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Abstract
In this paper, we propose an Augmented Lagrangian algorithm for solving a general 
class of possible non-convex problems called quasi-equilibrium problems (QEPs). 
We define an Augmented Lagrangian bifunction associated with QEPs, introduce a 
secondary QEP as a measure of infeasibility and we discuss several special classes 
of QEPs within our theoretical framework. For obtaining global convergence under a 
new weak constraint qualification, we extend the notion of an Approximate Karush–
Kuhn–Tucker (AKKT) point for QEPs (AKKT-QEP), showing that in general it is 
not necessarily satisfied at a solution, differently from its counterpart in optimiza-
tion. We study some particular cases where AKKT-QEP does hold at a solution, 
while discussing the solvability of the subproblems of the algorithm. We also pre-
sent illustrative numerical experiments.
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1  Introduction

Given a nonempty set K from ℝn and an equilibrium bifunction f on K, i.e., a bifunc-
tion f∶ℝn ×ℝ

n
→ ℝ with f (x, x) = 0 for all x ∈ K , the equilibrium problem is 

defined by

As was noted in [13], equilibrium problems encompass several problems found 
in fixed point theory, continuous optimization and nonlinear analysis, e.g. minimiza-
tion problems, linear complementarity problems, variational inequalities (VIs from 
now on) and vector optimization problems, among others.

On the other hand, and mainly motivated by real life problems, quasi-variational 
inequalities (QVIs from now on  [16]) have been introduced and studied deeply in 
the recent years. Recall that, given a point-to-set operator K∶ℝn

⇉ ℝ
n and a point-

to-point operator F∶ℝn
→ ℝ

n , the QVI problem consists of

We say that a point x ∈ ℝ
n is feasible if x ∈ K(x) . If K(x) ∶= K , then (QVI) reduces 

to the usual variational inequality problem, which is also a particular case of the 
equilibrium problem (EP).

In order to unify both approaches, the quasi-equilibrium problem (QEP from now 
on) have been introduced and studied. Here the problem is defined by a point-to-set 
operator K and an equilibrium bifunction f, where the QEP consists of

Therefore, QEPs encompass both EPs and QVIs simultaneously, i.e., by exten-
sion, minimization problems, linear complementarity problems, generalized Nash 
equilibrium problems (GNEPs from now on  [22, 25]), and many others related to 
economics, management and mechanics among others (see [9, 29, 39]). Moreover, 
the tools used for providing existence results and optimality conditions goes from 
convex analysis and operator theory to generalized convexity, generalized monoto-
nicity, fixed point theory and variational analysis, i.e., such problems provide a rich 
area for applying theoretical results and new developments from nonlinear applied 
analysis (see [8, 9, 15, 21] for instance).

With respect to algorithms for solving QEPs, several developments have been 
made in the past 10 years. We mention here different approaches for QEPs as extra-
gradient methods (see [44, 45]) and the gap function approach (see [10]). The case 
of the Augmented Lagrangian method, which is also the main topic of this paper, 
have been developed in [43] for the usual minimization problem, and in [33] for 
the variational inequality problems. Different variants of the Augmented Lagrangian 
method for QVIs may be found in [36–38, 41], extending the method from VIs to 
QVIs.

In this paper, we propose an Augmented Lagrangian algorithm for QEPs. The main 
difference of our algorithm is given by its global convergence properties under weak 
constraint qualifications. To do this, and after an study of optimality conditions and 

(EP)find x ∈ K such that f (x, y) ≥ 0, ∀ y ∈ K.

(QVI)find x ∈ K(x) such that ⟨F(x), x − y⟩ ≥ 0, ∀ y ∈ K(x).

(QEP)find x ∈ K(x) such that f (x, y) ≥ 0, ∀ y ∈ K(x).
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constraints qualification for QEPs, we adapt the so-called sequential optimality condi-
tions from nonlinear programming to QEPs (see [1]). Furthermore, it turns out that the 
generalization of an Approximate-KKT (AKKT) point for QEPs, which is a natural 
sequential optimality condition in optimization, is not necessarily satisfied at the solu-
tions of a general QEP. So, special classes of QEPs need to be studied.

This analysis is an extension of the one presented in [14] for GNEPs. The exist-
ence of (approximate) Lagrange multipliers depend on the problem formulation, hence, 
since the interpretation of a GNEP as a QEP depends on a reformulation, the analy-
sis conducted in this paper is indeed necessary. Moreover, we present some numeri-
cal experiments illustrating the practical behavior of the algorithm, including examples 
where the AKKT condition is not satisfied. The obtained results show an interesting 
behavior, in which the generated sequence tends to minimize the KKT residue norm, 
even when it is not possible to make the KKT residue arbitrarily small. This type of 
situation has not been previously reported in the literature.

In our algorithm, we divide the constraint set K(x) in two parts and we penalize 
only one of these parts within our (partial) Augmented Lagrangian approach. Hence, 
we consider a whole class of methods which are quite flexible and that can take into 
account the special structure of the underlying QEP in a favourable way. Since Aug-
mented Lagrangian methods are not expected to find feasible points without strong 
assumptions, we provide a tendency for finding feasible points by introducing a second-
ary QEP as a measure of infeasibility. Hence, our global convergence theory is split 
into a result concerning feasibility and another one concerning optimality, as motivated 
by similar results in optimization (see e.g., [12]). Finally, we provide special classes 
of QEPs for which the resulting EP-subproblems are easy to solve under a monotone 
assumption on the Lagrangian bifunction or when the AKKT conditions are necessar-
ily satisfied at its solutions. The analysis of the special classes that we present here is 
much more comprehensive than the one presented in [14], contemplating other cases 
where the AKKT conditions hold and also where the subproblems are monotonous, 
which has not been studied previously.

The paper is organized as follows. In Sect. 2, we set up notation, basic definitions 
and preliminaries on constraint qualifications and generalized monotonicity. In Sect. 3, 
we deal with QEP-tailored constraint qualifications (CQ-QEP) and we introduce the 
concept of Approximate Karush–Kuhn–Tucker (AKKT) condition for QEPs (AKKT-
QEP). We present classes of QEPs for which AKKT-QEP is satisfied at a solution. In 
Sect. 4, we present our Augmented Lagrangian method. We provide a compact global 
convergence analysis considering both feasibility and optimality of a limit point gener-
ated by our algorithm. In Sect. 5, we deal with properties of the feasibility of QEPs and 
consider some special classes of QEPs via the study of monotonicity properties of its 
associated Lagrangian, where an example for mixed variational inequalities is also pro-
vided. Finally, in Sect. 6, some illustrative numerical results are presented.
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2 � Preliminaries

Given a ∈ ℝ , we define a+ ∶= max{0, a} . Similarly, for a real vector x, we write x+ 
for the vector where the plus-operator is applied to each component. A vector-val-
ued function �∶ℝn

→ ℝ
m is called convex if all component functions are convex. 

Finally, for a continuously differentiable bifunction g∶ℝn ×ℝ
n
→ ℝ

m , we denote 
the partial (with respect to the second argument y) transposed Jacobian by ∇yg(x, y) . 
Hence, for the ith component, ∇ygi(x, y) is the gradient, viewed as a column vector. 
A collection a1,… , am of vectors is called positively linearly dependent (p.l.d. from 
now on) if 

∑m

i=1
tiai = 0 for some t1 ≥ 0,… , tm ≥ 0 not all zero. Otherwise the col-

lection is called positively linearly independent (p.l.i. from now on).
Consider a nonlinear programming problem with inequality constraints (for 

simplicity),

where u∶ℝn
→ ℝ and ci∶ℝn

→ ℝ for i = 1,… ,m are assumed to be continuously 
differentiable. Let X denote the feasible set of problem (1) and A(x̄) = {i ∣ ci(x̄) = 0} 
the index set of active constraints at a point x̄ ∈ X.

Definition 1  Let x̄ ∈ X be a feasible point. We say that x̄ satisfies the: 

(a)	 Linear Independence Constraint Qualification (LICQ) if the gradient vectors 
∇ci(x̄) for i ∈ A(x̄) are linearly independent.

(b)	 Mangasarian–Fromovitz Constraint Qualification (MFCQ) if the gradients ∇ci(x̄) 
for i ∈ A(x̄) are p.l.i.

(c)	 Constant Positive Linear Dependence (CPLD) constraint qualification if for any 
subset I ⊆ A(x̄) such that the gradient vectors ∇ci(x̄) for i ∈ I are p.l.d., they 
remain p.l.d. for all x in a neighborhood of x̄.

(d)	 Cone Continuity Property (CCP) if the set-valued mapping C∶ℝn
⇉ ℝ

n is outer 
semicontinuous at x̄ , i.e., lim supx→x̄ C(x) ⊆ C(x̄) , where 

It is know that CCP is the weakest of the conditions presented (among others), while 
still being a constraint qualification, implying, e.g., Abadie’s CQ (see [6]). That is, 
when CCP holds at a local minimizer, the KKT conditions are satisfied. On the other 
hand, sequential optimality conditions for constrained optimization are necessarily 
satisfied by local minimizers, independently of the fulfillment of constraint qualifica-
tions. These conditions are used for developing stopping criteria for several important 
methods such as the Augmented Lagrangian method and others and for proving global 
convergence results to a KKT point under a weak constraint qualification (CCP, for 

(1)min
x

u(x) s.t. ci(x) ≤ 0, ∀ i ∈ {1,… ,m},

C(x) ∶=

{
w ∈ ℝ

n∶w =
∑
i∈A(x̄)

𝜆i∇ci(x), 𝜆i ≥ 0

}
, and

lim sup
x→x̄

C(x) ∶=
{
w ∈ ℝ

n∶ ∃ xk → x̄, ∃wk
→ w,wk ∈ C(xk)

}
.
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instance). The most popular of these sequential optimality conditions is the Approxi-
mate-KKT (AKKT) [1, 42] defined below:

Definition 2  (AKKT) We say that x̄ ∈ X satisfies AKKT if there exist sequences 
{xk} ⊂ ℝ

n and {𝜆k} ⊂ ℝ
m
+
 such that limk→∞ xk = x̄,

Sequences {xk} and {�k} are called primal AKKT and dual AKKT sequences, 
respectively.

