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Abstract: We report here on the direct observation of distinct two-photon transition channels
in glutathione-capped (GSH) CdTe quantum dots (QDs) in a very strong confinement regime.
CdTe-GSH QDs with different average diameters (2.5, 3.0, and 3.3 nm) were synthesized through
the one-pot method and their two-photon absorption (2PA) spectrum determined by a femtosecond
wavelength-tunable Z-scan. Our results show that the two lower-energy one-photon-allowed
excitonic transitions, 1S3/2(h)→ 1S(e) and 2S3/2(h)→ 1S(e), are also accessed via 2PA. These results
were ascribed to the relaxation of the parity selection rules due to the noncentrosymmetric structure
of the CdTe QDs (zinc-blended structure), whose magnitude are determined by surface defects and
structural irregularities present in CdTe-GSH QDs, in the strong confinement regime.
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1. Introduction

Semiconductor quantum dots (QDs) are nanomaterials represented by a three-dimensionally
confined electron-hole system. Such tight spatial confinement provides interesting optical features,
such as size-tunable absorption and emission, which are closely associated with new technologies
spanning from biology to physics [1–15].

The optical properties of QDs are described by quantum mechanics, being hence subjected to its
selection rules [16,17]. Therefore, to describe the selection rules and to unveil the electronic structure
of these materials, it is necessary to know the wave-functions symmetry, which defines the parity of
the electronic states. The symmetry of each electronic state is expressed by their quantum numbers
(principal (n), azimuthal (l), and magnetic (ml)), which dictates the electron-hole recombination
induced by single or multi-photons absorption. Materials exhibiting inversion symmetry, such as
PbS and PbSe QDs, present antagonistic dipole electric allowed transitions induced by one-photon
absorption (1PA) and two-photon absorption (2PA), i.e., one-photon-allowed states are forbidden
by 2PA and vice versa. Therefore, while the electron-hole recombination excited by 2PA occurs
between states satisfying ∆l = le − lh = ±1 (subscript e and h corresponds to electron and hole,
respectively), in one-photon-induced transitions, it occurs only if ∆l = le − lh = 0 [16,17]. Some
mechanisms, however, can break the inversion symmetry of the wave functions that describe the

Materials 2017, 10, 363; doi:10.3390/ma10040363 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
http://www.mdpi.com/journal/materials
Digitador
Realce

Digitador
Realce



Materials 2017, 10, 363 2 of 8

electronic states. For example, interactions with a solvent, the Stark transient effect, a magnetic field,
surface defects, and structural irregularities, among others, may prevent the wave function from
presenting a well-defined parity [17–21]. In this context, one-photon-allowed states may also be
accessed via 2PA. However, it is worth mentioning that 2PA-allowed transition probability is strongly
dependent on the state symmetry degree. Therefore, broadband analysis of the 2PA spectrum in QDs
can provide important information about the electronic and structural features of such nanomaterials.

II–VI semiconductor quantum dots have been shown to present a high 2PA cross section
(expressed in GM = 10−50 cm4 s−1 photon−1) along the visible and near-infrared regions. Among them,
it is worth highlighting ZnS (~200 GM at 600 nm, diameter = 3.8 nm [22]), CdS (4.4 × 103 GM at 800
nm, diameter = 4.45 nm [23]), CdSe (2 × 104 GM at 950 nm; diameter = 3.7 nm [24]), CdTe (~3.0 × 103

GM at 900 nm, diameter = 4 nm [25]), and PbS (6 × 104 GM at 1460 nm, diameter = 3.7 nm [26]) QDs.
CdTe QDs with a zinc-blended structure (cubic Td structure), as the ones studied here,

are noncentrosymmetric semiconductors [27]; therefore, to model the entire 2PA spectra, an additional
transition channel should be taken into account, in which the quantum numbers are conserved
analogously to the one-photon-allowed transitions, i.e., ∆l = 0, the so-called noncentrosymmetric 2PA
transition channel. Figure 1 illustrates the energy diagram for the lower-energy 1PA- and 2PA-allowed
transitions for CdTe QDs.
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dots (QDs).

Fedorov et al. [16] deduced an analytical expression for the 2PA cross section containing
centrosymmetric and noncentrosymmetric channels, by using the parabolic effective mass
approximation. Although this model describes reasonably well the 2PA spectrum for CdS and CdSe
QDs in the regime of intermediate confinement, as reported in Refs. [16,22,28], it fails to describe the
2PA-allowed optical transition when CdTe QDs are in a very strong confinement regime, as shown in
Ref. [25]. The discrepancy between the experimental and theoretical (Fedorov’s model) data is even
higher for CdTe QDs due to its effective mass values for electron and holes (light, heavy, and split-off).
Furthermore, the parabolic effective mass approximation presents some limitations: (i) the zero-order

approximation of the Hamiltonian for regions where
→
k ~ 0; (ii) the fact that the model does not consider

mixing among the heavy- and the light-hole bands; (iii) the fact that the effective masses are considered
constants (parabolic bands) [29].
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Although some studies reported 2PA properties of CdTe QDs [25,29–32], few present nonlinear
spectra in a broad spectral region using femtosecond laser pulses. Furthermore, works on the 2PA in
CdTe QDs do not mention the possibility of a contribution from the noncentrosymmetric channel to
the 2PA cross section in the very strong confinement regime. For example, Padilha et al. [32] reports
on the noncentrosymmetric channel for the 2PA cross section of CdTe QDs in glass matrices in the
intermediate confinement regime (diameter higher than 6 nm, Bohr radius for CdTe is 7.5 nm [29]).
Even so, the reported degenerate 2PA spectrum, for CdTe QDs does not include the region for the
lowest energy transition (1S3/2(h)→ 1S(e)), and the available data are limited to specific wavelengths.
In the same way, Qu et al. [25] reported a spherical eight-band Pidgen and Brown model that considers
the mixing between the conduction and the valence bands, as well as the complex structure of
the valence bands. However, this model exhibits only 2PA transitions that are governed by the
electric-dipole selection rules; therefore, it does not consider the “forbidden” 2PA transition, such as
the 1S3/2(h)→ 1S(e) lowest-energy excitonic transition. In this context, this work reports on the
femtosecond 2PA cross-section spectra of water soluble colloidal CdTe-GSH QDs in the very strong
confinement regime, emphasizing the influence of the noncentrosymmetric 2PA transition channel.
For that, we reported the broadband 2PA cross-section spectra from 600 nm to 1220 nm, in 10 nm
intervals, providing high spectral resolution to the nonlinear measurements.

