartic anharmonic potential V (x) = x4. This result can be compared with the exact one given
in [3], noting that our ‘coupling’ constant g is related to their constant g̃ by g2/3 = (

1
4

)1/3
g̃1/3.

Thus, multiplying our result by
(

1
4

)1/3
, we find Ẽx4

0 = 0.660 00, differing that of [3] only by
about 1.2%.

On the other hand, comparing the value of E+
0 found here with the most accurate result

of the variational method (see table 2), we see that they differ by about 4.9%, what does not
seem very good. But, following the suggestion of [8] or [21], and substituting expression (56)
by the corresponding [1, 1] Padé approximant in δ, we find

E(δ) = E0E1 + (E2
1 − E0E2)δ

E1 − E2δ
, (57)

which results (for δ = 1) in E+
0 = 1.946 05. This result now differs from the result of

table 2 only by 1.3%. Doing the same for δ = 1/2 (and then multiplying by
(

1
4

)1/3
), we find

Ẽx4

0 = 0.665 97, differing from the result of Cooper et al [3] by only 0.03%. A pretty good
result.
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4. Conclusions

In this paper, we studied the class of superpotentials W (x) = ε(x)x2n in SUSY QM. After
revisiting the case n = 0, we continued studying in detail the case W (x) = ε(x)x2. As a result
we obtained the exact solution for the ground state of the potential V−(x) = x4 − 2|x|, showed
that exact solutions do not exist for the excited states and studied these states by a variational
method. Finally, starting from the known ground state of V (x) = x4 − 2|x|, we obtained the
ground states for the potentials V (x) = x4 and V (x) = x4 + 2|x|, using the LPT. Comparison
with other known results in the literature and in the paper were made.

Some other approaches and improvements can be used to study this class of
superpotentials. In a forthcoming paper, we analyze the solutions for the ground states of
V±(x) = x4 ± 2|x| by starting with the solutions of V± = x2 ± C and using the LPT and the δ

expansion of Bender [7] and Cooper [8].
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