The following theorem states that AKKT is a true necessary optimality condition 
independently of the validity of any constraint qualification (see [1, 12]).

Theorem 1  Let  x̄ be a local solution of problem (1), then x̄ satisfies AKKT.

When an AKKT point is such that the corresponding dual sequence is bounded, it 
is clear that the point is a true KKT point. However, even in the unbounded case, one 
may prove that the KKT conditions hold under different assumptions. The weakest of 
such assumptions, independently of the objective function, is CCP. Theorem 1 is also 
relevant without assuming constraint qualifications, as it shows that it is possible to find 
a point arbitrarily close to a local solution of problem (1) that satisfies the KKT condi-
tions up to a given tolerance 𝜖 > 0 . This result suggests the use of perturbed KKT con-
ditions as stopping criterion of numerical algorithms.

In our analysis, we consider the (QEP) with a continuously differentiable bifunction 
f, together with the multifunction K defined as

where g∶ℝn ×ℝ
n
→ ℝ

m is continuously differentiable and denotes the parameter-
ized constraints.

Note that equality constraints can also be included, but to keep the notation simple, 
we consider only inequality constraints. If g depends only on y, by abuse of notation, 
we replace g(x, y) by g(y). Thus, K(x) = {y ∈ ℝ

n∶ g(y) ≤ 0} = K for all x ∈ ℝ
n , and 

(QEP) reduces to (EP).
Let x∗ be a solution of the QEP with K given as in Eq. (2). Then x∗ ∈ K(x∗) and 

f (x∗, y) ≥ 0 for all y ∈ K(x∗) , or equivalently,

As f (x∗, x∗) = 0 , it follows that x∗ is a solution of the problem

lim
k→∞

‖∇u(xk) +
m�
i=1

�k
i
∇ci(x

k)‖ = 0, and

lim
k→∞

�
min{−ci(x

k), �k
i
}
�
= 0, ∀ i ∈ {1, 2,… ,m}.

(2)K(x) = {y ∈ ℝ
n∶ g(x, y) ≤ 0},

f (x∗, y) ≥ 0, ∀ y∶ g(x∗, y) ≤ 0.

(3)min
y

f (x∗, y) s.t gi(x
∗, y) ≤ 0, ∀ i ∈ {1,… ,m}.
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Assuming that a suitable constraint qualification holds at the solution x∗ with respect 
to the set K(x∗) ⊆ ℝ

n , it follows that there exists some Lagrange multiplier �∗ ∈ ℝ
m
+
 

such that (x∗, �∗) satisfies the following KKT conditions:

This motivates the following definition of the KKT system for a QEP:

Definition 3  (KKT-QEP) Consider the (QEP) with K given by (2). Then the system

is called the KKT conditions of the underlying (QEP). Every (x, �) satisfying these 
conditions is called a KKT-QEP pair.

A QEP is said to be convex if f (x, ⋅) and g(x, ⋅) are convex for each x (a usual 
assumption for QEPs—which we do not assume). Then, the KKT-QEP conditions 
are sufficient for optimality.

Our aim is to compute a KKT-QEP point by solving a related sequence of 
KKT-QEP systems from (simpler) quasi-equilibrium subproblems. In fact, in our 
analysis we allow for inexact solutions of the underlying subproblems. The fol-
lowing definition, motivated by the similar concept for optimization suggested by 
Definition 2, introduces our notion of an �-stationary point of this QEP.

Definition 4  Consider the (QEP) with K defined by (2), and let � ≥ 0 . We call 
(x, �) , with � ≥ 0 , an �-inexact KKT-QEP pair of the (QEP) if the following inequal-
ities hold:

Note that for � = 0 an �-inexact KKT-QEP point is a standard KKT-QEP 
point. A limit x̄ of �-inexact KKT-QEP points {x�}�→0+ (with suitable multipli-
ers {��}�→0+ that may not be convergent) will be called an AKKT-QEP point (see 
Definition 6 below).

We finish this section with the following monotonicity notions which will be 
relevant in our forthcoming analysis.

∇y f (x
∗
, x∗) +

m∑
i=1

�∗
i
∇ygi(x

∗
, x∗) = 0,

�∗
i
≥ 0, gi(x

∗
, x∗) ≤ 0, �∗

i
gi(x

∗
, x∗) = 0, ∀ i ∈ {1,… ,m}.

∇y f (x, x) +

m∑
i=1

�i∇ygi(x, x) = 0,

�i ≥ 0, gi(x, x) ≤ 0, �igi(x, x) = 0, ∀ i ∈ {1,… ,m},

(4)‖∇y f (x, x) +

m�
i=1

�i∇ygi(x, x)‖ ≤ �,

(5)|min{−gi(x, x), �i}| ≤ �, ∀ i ∈ {1,… ,m}.
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Definition 5  Let S be a nonempty set from ℝn . Then an equilibrium bifunction 
f∶ S × S → ℝ is said to be 

(a)	 strongly monotone on S, if there exists a constant 𝛾 > 0 such that 

(b)	 mononote on S, if 

while f is strictly monotone on S, if the previous inequality is strict whenever 
y ≠ x;

(c)	 pseudomonotone on S, if for every x, y ∈ S , 

(d)	 ∇xy-monotone on S, if the mapping ∇xf (x, ⋅) is monotone on S for all x ∈ S , that 
is, 

while f is strictly ∇xy-monotone on S, if the previous inequality is strict when-
ever y ≠ z.

Clearly, every strongly monotone bifunction is strictly monotone and every 
monotone bifunction is pseudomonotone. If f is (strictly) ∇xy-monotone on S, then f 
is (strictly) monotone on S by [11, Theorem 3.1].

For a further study on generalized monotonicity we refer to [11, 28].

3 � Approximate‑Karush–Kuhn–Tucker condition and constraint 
qualifications for QEPs

In many problems, it is natural to stop the execution of an algorithm when a sta-
tionarity measure is approximately satisfied. In this section we will show that this 
procedure may avoid solutions a priori. This is in contrast with what is known in 
nonlinear programming.

We begin by extending the concept of AKKT for QEPs (AKKT-QEP), followed 
by the study of some important cases of QEPs where this condition is necessarily 
satisfied at a solution, whereas we show that this does not happen in general. Then 
we will see the relationship that exists between AKKT-QEP and constraint quali-
fications for QEPs, together with the Augmented Lagrangian method that will be 
presented in the next section. This analysis yields a global convergence proof to a 
KKT-QEP point under a weak constraint qualification.

Note that one may include equality constraints explicitly in the definition, without 
separating into two inequalities, and the computations carry out similarly to the case 
of optimization.

(6)f (x, y) + f (y, x) ≤ −�‖x − y‖2, ∀ x, y ∈ S;

(7)f (x, y) + f (y, x) ≤ 0, ∀ x, y ∈ S,

(8)f (x, y) ≥ 0 ⟹ f (y, x) ≤ 0;

⟨∇x f (x, y) − ∇x f (x, z), y − z⟩ ≥ 0, ∀ x, y, z ∈ S,
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Definition 6  (AKKT-QEP) Consider the (QEP) with K defined by (2). We say that 
a feasible x̄ ∈ ℝ

n satisfies AKKT-QEP if there exist two sequences {xk} ⊂ ℝ
n and 

{𝜆k} ⊂ ℝ
m
+
 such that xk → x,

Sequences {xk} and {�k} are called (primal) AKKT-QEP and dual AKKT-QEP, 
respectively.

Example 1  AKKT-QEP is not necessarily satisfied at a solution. Indeed, 
set f , g∶ℝ ×ℝ → ℝ given by f (x, y) = −x + y , g(x, y) =

1

2
(x − y)2 , and 

K(x) = {y ∈ ℝ∶ g(x, y) ≤ 0} = {x} . Clearly, the solution set of (QEP) is the whole 
real line. Set any solution x∗ ∈ ℝ . If x∗ is an AKKT-QEP point, then we should find 
sequences {xk} ⊂ ℝ and {𝜆k} ⊂ ℝ+ such that |1 + �k(xk − xk)| → 0, which is impos-
sible. Hence x∗ is not an AKKT-QEP point.

The previous example is similar to [14, Example 5.3]. Note that the fact that 
the AKKT condition is not necessary for GNEPs does not directly imply the result 
for QEPs, since a reformulation of the GNEP is required to solve it as a QEP. On 
the other hand, writing the KKT conditions of both problems, it is not difficult 
to see that the KKT residue in one problem tends to zero if and only if it goes 
to zero in the other as well. So the reformulation of the GNEP presented in [14, 
Example 5.3] would also illustrate failure of AKKT for QEPs. However, Example 
1 is simpler, with a single variable and constraint, and the sign of the multipli-
ers do not play a crucial role such as in the examples in [14]. This indicates that 
the AKKT-QEP condition would not hold even if the set K(x) is described by the 
equality constraint g(x, y) = (x − y)2 = 0.

In [24, 36, 38], some important classes of QVIs were analyzed in the study of 
the Augmented Lagrangian method and of a method based on a potential reduc-
tion approach for solving the KKT system of a QVI. Let us show that for some of 
these classes, generalized for QEPs, and some other classes, we have the neces-
sity of AKKT-QEP at a solution.

Theorem 2  Consider (QEP) where the constraints have the structure

with continuously differentiable functions and x, y ∈ ℝ
n . If x̄ is a solution, then the 

AKKT-QEP condition holds at x̄.

Proof  We have that x̄ is a solution of the following optimization problem:

(9)lim
k→∞

‖∇y f (x
k, xk) +

m�
i=1

�k
i
∇ygi(x

k, xk)‖ = 0, and

(10)lim
k→∞

(
min{−gi(x

k, xk), �k
i
}
)
= 0, ∀ i = 1,… ,m.

(11)gi(x, y) = g1
i
(x)g2

i
(y) + g3

i
(x), ∀ i ∈ {1,… ,m},
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Denoting A(x̄) = {i∶ gi(x̄, x̄) = 0} , by Theorem  1, there exist sequences {xk} ⊂ ℝ
n 

and {𝜆k} ⊂ ℝ
|A(x̄)|
+  such that xk → x̄ and

where �k
i
→ 0 for i ∉ A(x̄) were equivalently replaced by a null sequence. Without 

loss of generality, one could also redefine, if necessary, �k
i
= 0 if g1

i
(x̄) = 0 , and (12) 

would still hold. Let us define for k large enough and all i ∈ A(x̄):

Note that xk → x̄ and for k large enough 𝜆̄k
i
 has the same sign of �k

i
 . Moreover, since 

∇ygi(x, y) = g1
i
(x)∇g2

i
(y) , we have 𝜆̄k

i
∇ygi(x

k, xk) = 𝜆k
i
g1
i
(x̄)∇g2

i
(xk). Therefore, by 

(12) and the triangular inequality, we have

Therefore, by (12) and the triangular inequality,

and so x̄ is an AKKT-QEP point. 	�  ◻

Note that setting g1
i
(x) = 1 and g3

i
(x) = 0 for all i we obtain the classical EP. 

Moreover, Theorem  2 also includes QEPs with Linear Constraints with variable 
right-hand side (see [24, 38]), that is,

where A ∈ ℝ
m×n and b∶ℝn

→ ℝ
m is a given continuously differentiable function. 

A particularly important class of problems of type (13) are the QEPs with box con-
straints, that is,

where bl, bu∶ℝn
→ ℝ

n are given mappings which describe lower and upper bounds 
on the variable y, which may depend on x.

In fact, one may show the validity of AKKT-QEP for more general constraints 
than (13), but which are not contemplated by Theorem  2. For this, it is enough 
to have a constraint qualification holding at K(x̄) for x̄ fixed, hence, x̄ satisfies 

min
y

f (x̄, y) s.t. g1
i
(x̄)g2

i
(y) + g3

i
(x̄) ≤ 0, ∀ i ∈ {1,… ,m}.

(12)‖∇y f (x̄, x
k) +

�
i∈A(x̄)

𝜆k
i
g1
i
(x̄)∇g2

i
(xk)‖ → 0,

𝜆̄k
i
∶=

{
0, if g1

i
(xk) = 0,

𝜆k
i

g1
i
(x̄)

g1
i
(xk)

, otherwise.

𝜆̄k
i
∇ygi(x

k, xk) = 𝜆k
i
g1
i
(x̄)∇g2

i
(xk).

‖∇y f (x
k
, xk) +

�
i∈A(x̄)

𝜆̄k
i
∇ygi(x

k
, xk)‖

≤ ‖∇y f (x
k
, xk) − ∇y f (x̄, x

k)‖ + ‖∇y f (x̄, x
k) +

�
i∈A(x̄)

𝜆k
i
g1
i
(x̄)∇g2

i
(xk)‖ → 0,

(13)g(x, y) = Ay − b(x),

(14)g(x, y) =

(
bl(x) − y

y − bu(x)

)
,
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KKT-QEP and thus AKKT-QEP with constant sequences. For example, consider a 
problem where the constraints are of the form

where M∶ℝn
→ ℝ

m×n and b∶ℝn
→ ℝ

m are continuously differentiable functions. 
This class includes QEPs with bilinear constraints (see [24, 36, 38]), that is,

where each Qi ∈ ℝ
n×n are symmetric matrices for all i = 1,… ,m and bi ∈ ℝ are 

given real numbers. To see this, set M(x) as the matrix with the ith row given by 
xTQi.

For a fixed x̄ we have that the constraints g(x̄, y) ≤ 0 are linear and so it satisfies 
a constraint qualification. So every solution x̄ of (3) is a KKT point associated with 
some Lagrange multiplier 𝜆̄ . Taking xk = x̄ and 𝜆k = 𝜆̄ for all k we have the desired 
result.

New, let us consider (QEP) with binary constraints [24, 38], that is, each con-
tinuously differentiable constraint gi(x, y) depends on a single pair (xj, yj) for some 
j = j(i) ∈ {1,… , n} . Then

This class of problems reduces to problems in which each constraint depends on one 
argument. In this case, let us see that AKKT-QEP is necessary at a solution.

Theorem 3  Consider problem (QEP) with  K(x) as in  (17). Let x̄ be a solution. 
Then x̄ is an AKKT-QEP point.

Proof  Since x̄ is a solution of the optimization problem

by Theorem 1, there exist {xk} ⊂ ℝ
n and {𝜆k} ⊂ ℝ

|A(x̄)|
+  such that xk → x̄ and

where ∇ygi(x, y) =
(
0,… , 0, 𝜕yj(i)gi(xj(i), yj(i)), 0,… , 0

)⊤

. Once again, note that we 
can redefine �k

i
= 0 if ∇ygi(x̄, x

k) = 0 . Now, define

(15)g(x, y) = M(x)y − b(x),

(16)g(x, y) =

⎛
⎜⎜⎝

x⊤Q1y − b1
⋮

x⊤Qmy − bm

⎞
⎟⎟⎠
,

(17)K(x) =
{
y ∈ ℝ

n∶ gi(xj(i), yj(i)) ≤ 0, ∀ i ∈ {1,… ,m}
}
.

min
y

f (x̄, y) s.t. gi(x̄j(i), yj(i)) ≤ 0, ∀ i ∈ {1,… ,m},

(18)‖∇y f (x̄, x
k) +

�
i∈A(x̄)

𝜆k
i
∇ygi(x̄, x

k)‖ → 0,

𝜆̄k
i
∶=

⎧⎪⎨⎪⎩

0, if 𝜕yj(i)gi(x
k
j(i)
, xk

j(i)
) = 0,

𝜆k
i

𝜕yj(i)
gi(x̄j(i),x

k
j(i)
)

𝜕yj(i)
gi(x

k
j(i)
,xk
j(i)
)
, otherwise.
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Note that xk → x̄ and that 𝜆̄k
i
 has the same sign of �k

i
 for k large enough. Moreover,

Therefore, by (18), the continuity ∇yf (x, y) and the triangular inequality,

so x̄ is an AKKT-QEP point. 	�  ◻

Remark 1  We note that interpreting the example in [40] as an equilibrium problem 
in a natural way, we see that AKKT-QEP is not sufficient for optimality in the case 
of a convex problem.

In nonlinear optimization, a constraint qualification is needed for ensuring that 
a solution satisfies the KKT conditions. The same holds true for a solution of an 
EP to satisfy KKT-QEP. Since AKKT is a necessary optimality condition, any 
property on the feasible set that guarantees that an AKKT point is KKT, is actu-
ally a constraint qualification. A constraint qualification with this property has 
been called a strict constraint qualification in [5].

On the other hand, algorithms for nonlinear optimization usually generate 
sequences whose limit points satisfy AKKT. From [2–6], it is well-known that a 
separate analysis of the sequences generated by the algorithm, together with the 
(strict) constraint qualification needed for this limit point to satisfy KKT, yields 
global convergence results to a KKT point under a weak constraint qualifications.

In the context of QEPs, the fact that AKKT-QEP is not necessarily satisfied at a 
solution has some drawbacks for algorithms that generate AKKT-QEP sequences 
(see [14] for a discussion around this issue in the context of GNEPs). Moreover, 
for an algorithm that generates AKKT-QEP sequences, conditions for ensuring 
that AKKT-QEP points are KKT-QEP are an important issue. These conditions 
are weaker than the usual MFCQ for QEPs. Therefore, this analysis provides new 
global convergence results for QEPs under weaker assumptions.

We list some relevant conditions below:

Definition 7  Consider a continuously differentiable constraint bifunction 
g∶ℝn ×ℝ

n
→ ℝ

m and a feasible point x̄ ∈ ℝ
n . We say that: 

(a)	 LICQ-QEP holds at x̄ if {∇ygi(x̄, x̄)∶ i ∈ A(x̄)} is linearly independent.
(b)	 MFCQ-QEP holds at x̄ if {∇ygi(x̄, x̄)∶ i ∈ A(x̄)} is p.l.i.
(c)	 WCPLD-QEP holds at x̄ if there exits a neighborhood U from ℝn of x̄ such that, 

if I ⊆ A(x̄) is such that 
{
∇ygi(x̄, x̄)

}
i∈I

 is p.l.d., then 
{
∇ygi(x, x)

}
i∈I

 is p.l.d. for 
all x ∈ U.

𝜆̄k
i
∇ygi(x

k, xk) = 𝜆k
i
∇ygi(x̄, x

k).

‖∇y f (x
k
, xk) +

�
i∈A(x̄)

𝜆̄k
i
∇ygi(x

k
, xk)‖

≤ ‖∇y f (x
k
, xk) − ∇y f (x̄, x

k)‖ + ‖∇y f (x̄, x
k) +

�
i∈A(x̄)

𝜆k
i
∇ygi(x̄, x

k)‖ → 0,
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(d)	 WCCP-QEP holds at x̄ if the set-valued mapping C∶ℝn
⇉ ℝ

n is outer semicon-
tinuous at x̄ , that is, lim supx→x̄ C(x) ⊆ C(x̄) , where 

When x̄ ∈ ℝ
n is not necessarily feasible, we say that 

(e)	 EMFCQ-QEP (Extended-MFCQ-QEP) holds at x̄ if {∇ygi(x̄, x̄)∶ i ∈ AE(x̄)} is 
p.l.i., where AE(x̄) = {i∶ gi(x̄, x̄) ≥ 0}.

To show that LICQ-QEP, MFCQ-QEP and EMFCQ-QEP are CQs for QEPs, it is 
enough to show that each property implies the corresponding optimization CQ for 
problem (3) at y = x̄ . However, Example 1 shows that WCPLD and WCCP are not 
CQs for QEPs, since the KKT conditions do not hold at any solution of the problem.

In order to obtain a CQ, we proceed as in [14], i.e., we require the validity on an 
arbitrary neighborhood of (x̄, x̄) in ℝn ×ℝ

n , and not only in points of the form (x, x). 
That is, we arrive at the following constraint qualifications.

Definition 8  Consider a continuously differentiable constraint bifunction 
g∶ℝn ×ℝ

n
→ ℝ

m and a feasible point x̄ ∈ ℝ
n . We say that: 

(a)	 CPLD-QEP holds at x̄ if there exists a neighborhood U from ℝn ×ℝ
n of (x̄, x̄) 

such that, if I ⊆ A(x̄) is such that 
{
∇ygi(x̄, x̄)

}
i∈I

 is p.l.d., then 
{
∇ygi(x, y)

}
i∈I

 is 
p.l.d. for all (x, y) ∈ U.

(b)	 CCP-QEP holds at x̄ if the set-valued mapping C̄∶ℝn ×ℝ
n
⇉ ℝ

n is outer semi-
continuous at (x̄, x̄) , that is, lim sup(x,y)→(x̄,x̄) C̄(x, y) ⊆ C̄(x̄, x̄) , where 

Clearly CPLD-QEP (CCP-QEP) implies both WCPLD-QEP (WCCP-QEP) and 
the traditional CPLD (CCP) in the context of optimization for the constraints 
g(x̄, y) ≤ 0 , which means that CPLD-QEP and CCP-QEP are CQs for QEPs. 
Using the same arguments presented in [14], we have the following strict 
implications:

In the next theorem we show how to arrive at a KKT-QEP point from an AKKT-
QEP point, the WCCP-QEP condition is the weakest property that ensures this for 
every bifunction f.

C(x) =

{
w ∈ ℝ

n∶w =
∑
i∈A(x̄)

𝜆i∇ygi(x, x), 𝜆i ≥ 0

}
, and

lim sup
x→x̄

C(x) =
{
w ∈ ℝ

n∶ ∃ xk → x̄, ∃wk
→ w, wk ∈ C(xk)

}
.

C̄(x, y) =

{
w ∈ ℝ

n∶w =
∑
i∈A(x̄)

𝜆i∇ygi(x, y), 𝜆i ≥ 0

}
, and

lim sup
(x,y)→(x̄,x̄)

C̄(x, y) =
{
w ∈ ℝ

n∶ ∃ (xk, yk) → (x̄, x̄), ∃wk
→ w,wk ∈ C̄(xk, yk)

}
.

LICQ-QEP ⟹ MFCQ-QEP ⟹ CPLD-QEP ⟹ CCP-QEP.
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Theorem 4  The WCCP-QEP condition is equivalent to the fact that for any bifunc-
tion f, AKKT-QEP implies KKT-QEP.

Proof  Let x̄ ∈ ℝ
n be a feasible point satisfying WCCP-QEP. Let f be a bifunction 

such that AKKT-QEP occurs in x̄ . Then, there are sequences {xk} ⊂ ℝ
n with xk → x̄ 

and {𝜆k} ⊂ ℝ
|A(x̄)|
+  such that

Let wk =
∑

i∈A(x̄) 𝜆
k
i
∇ygi(x

k, xk) ∈ C(xk) . Then wk
→ −∇yf (x̄, x̄) , i.e., −∇yf (x̄, x̄) 

∈ lim sup
x→x̄

C(x) . From the WCCP-QEP condition, it follows that −∇yf (x̄, x̄) ∈ C(x̄) , 
so x̄ is a KKT-QEP point.

Conversely, assume that AKKT-QEP implies KKT-QEP for any bifunction. 
Let w ∈ lim supx→x̄ C(x) . Then there exist sequences xk → x̄ and wk

→ w such that 
wk ∈ C(xk) . Define the bifunction f (x, y) ∶= ⟨x − y,w⟩ with ∇yf (x, y) = −w ∈ ℝ

n . 
As wk ∈ C(xk) , there exists {𝜆k} ⊂ ℝ

|A(x̄)|
+  such that

Since ∇yf (x
k, xk) = −w and wk

→ w , we have

So, x̄ satisfies AKKT-QEP, i.e., KKT-QEP holds. Hence, −∇yf (x̄, x̄) = w ∈ C(x̄) and 
WCCP-QEP holds. 	�  ◻

Note that it is possible to define a weaker notion of AKKT-QEP involving two 
sequences {xk} and {yk} converging to x̄ . This would trivially be a necessary opti-
mality condition since one may take the constant sequence yk ∶= x̄ . However, 
as far as we know, algorithms for QEPs always generate sequences of the form 
yk = xk , hence, the usefulness of this definition is not clear. On the other hand, 
this may suggest a way to define new algorithms with different, maybe better, 
convergence properties. In some of the numerical tests we show a possibility to 
exploit this fact. With this type of sequence we can obtain an analogous version 
of Theorem  4 by replacing WCCP-QEP with CCP-QEP and AKKT-QEP with 
this weaker version. The proof follows in the same way by replacing the sequence 
xk by (xk, yk) and C(xk) by C̄(xk, yk).

4 � An Augmented Lagrangian method

In this section we propose an Augmented Lagrangian method for QEPs. From 
now on we will consider (QEP) where K is defined as follows:

‖∇y f (x
k
, xk) +

�
i∈A(x̄)

𝜆k
i
∇ygi(x

k
, xk)‖ → 0.

wk =
∑
i∈A(x̄)

𝜆k
i
∇ygi(x

k, xk).

∇y f (x
k
, xk) +

∑
i∈A(x̄)

𝜆k
i
∇ygi(x

k
, xk) → 0.
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where g∶ℝn ×ℝ
n
→ ℝ

m and h∶ℝn ×ℝ
n
→ ℝ

l are continuously differentiable. In 
order to solve the QEP, we follow the approach from [36] where the authors com-
pute a solution of a QVI by solving a sequence of suitable QVIs.

Similarly to the minimization problem, we separate the set of constraints (19) 
in two parts. The part described by g, with the difficult constraints, will be penal-
ized, while the part described by h will define the constraints of the subprob-
lems at each iteration. Therefore, our analysis includes the case when all the con-
straints are penalized, where the subproblems are unconstrained, and also when 
the subproblems are EPs.

Formally, at each iteration of the algorithm, the new mapping that defines the 
constraints of the subproblems will be defined as Kh∶ℝ

n
⇉ ℝ

n with

Given u ∈ ℝ
m and 𝜌 > 0 , we define the Augmented Lagrangian bifunction, with 

respect to the constraints bifunction g, as

where � is a suitable penalty parameter and ui denotes a safeguarded estimate for the 
Lagrange multipliers �i associated with gi . The Augmented Lagrangian bifunction, 
together with the mapping Kh , define in each iteration of the algorithm a new QEP 
denoted by QEP(u, �).

Remark 2  If gi(x, y) = ci(y) for all i = 1,… ,m , then the Augmented Lagrangian (27) 
reduces to the Augmented Lagrangian for EPs (see [33, Equation (2.4)]) by taking 
� =

1

�
 . Furthermore, if f (x, y) = u(y) − u(x) and gi(x, y) = ci(y) for all i = 1,… ,m , 

then the Augmented Lagrangian (27) reduces to the usual Augmented Lagrangian 
for the minimization problem (1) (see [43] for instance).

Our algorithm, in each iteration, computes an �-inexact KKT-QEP point for a 
tolerance � → 0+ of QEP(u, �) (for values of u and � that will be updated in each 
iteration) to find a KKT-QEP point of (QEP) under a weak constraint qualifica-
tion. Note that the algorithm reduces to the one in [12] in the case of optimization 
and to the one in [14, 37] in the case of generalized Nash equilibrium problems. 
On the other hand, subproblems can be solved differently by exploiting the spe-
cific structure.

The precise statement of our Augmented Lagrangian method is given in 
Algorithm 1. 

(19)K(x) = {y ∈ ℝ
n∶ g(x, y) ≤ 0, h(x, y) ≤ 0},

(20)Kh(x) ∶= {y ∈ ℝ
n∶ h(x, y) ≤ 0}.

L(x, y;u, �) = f (x, y) +
�

2

m∑
i=1

[
max

{
0, gi(x, y) +

ui

�

}]2

−
�

2

m∑
i=1

[
max

{
0, gi(x, x) +

ui

�

}]2
,



1 3

An Augmented Lagrangian method for quasi‑equilibrium problems﻿	

A natural choice of the sequence {uk} is uk+1 = min{�k, umax} . Recall that, from 
Definition 4, the pair (xk,�k) computed in Step 2 must be such that:

Similarly to [36], our main result with respect to feasibility could be obtained requir-
ing only that the expression in (22) is bounded, not necessarily converging to zero. 
We adopt the current presentation for clarity of exposition.

We proceed by considering the convergence properties of Algorithm 1. The anal-
ysis of the algorithm is divided into the study of feasibility and optimality. Regard-
ing the former, note that (23) already implies that every limit point of {xk} satisfies 
the h-constraints.

For the discussion of feasibility with respect to the g-constraints, we introduce an 
auxiliary QEP, which consists of finding x ∈ Kh(x) such that:

where

Note that its associated KKT-QEP system is given by:

(22)‖∇yL(x
k, xk, uk, �k) + ∇yh(x

k, xk)�k‖ ≤ �k,

(23)‖min
�
−h(xk, xk),�k

�‖ ≤ �k.

(24)� (x, y) ≥ 0, ∀ y ∈ Kh(x),

� (x, y) =
‖g+(x, y)‖2 − ‖g+(x, x)‖2

2
.

∇yg(x, x)g+(x, x) +

l∑
j=1

�j∇yhj(x, x) = 0,

�j ≥ 0, hj(x, x) ≤ 0, �jhj(x, x) = 0, ∀ j = 1,… , l.
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Clearly, a solution x̄ of (QEP) related to (� ,Kh) , denoted by QEP(� ,Kh) , is such 
that ‖g+(x̄, y)‖ is globally minimized for y ∈ Kh(x̄) at y = x̄ . Hence, if the feasible 
region of (QEP) is non-empty, x̄ is feasible for (QEP). Since we can only prove fea-
sibility under strong assumptions (see Theorem 6), the following result shows that 
any limit point of a sequence generated by Algorithm 1 at least tends to be feasible, 
in the sense that it satisfies AKKT-QEP for QEP(� ,Kh).

Theorem  5  Let {xk} be a sequence generated by Algorithm 1. Any limit point of 
{xk} satisfies the AKKT-QEP condition for QEP(� ,Kh).

Proof  Let us assume that xk → x∗ in a subsequence. Since h is continuous and (23) 
holds, we have h(x∗, x∗) ≤ 0 and hence x∗ is feasible for QEP(� ,Kh).

If the sequence {�k} is bounded, then limk→∞ ‖max{g(xk, xk),−�k}‖ = 0 by Step 
4, thus g(x∗, x∗) ≤ 0 , i. e., x∗ is feasible for (QEP). This clearly gives an AKKT-QEP 
sequence with zero dual sequence for QEP(� ,Kh).

Let us consider now that {�k} is unbounded. It follows from (22) that ‖�k‖ ≤ �k , 
where

Dividing by �k , we obtain

Since {�k} is bounded, �
k

�k
→ 0 . Furthermore, due to the boundedness of {uk} , if 

gi(x
∗, x∗) < 0 , then max{0,

uk
i

�k
+ gi(x

k, xk)} = 0 for k large enough. Therefore,

From (23) and the fact that ∇y� (xk, xk) =
∑

i∶ gi(x
∗,x∗)≥0 gi(x

k, xk)∇ygi(x
k, xk) , we have 

that x∗ satisfies the AKKT-QEP condition for QEP(� ,Kh) . 	�  ◻

Corollary 1  Under the assumptions of Theorem 5, if x∗ fulfills WCCP-QEP with 
respect to the h-constraints describing Kh , then x∗ is a KKT-QEP point of QEP 
(� ,Kh).

Proof  It is a consequence of Theorems 4 and 5. 	�  ◻

�k = ∇y f (x
k, xk) +

m∑
i=1

max
{
0, uk

i

+ �kgi(x
k, xk)

}
∇ygi(x

k, xk) +

l∑
j=1

�k
j
∇yhj(x

k, xk).

�k

�k
=

∇y f (x
k, xk)

�k
+

m∑
i=1

max

{
0,

uk
i

�k
+ gi(x

k, xk)

}
∇ygi(x

k, xk) +

l∑
j=1

�k
j

�k
∇yhj(x

k, xk),

(25)lim
k∈K

‖ �
i∶ gi(x

∗,x∗)≥0

gi(x
k, xk)∇ygi(x

k, xk) +

l�
j=1

�k
j

�k
∇yhj(x

k, xk)‖ = 0.
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Let us now state some particular cases of QEPs or additional conditions 
that ensure that a limit point of Algorithm  1, that is, an AKKT-QEP point for 
QEP(� ,Kh) , is indeed feasible for QEP(f, K). Note that, from the proof of Theo-
rem 5, this is the case when {�k} is bounded. The proofs are omitted since they 
are small adaptations of the ones from [38]. The first one uses the traditional 
argument that, under EMFCQ, a certain null linear combination of the constraint 
gradients can only occur with null coefficients.

Theorem 6  Let x∗ be a limit point of a sequence generated by Algorithm 1, and 
suppose that x∗ satisfies EMFCQ-QEP regarding the constraints defined by g and h. 
Then x∗ is feasible for (QEP).

In the next results, the main argument is that, under certain conditions, KKT 
points are indeed solutions to the problem.

Consider problem (QEP) with K(x) = {c(x) + S(x)w∶w ∈ Q1 ∩ Q2} , where 
S(x) ∈ ℝ

n×n is nonsingular for all x, Qi ∶= {x ∈ ℝ
n∶ qi(x) ≤ 0} for i = 1, 2 , and 

q1∶ℝn
→ ℝ

m , q2∶ℝn
→ ℝ

l are convex. Here K(x) has the form of (19) with

Then we have the following

Theorem 7  Let x∗ be a limit point of a sequence generated by Algorithm 1 applied 
to a QEP of the form (26) with Q1 ∩ Q2 ≠ � . If x∗ satisfies WCCP-QEP regarding 
the h-constraints, then x∗ is feasible for (QEP).

The following results are also proved in a similar way

Theorem  8  Consider a QEP with bilinear constraints, where g is given by (16), 
where each Qi ∈ ℝ

n×n is symmetric positive semidefinite for i = 1,… ,m and 
h(x, y) = (h1(y),… , hl(y))

T has convex components. Let x∗ be a limit point of a 
sequence generated by Algorithm 1. Suppose that x∗ satisfies WCCP-QEP regarding 
the h-restrictions. Then x̄ is feasible.

Theorem 9  Consider a QEPs with linear constraints with variable right-hand side 
given by (13). Suppose that rank(A) = m . Let x∗ be a limit point of a sequence gener-
ated by Algorithm 1. Suppose that x∗ satisfies WCCP-QEP regarding the h-restric-
tions. Then x̄ is feasible.

Theorem  10  Consider a QEPs with box constraints given by (14). Suppose that 
bl(x̄) ≤ bu(x̄) . Let x∗ be a limit point of a sequence generated by Algorithm 1. Sup-
pose that x∗ satisfies WCCP-QEP regarding the h-restrictions. Then x̄ is feasible.

Let us now discuss the optimality properties of the limit points of sequences 
generated by the Algorithm. The following result says that when the algorithm 

(26)g(x, y) = q1(S−1(x)[y − c(x)]) and h(x, y) = q2(S−1(x)[y − c(x)]).
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generates a sequence that has a feasible accumulation point, this is an AKKT-
QEP point for the original problem (QEP).

Theorem 11  Assume that the sequence {xk} generated by Algorithm 1 has a feasi-
ble limit point x∗ . Then, x∗ satisfies the AKKT-QEP condition for (QEP).

Proof  Let limk∈K xk = x∗ . By Steps 2 and 3, we have that

It remains to prove that limk∈K min{−gi(x
k, xk), �k

i
} = 0 for all i = 1,… ,m . If 

gi(x
∗, x∗) = 0 , the result follows from the continuity of gi . Otherwise, for k large 

enough we have gi(xk, xk) < c < 0 for some constant c. If {�k} is bounded, Step 4 
of the algorithm implies that �k

i
→ 0 . On the other hand, the same result follows 

from the updating scheme of Step 3 and the boundedness of {uk} . This concludes the 
proof. 	�  ◻

Corollary 2  Under the assumptions of Theorem 11, if x∗ fulfills WCCP-QEP with 
respect to the constraints g and h describing K, then x∗ is a KKT-QEP point of 
(QEP).

Proof  It is a consequence of Theorems and 11. 	�  ◻

The fact that the usual assumptions (LICQ, MFCQ, CPLD, CCP, etc) used in 
global convergence theorems of nonlinear programming algorithms are constraint 
qualifications is related to the fact that the algorithm does not discard solutions a pri-
ori. If a property P is not a CQ, than there would be a problem whose solution satis-
fies P but not the KKT conditions. Thus, if a theorem says that under P, a limit point 
of a sequence generated by an algorithm satisfies KKT, such solution would never 
be found. As we discussed earlier, several algorithms generate AKKT sequences 
which, as a genuine necessary optimality condition in the context of nonlinear pro-
gramming, also do not rule out solutions a priori. In the case of QEPs, the situation 
is different. The fact that AKKT-QEP is not an optimality condition already implies 
that algorithms discard solutions that do not satisfy it. Therefore, to study the impact 
of using an assumption that is not a CQ in such an algorithm, we must turn our 
attention to solutions that are AKKT-QEP. Among these, all that satisfy WCCP-
QEP are KKT-QEP and therefore no additional solution would be discarded by an 
algorithm that generates AKKT-QEP sequences. In this way, there is no reason to 
worry that WCCP-QEP is not a constraint qualification. Thus, since WCCP-QEP is 
weaker than CCP-QEP, Corollary 2 is stronger than the analog one under CCP-QEP, 
which is indeed a constraint qualification. Note however that this is not a property 
of the QEP itself, but a deficiency of the Augmented Lagrangian algorithm (and 
many others) that are only able to generate AKKT-QEP sequences. For instance, in 

lim
k∈K

‖∇y f (x
k, xk) +

m�
i=1

�k
i
∇ygi(x

k, xk) +

l�
j=1

�k
j
∇yhj(x

k, xk)‖ = 0,

and lim
k∈K

‖min
�
−h(xk, xk),�k

�‖ = 0.
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Example 1, no solution satisfy AKKT-QEP, hence the algorithm can not find a solu-
tion, despite WCCP-QEP being fulfilled. If somehow an algorithm is developed in 
such a way that solutions are not discarded, note that WCCP-QEP must be replaced 
by a constraint qualification in order to arrive at a meaningful global convergence 
result. This issue is different than its counterpart for GNEPs, since CCP-GNEP is a 
CQ [14].

5 � Solution of EP‑subproblems

In this section, we provide sufficient conditions for ensuring the solvability of the 
EP-subproblems from Step 2 of Algorithm  1. To that end, we consider the case 
when:

Our study is motivated by the well-known existence results for EPs for monotone 
bifunctions (see [13, 28, 30] and references therein). For that reason, we provide 
necessary and sufficient conditions for ensuring the monotonicity of the Lagrangian

Take �(x, y) ∶=
∑m

i=1
(max{0, gi(x, y) +

ui

�
})2 for simplicity. Then, by definition, L 

is monotone on Kh if and only if L(x, y) + L(y, x) ≤ 0 for all x, y ∈ Kh , or equivalent,

As a consequence, we have:

Proposition 1  The Lagrangian L is monotone if and only if Eq. (28) holds. In par-
ticular, if gi(x, x) = 0 for all  x ∈ Kh and all i = 1,… ,m , and

then L is monotone.

Since the sum of monotone bifunctions is monotone, when f is monotone the 
monotonicity of L is ensured by the monotonicity of

Therefore, the following results follows easily:

K(x) = {y ∈ ℝ
n∶ g(x, y) ≤ 0, h(y) ≤ 0}.

(27)

L(x, y) = f (x, y) +
�

2

m∑
i=1

(
max

{
0, gi(x, y) +

ui

�

})2

−
�

2

m∑
i=1

(
max

{
0, gi(x, x) +

ui

�

})2

.

(28)f (x, y) + f (y, x) ≤
�

2
(�(x, x) + �(y, y) − �(x, y) − �(y, x)), ∀ x, y ∈ Kh,

f (x, y) + f (y, x) ≤ −
�

2
�(x, y) −

�

2
�(y, x) + �

m∑
i=1

(
max

{
0,

ui

�

})2

, ∀ x, y ∈ Kh,

(29)�(x, y) ∶=
�

2
�(x, y) −

�

2
�(x, x)
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Proposition 2  The bifunction � is monotone if and only if

In particular, if gi(x, x) = 0 for all x ∈ Kh and all i = 1,… ,m , and

then � is monotone.

In order to provide more concrete sufficient conditions, we consider the following 
assumptions:

Assumption 1 

(a)	 h∶ℝn
→ ℝ

l is a function for which Kh is a convex set.
(b)	 f∶ℝn ×ℝ

n
→ ℝ

n is continuously differentiable on its second argument.
(c)	 g∶ℝn ×ℝ

n
→ ℝ

m is twice continuously differentiable on ℝn ×ℝ
n. If h is ℝl

+

-convex, i.e., each hi is convex, then Kh is convex. The reverse statement does 
not hold, i.e., there are classes of vector-valued functions for which Kh is convex 
without the ℝl

+
-convexity assumption on h, for instance, the class of ∗-quasicon-

vex functions (see [35, Definition 2.2]).

If � is ∇xy−monotone, then � is monotone (by [11, Theorem 3.1(f)]), i.e., a suf-
ficient condition for � to be monotone is that

be monotone on Kh , i.e., ⟨�(x) − �(y), x − y⟩ ≥ 0 for all x, y ∈ Kh.
Clearly, �∶ℝn

→ ℝ
n is locally Lipschitz without being continuously differenti-

able. By [34, Proposition 2.3(a)], we known that � is monotone on an open set D 
if and only if all generalized Jacobians (in the sense of Clarke [18]) from ��(y) are 
positive semidefinite for all y ∈ D.

We estimate the generalized Jacobian of � below.

Proposition 3  Suppose that Assumption 1 holds. Then the generalized Jacobian of 
� at y ∈ ℝ

n satisfies 𝜕𝜓(y) ⊆ M(y) with

(30)�(x, y) + �(y, x) ≤ �(x, x) + �(y, y), ∀ x, y ∈ Kh.

(31)�(x, y) + �(y, x) ≤ �

m∑
i=1

(
max

{
0,

ui

�

})2

, ∀ x, y ∈ Kh,

𝜓(y) = ∇x𝜙(x, y) =

m∑
i=1

max{0, 𝜌gi(x, y) + ui}∇xgi(x, y)

−

m∑
i=1

max{0, 𝜌gi(x, x) + ui}(Jxgi(x, x))
⊤,

M(y) =

{
m∑
i=1

max{0, 𝜌gi(x, y) + ui}∇
2
yx
gi(x, y) + 𝜌

m∑
i=1

si∇xgi(x, y)
[
∇ygi(x, y)

]⊤
}

,
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where si = 1 if 𝜌gi(x, y) + ui > 0 , si = 0 if 𝜌gi(x, y) + ui < 0 , and si ∈ [0, 1] if 
�gi(x, y) + ui = 0.

Proof  � is nonsmooth on its max-terms which are compositions of a smooth and a 
convex function, i.e., a regular mapping in the sense of Clarke [18]. 	�  ◻

If the elements of M(y) are positive semidefinite, then � is monotone, i.e., the 
monotonicity of L holds whenever f is monotone. A sufficient condition for the ele-
ments from M(y) to be positive semidefinite is given below.

Proposition 4  Suppose that Assumption 1 holds. If the matrices

are positive semidefinite, then all elements in M(y) are positive semidefinite.

Proof  By the representation of M(y) and our assumptions, it follows that each ele-
ment of M(y) is a nonnegative sum of positive semidefinite matrices, i.e., M(y) is 
positive semidefinite.	�  ◻

5.1 � Example 1: The moving set case

An interesting special case of problem (QEP) is the moving set case [10, 24, 36, 38]. 
This is the case when K(x) = c(x) + Q for some vector-valued function c∶ℝn

→ ℝ
n 

and a closed and convex set Q from ℝn . Usually, Q is given by

where q∶ℝn
→ ℝ is a function such that Q is closed and convex. As we noted in the 

previous subsection, function q may not be convex.
If q is convex, then we have the following sufficient condition for ensuring 

monotonicity.

Proposition 5  If c∶ℝn
→ ℝ

n , with c(x) = (c1(x1),… , cn(xn))
⊤ , is such that 

c�
i
(xi) < 0 for all i = 1,… ,m , then the elements of M(y) are positive semidefinite.

Proof  Since gi(x, y) = qi(y − c(x)) , we have ∇xgi(x, y) = −Jc(x)⊤∇qi(y − c(x)) and 
∇ygi(x, y) = ∇qi(y − c(x)) . Thus

By assumption, S = −Jc(x) is a positive definite and diagonal matrix, so S = DD 
with D a positive definite diagonal matrix. Then

∇2
xy
gi(x, y), ∀ i∶ ui + 𝜌gi(x, y) > 0,

∇xgi(x, y)
[
∇ygi(x, y)

]⊤
, ∀ i∶ ui + 𝜌gi(x, y) ≥ 0,

(32)Q ∶= {x ∈ ℝ
n∶ q(x) ≤ 0},

(33)∇xgi(x, y)(∇ygi(x, y))
⊤ = −Jc(x)⊤∇qi(y − c(x))∇qi(y − c(x))⊤.
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where w = Dv for all v ∈ ℝ
n . Since qi is convex, ∇qi(y − c(x))∇qi(y − c(x))⊤ is posi-

tive semidefinite, i.e., D∇qi(y − c(x))∇qi(y − c(x))⊤D−1 is positive definite.
On the other hand, a direct calculus shows that

Since qi is convex, its Hessian is symmetric and positive semidefinite. Hence, 
∇2

xy
gi(x, y) is positive semidefinite and the result follows from Proposition 4. 	�  ◻

5.2 � Example 2: The binary constraints case

We consider problem (QEP) with g given as in equation (17), that is,

A sufficient condition for ensuring the monotonicity of the corresponding subprob-
lems is given below.

Proposition 6  If for all i = 1,… ,m , we have

Then all elements in M(y) are positive semidefinite.

Proof  Clearly, ∇ygi(x, y) =
(
0,… , 0,∇yj(i)

gi(xj(i), yj(i)), 0,… , 0
)⊤

 , i. e., only position 
j(i) could be nonzero. Then the Jacobian ∇2

xy
gi(x, y) is given by ∇2

yj(i)xj(i)
gi(xj(i), yj(i)) at 

the diagonal position (j(i),  j(i)), and zero elsewhere. Therefore, it is positive sem-
idefinite by assumption (34).

On the other hand, ∇xgi(x, y) = (0,… , 0,∇xj(i)
gi(xj(i), yj(i)), 0,… , 0) . Then, 

∇xgi(x, y)(∇ygi(x, y))
⊤ is a diagonal matrix with value ∇xj(i)

gi(xj(i), yj(i))∇yj(i)
gi(xj(i), yj(i)) 

at position (j(i), j(i)), and zero elsewhere.
Therefore, the result follows from assumptions (34) and Proposition 4. 	�  ◻

A special case of constraints with variable right-hand side which are also 
binary constraints is defined below

where ci, di are twice continuously differentiable functions for each i. Here

v⊤∇xgi(x, y)(∇ygi(x, y))
⊤v = v⊤DD∇qi(y − c(x))∇qi(y − c(x))⊤v

= v⊤DD∇qi(y − c(x))∇qi(y − c(x))⊤D−1Dv

= w⊤D∇qi(y − c(x))∇qi(y − c(x))⊤D−1w,

∇2
xy
gi(x, y) = −Jc(x)∇2qi(y − c(x)).

K(x) =
{
y ∈ ℝ

n∶ gi(xj(i), yj(i)) ≤ 0, ∀ i ∈ {1,… ,m}
}
.

(34)∇xj(i)
gi(xj(i), yj(i))∇yj(i)

gi(xj(i), yj(i)) ≥ 0, ∇2
yj(i)xj(i)

gi(xj(i), yj(i)) ≥ 0.

(35)K(x) = {y ∈ ℝ∶ gi(x, y) = ci(xj(i)) + di(yj(i)) ≤ 0, ∀ i ∈ {1,… ,m}},
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The following result follows easily from the previous proposition.

Corollary 3  If c�
i
(xj(i))d

�
i
(yj(i)) ≥ 0 for all i = 1,… ,m , then all elements in M(y) are 

positive semidefinite.

Another example is the class of problems with box constraints (with variable 
right-hand side). Recall that

Clearly, if �i ≤ 0 for all i, then all elements in M(y) are positive semidefinite.

5.3 � Example 3: Mixed variational inequalities

In this subsection, we provide an example of an interesting and usual variational 
inequality for which its associated Augmented Lagrangian is monotone or pseu-
domontone bifunction, but for which there exists a positive answer for finding the 
solution of the related EP-subproblem.

Let A ∈ ℝ
n×n be a symmetric matrix and a ∈ ℝ

n . We consider the following 
variational inequality problem:

where h ∶= (h1, h2,… , hm) is such that Kh is a convex set and for each i = 1, 2,… ,m , 
the function hi∶ℝn

→ ℝ is continuous.
Given u ∈ ℝ

n and 𝜌 > 0 . The Augmented Lagrangian associated to (37) is 
given by:

Note that solving Step 2 of Algorithm 1 is equivalent for finding a solution of the 
following mixed variational inequality on ℝn:

where g(⋅) ∶= �

2

∑m

i=1
(max{0, hi(⋅) +

ui

�
})2 . This class of problems is of special inter-

est due to its applications in economics, mechanics and electronics (see [26] for 
instance).

Set f g
A
∶ℝn ×ℝ

n
→ ℝ given by

∇xj(i)
gi(x, y) = c�

i
(xj(i)), ∇yj(i)

gi(x, y) = d�
i
(yj(i)), and ∇

2
yj(i)xj(i)

gi(x, y) = 0.

(36)K(x) =
{
y ∈ ℝ

n∶ yi − �ixi − �i ≤ 0, ∀ i ∈ {1,… , n}
}
.

(37)find x ∈ Kh∶ ⟨Ax + a, y − x⟩ ≥ 0, ∀ y ∈ Kh,

LA
u,�
(x, y) = ⟨Ax + a, y − x⟩ + �

2

m�
i=1

��
max

�
0, hi(y) +

ui

�

��2

−

�
max

�
0, hi(x) +

ui

�

��2
�
.

(38)find x ∈ ℝ
n∶ ⟨Ax + a, y − x⟩ + g(y) − g(x) ≥ 0, ∀ y ∈ ℝ

n,
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Clearly, x ∈ ℝ
n is a solution of problem (38) if and only if it is a solution of the fol-

lowing equilibrium problem:

Note that f g
A
(x, x) = 0 for all x ∈ ℝ

n , and that if g is continuous, then f g
A
(x, ⋅) and 

f
g

A
(⋅, y) are continuous for all x, y ∈ ℝ

n . If A is positive semidefinite, then f g
A
 is mono-

tone without any further assumption on g.

Proposition 7  [32, Proposition 3.3] If A is positive semidefinite, then f
g

A
 is 

monotone.

If A is not semidefinite positive, then f g
A
 may be not monotone (see [32, Example 

3.3]). However, in this case we could use Algorithm 1 whenever f g
A
 is pseudomono-

tone (see [20, 31, 32] for existence results even in the nonconvex case). Necessary and 
sufficient conditions for ensuring the pseudomonotonicity of bifunctions defined my 
matrices may be found in [27]. Finally, an algorithm for a class of pseudomonotone 
equilibrium problems may be found in [7].

6 � Numerical experiments

To illustrate the behavior of the method, we have conducted some numerical experi-
ments. The algorithm was implemented in Octave 5.1.0 using parameters � = 0.5 , 
� = 10 , umax = 108 , �k = � = 10−4 , and the initial penalty parameter was chosen as 
�1 = 1 . To solve the subproblems we used Octave’s built-in function lsqnonlin to solve 
its KKT system. Following the Augmented Lagrangian approach for optimization in 
[12], we keep box constraints explicitly defined as l ≤ x ≤ u within the subproblems’ 
constraints. The initial estimates for the box constraints’ Lagrange multipliers are set as 
zero. We start by considering the following problems:

•	 Problem 1: min x s.t. x2 ≤ 0;
•	 Problem 2: min x2 s.t. x + 10 ≤ 0;
•	 Problem  3: min(1 − x1)

2 + 100(x2 − x2
1
)2 s.t. (x1 − 1)3 − x2 + 1 ≤ 0 , 

x1 + x2 − 2 ≤ 0 , −1.5 ≤ x1 ≤ 1.5 , −0.5 ≤ x2 ≤ 2.5;
•	 Problem  4: minx1 −x1 s.t. x3 − x1 − x2 ≤ 0 , x1 + x2 − 1 ≤ 0 , x1 ≥ 0 ; 

minx2 (x2 − 0.5)2 s.t. x3 − x1 − x2 ≤ 0 , x1 + x2 − 1 ≤ 0 , x2 ≥ 0 ; minx3 (x3 − 1.5x1)
2 

s.t. 0 ≤ x3 ≤ 2;
•	 Problem  5: minx1,x2 ((x1 − 1)2 + (x2 − 1)2)∕2 s.t. x1 + x2 + x3 − 3 ≤ 0 , 

x1 ≥ 0.1, x2 ≥ 0.1 ; minx3 (x1x2x
2
3
)∕2 s.t. −x2

1
x2
3
+ 0.5 ≤ 0 , −x2

2
x2
3
+ 0.5 ≤ 0 , 

x3 ≥ 0.1;
•	 Problem 6: The QEP defined by f (x, y) = ⟨Px + Qy + q, y − x⟩ where 

(39)f
g

A
(x, y) ∶= ⟨Ax + a, y − x⟩ + g(y) − g(x).

(40)find x ∈ ℝ
n∶ f

g

A
(x, y) ≥ 0, ∀ y ∈ ℝ

n.
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and K(x) is described by gi(x, y) = 1 − yi −
∑

1≤j≤5,j≠i xj , i ∈ {1,… , 5}.
Problems 1–3 are optimization problems, while problems 4–5 are GNEPs from 

[19, 23], respectively. All problems are rewritten as QEPs so that our algorithm can 
be applied. Problem 6 is a genuine QEP from [17]. In all examples, a solution is 
found which satisfies the AKKT-QEP condition. The results are shown in Table 1, 
where the first column is the problem number, the second and third columns are 
respectively the primal and dual starting points, while the fourth and fifth columns 
are respectively the primal and dual solutions found. The sixth column is the number 
of Augmented Lagrangian iterations while the last column is the Euclidean norm of 
the KKT residue at the primal-dual solution found.

Note that Problem 1 is the only one where the KKT condition does not hold at a 
solution. This is indicated by the final Lagrange multiplier estimate �∗ = 84.47 , which 
is expected to diverge to infinity. In order to highlight this issue we run this problem 

q =

⎡
⎢⎢⎢⎢⎣

1

−2

−1

2

−1

⎤
⎥⎥⎥⎥⎦
, P =

⎡
⎢⎢⎢⎢⎣

3.1 2 0 0 0

2 3.6 0 0 0

0 0 3.5 2 0

0 0 2 3.3 0

0 0 0 0 3

⎤
⎥⎥⎥⎥⎦

and

Q =

⎡
⎢⎢⎢⎢⎣

1.6 1 0 0 0

1 1.6 0 0 0

0 0 1.5 1 0

0 0 1 1.5 0

0 0 0 0 2

⎤
⎥⎥⎥⎥⎦
,

Table 1   Performance on problems that satisfy AKKT-QEP at a solution

Problem x
0 �0 x

∗ �∗ #it KKT Residue

1 5 0 −5.91 × 10−3 8.44 × 101 14 3.50 × 10−5

2 5 0 − 9.99 1.99 × 101 8 9.52 × 10−5

3
(
1.3

2

) (
0

0

) (
9.99 × 10−1

1.00

) (
6.52 × 10−2

4.35 × 10−2

)
4 3.80 × 10−5

4 ⎛⎜⎜⎝

0.5

0.5

0.5

⎞⎟⎟⎠

⎛
⎜⎜⎜⎝

0

0.8

0.8

0.8

⎞
⎟⎟⎟⎠

⎛⎜⎜⎝

6.66 × 10−1

3.33 × 10−1

9.99 × 10−1

⎞⎟⎟⎠

⎛
⎜⎜⎜⎝

0.00

1.00

6.66 × 10−1

1.00

⎞
⎟⎟⎟⎠

5 1.91 × 10−5

5 ⎛⎜⎜⎝

2

2

2

⎞⎟⎟⎠

⎛⎜⎜⎝

0.5

0.5

0.5

⎞⎟⎟⎠

⎛⎜⎜⎝

2.92 × 10−1

2.92 × 10−1

2.41

⎞⎟⎟⎠

⎛⎜⎜⎝

7.07 × 10−1

2.50 × 10−1

2.50 × 10−1

⎞⎟⎟⎠

6 9.47 × 10−5

6 ⎛
⎜⎜⎜⎜⎝

1

3

1

1

2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

0

0

0

0

0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

−5.50 × 10−1

9.38 × 10−1

8.67 × 10−1

−7.02 × 10−1

4.46 × 10−1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1.23

1.23

1.23

1.23

1.23

⎞
⎟⎟⎟⎟⎠

6 3.35 × 10−5
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again considering � = 10−8 and we obtained x∗ = −5.91 × 10−5 , �∗ = 8447.28 with 
corresponding norm of the KKT residue as 3.50 × 10−9 in 26 iterations.

We note that for optimization problems and GNEPs, the sequences generated by our 
method, as expected, coincide with the sequences generated by our implementations of 
the corresponding Augmented Lagrangian method for optimization [12] and GNEPs 
[14]. To keep the coherence between the comparison, we also used the minimization of 
the KKT residue in the resolution of the subproblems in all formulations. That is, using 
the same strategy when solving the subproblems, our method successfully generalizes 
the Augmented Lagrangian for these classes of problems.

Now, let us turn our attention to the following examples, where no solution satisfies 
AKKT-QEP:

•	 Problem  7: The QEP defined by Example 1, that is f (x, y) = −x + y and 
g(x, y) =

1

2
(x − y)2;

•	 Problem 8: minxi xi s.t 
1

2
(x1 − x2)

2 ≤ 0 , i ∈ {1, 2};
•	 Problem 9: minx1 x1 s.t x1x2 + x4

1
∕4 ≤ 0 ; minx2 −x2 s.t x2x

3
1
+ x2

2
∕2 ≤ 0.

In order to run the algorithm for these problems, one must allow accepting a sub-
problem solution even when an �k-KKT-QEP point is not found by the subproblem 
solver (as these points do not exist near a solution for sufficiently small �k ). In that case, 
the subproblem solver is stopped when lack of progress is detected in two consecutive 
iterations. The same criterion is used for stopping the Augmented Lagrangian itera-
tions. In Table 2 we present the numerical results when using this strategy.

For Problem 7, since all x ∈ ℝ is a solution and the KKT residue is the same for all 
� ≥ 0 , the algorithm is stopped after one or two iterations, depending on whether �0 is 
nonnegative or not. A more interesting formulation of a very similar problem is given 
by the GNEP described in Problem 8, where solutions are of the form (x, x) ∈ ℝ

2 [14]. 
Once again we observed that the sequence generated accumulates near a solution in a 
reasonable number of iterations, even though our theory does not cover these problems.

Note that, for Problem 8, the gradient of the Lagrangian is given by:

(41)∇yf (x, x) +
∑

i∈{1,2}

�i∇ygi(x, x) =

(
1 + �1(x1 − x2)

1 − �2(x1 − x2)

)
,

Table 2   Performance when 
AKKT-QEP does not hold at a 
solution

Problem x
0 �0 x

∗ �∗ #it

7 5 10 5.00 10.00 1
8

(
1

0

) (
0

0

) (
6.17 × 102

6.17 × 102

) (
7.43 × 109

7.43 × 109

)
18

9
(
−1
0

) (
0

0

) (
−9.44 × 10−1

2.10 × 10−1

) (
1.57

0.00

)
36
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and since �1 and �2 are nonnegative, one of the two coordinates in (41), and so the 
norm of the KKT residue, is larger than or equal to 1 for any pair (x, �) . On the other 
hand, given a ∈ ℝ , taking

we have that {xk} converges to the solution (a, a) and the norm of the KKT residue 
evaluated at (xk, �k) converges to 1, the infimum of such residual. That is, although 
near a solution there is no sequence such that the KKT residual converges to zero, 
there is a sequence that converges to the infimum of the KKT residual. Note that this 
has nothing to do with the exact norm of the KKT residual at the solution, which for 
a point such that x1 = x2 , is equal to 

√
2 for any � ≥ 0.

We exploit this phenomenon again in Problem  9 from [14], where a similar 
situation occurs. However, in this case, the feasible set is not a singleton when-
ever the other players’ decision is not null. Fixing x2 , the best response of player 
1’s problem is x∗

1
= min{ 3

√
−4x2, 0} and the second player’s solution, fixed x1 , is 

x∗
2
= max{−2x3

1
, 0} . This means that the origin is the unique solution of the GNEP, 

although the feasible set is much larger.
In this problem, we have that

and once again we have that the norm of the KKT residue is at least 1 for any pair 
(x, �) . Moreover, one can obtain points arbitrarily close to (0, 0) with the norm of 
the KKT residue as close to 1 as desired (taking, for instance, xk = ((2k)−1∕3, (2k)−1) 
and �k = (0, k) for all k). In our implementation, although we could not find the solu-
tion, for x0 = (−1, 0) the algorithm converged to a feasible point such that the norm 
of the KKT residue converged to 1, the infimum of the KKT residue. However, an 
initial point with this characteristic was hard to find. Typically, the sequence gener-
ated would have a KKT residue converging to 

√
2 , which is the punctual value of the 

KKT residue at any feasible point. The fact that the KKT residue is the same at all 
feasible points may justify attraction of the method to any feasible point when con-
sidering minimizing the KKT residue.

On experiencing with these problems we noted that even though a solution x̄ 
does not satisfy AKKT-QEP in these examples, that is, no sequence xk → x̄ and 
{𝜆k} ⊂ ℝ

m
+
 exist such that the limits in the definition of AKKT-QEP are equal to 

zero, there are sequences such that these limits are as small as possible.
It may be the case that such sequences always exist around a solution in gen-

eral for any QEP, but unfortunately we were not able to prove or disprove this fact. 
Moreover, it would be interesting to develop algorithms that generate such types of 
sequences. It seems that in these cases the norm used to declare a subproblem solu-
tion would influence the result obtained by the main algorithm. An analysis of these 
points would also be interesting.

Finally, inspired by the convergence results with AKKT-QEP sequences in the 
weak sense (see the comment after the Proof of Theorem 4), we implemented the 

xk = (a + 1∕k, a) and �k = (0, k), ∀k,

∇yf (x, x) +
∑

i∈{1,2}

�i∇ygi(x, x) =

(
1 + �1(x

3
1
+ x2)

−1 + �2(x
3
1
+ x2)

)
,
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algorithm allowing sequences xk ≠ yk . For this, when solving the subproblems, we 
minimize the KKT residue with x and y uncoupled, and with the additional con-
straint x = y . In this way, one may consider slightly different sequences, thus obtain-
ing an AKKT-QEP sequence in the weak sense.

For Problems 1–6, the results obtained were the same as in the original imple-
mentation. In Problem  7, the new strategy reduced the KKT residue of the QEP, 
measured with an additional constraint x = y , to 0.05 against 1 from the original 
implementation. This was done after 3 iterations, but from there we had no further 
progress and the algorithm did not reach the desired precision. For Problem 8, the 
reduction of the KKT residue was much bigger, from 1.79 × 107 to 1.42, however, 
once again the algorithm did not reach the desired precision and no further progress 
occurs after 4 iterations. For Problem 9, after 13 iterations we found a solution with 
the same KKT residue from the previous implementation, which satisfies exactly the 
x = y constraint. We believe that further studies over this strategy might be impor-
tant in the future.

7 � Conclusion

In this paper we described an Augmented Lagrangian method for QEPs, where we 
proved that it tends to find feasible limit points in the sense that an Approximate-
KKT-QEP point is found for an auxiliary feasibility QEP. When a limit point is fea-
sible, an Approximate-KKT-QEP point for the original problem is found. We also 
discuss in some details the notion of an approximate stationary point in the context 
of QEPs, where we showed that, differently from the case of nonlinear program-
ming, the KKT-QEP residual can not be made arbitrarily small near any solution 
of a general QEP. Nonetheless, we were able to prove that feasible limit points of 
the sequence generated by the Augmented Lagrangian method are true KKT-QEP 
points under a new weak condition that we call Weak Cone Continuity Property 
(WCCP), which, surprisingly, is not even a constraint qualification.

The difficulties underlying the possibility of dealing with non-convex problems is 
somewhat subsumed in the assumption that the Augmented Lagrangian subproblems 
can be solved, at least approximately. Hence, we also provided a detailed discussion 
on several classes of problems where these subproblems can be properly solved, in 
the sense that they yield monotone or pseudomonotone equilibrium problems.

On the other hand, when the subproblems cannot be solved to an arbitrary preci-
sion for the KKT residue, we observed that the solutions can be approximated by 
sequences where the KKT residue tends to be minimized. This may lead to the defi-
nition of a new necessary optimality condition, as well as to the development of an 
algorithm associated with it, which will be subject of our future research.

Another question raised in this work and that should be investigated in the future 
is the possibility to explore the optimality conditions of a QEP using uncoupled 
variables x and y but with the additional constraint x = y . This would increase the 
number of variables in the problem but would avoid the fact that the AKKT-QEP 
is not a optimality condition. Other formulations that ensure that x = y could also 



1 3

An Augmented Lagrangian method for quasi‑equilibrium problems﻿	

be used. Perhaps a constraint that brings x and y to the same value slowly will be 
advantageous in some cases. We believe that not only the Augmented Lagrangian 
could be extended to use this strategy, but also, a wide range of methods based on 
the KKT-QEP conditions could benefit from this technique. More robust numerical 
tests considering this approach would be welcomed as well.
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