2. Results and Discussion

Figure 2 depicts the one- and two-photon absorption spectra for three CdTe-GSH samples with
different average diameters (D), within the regime of strong quantum confinement, namely CdTe-507
(D = 2.5 nm), CdTe-531 (D = 3.0 nm), and CdTe-554 (D = 3.3 nm). The 1PA spectra (solid lines,
left axis) exhibit the well-defined first 1S3/2(h)→ 1S(e) excitonic transition (lowest energetic band).
This transition undergoes a red-shift of approximately 200 meV when CdTe-507 is compared to
CdTe-554, indicating an increase in QD size [33]. By using the Yu’s formula for CdTe QDs [34],
the average diameter for each CdTe-GSH QDs is estimated to be 2.5 nm, 3.0 nm, and 3.3 nm. CdTe-GSH
QDs optical properties, such as molar absorptivity (ε1PA), fluorescence maximum position (FMP),
fluorescence lifetime (τf), relative fluorescence quantum yield (φf), as well as parameter obtained
from the 2PA spectra are shown in Table 1. It is important to mention that the QDs samples exhibit
spherical shapes and size dispersion of approximately 25 %, as determined by Transmission Electron
Microscopy analysis.

In Figure 2, the symbols along the line (right axis) display the 2PA cross section for CdTe-GSH QDs
as a function of half of the excitation wavelength, to provide better comparison with the 1PA. As it can
be seen, the 2PA spectra present three defined peaks as labeled on the figure, which are superimposed
by the intermediate state resonance enhancement effect (ISRE), described by the monotonic decrease
on the 2PA cross section from the UV to the red region. In the ISRE UV region, the 2PA cross section
reaches extremely high values, from 6.0 × 103 GM (CdTe-507) up to ~1.8 × 104 GM (CdTe-554).
It occurs because the excitation photon energy approaches the first 1PA-allowed transition, increasing
the 2PA cross section. [26] Moreover, the higher number of excited states contributing to the 2PA
process also increases the 2PA cross section as the excitation energy increases [16]. One can observe
that, in the lowest energy 2PA peaks, labeled as 1st in Figure 2, 2PA cross-section values range from
1.6 × 103 GM (CdTe-507—Figure 2a) to 2.9 × 103 GM (CdTe-554—Figure 2c). Moreover, an important
feature of this state, observed in this work, is that it is allowed by one- and two-photon absorption,
indicating that the 1S3/2(h)→ 1S(e) transition has its electric-dipole selection rules relaxed.

A few years ago, the 2PA cross-section spectra for CdTe QDs were investigated in Refs. [25,29]
using, respectively, the

−→
k ·−→p model, including the mixing among the heavy- and light-hole bands,

and the spherical eight-band Pidgen and Brown model [27], which considers the mixing between the
conduction and the valence bands as well as the complex structure of the valence bands. However,
in both studies, the correspondence between 1PA and 2PA transitions was not observed, indicating
a discrepancy with our experimental results. In order to visualize it, in Figure 3a, we compare the
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experimental 2PA spectrum we obtained (dots) for the CdTe-531 (D = 3.0 nm) with theoretical data
obtained from Ref. [25] (solid line).
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Figure 2. One-photon absorption (1PA) (solid lines, left axis) and two-photon absorption (2PA)
(symbols, right axis) spectra for CdTe-GSH QDs (a) CdTe-507; (b) CdTe-531 and (c) CdTe-554. The
standard deviation for the 2PA cross section is about 10%.

Based on Figure 3a, two important differences between the experimental and theoretical spectrum
can be highlighted. The first one is that the 2PA cross sections for the experimental data are slightly
higher than theoretical ones. The second one is that the experimental 2PA spectrum presents more
2PA transitions as compared to the theoretical data. Moreover, such two aspects are closely related
because the increase in the number of transitions tends to enhance the 2PA cross section. At the
same time, both differences should be associated with the noncentrosymmetric 2PA transition
channel due to cubic zinc-blended structure with Td symmetry of the CdTe QDs. To aid in the
understanding of these important outcomes, in Figure 3b, the difference between the experimental
and theoretical 2PA spectrum were plotted, which allows for the obtainment of information about the
noncentrosymmetric 2PA transitions. Proceeding in this way, one can note that the two lower-energy
1PA-allowed transitions, i.e., the 1S3/2(h) → 1S(e) (peak at 2.32 eV) and 2S3/2(h) → 1S(e) (peak at
2.62 eV), are observed along to the 2PA spectrum, corroborating our previous analysis. Higher energy
transitions are also observed in Figure 3b, but they cannot be separately identified because of the large
number of transitions in this spectral region.
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Table 1. Optical properties of CdTe-GSH QDs.

D (nm)
1PA Peak

(eV)
ε (105

M−1cm−1)
φf FMP (eV) τf (ns)

2PA
Cross-Section

(103 GM)

FOM
(GM/nm3)

2PA
Transition

(eV)

2.5 2.45 (507 nm) 0.70 0.13 2.27 (547 nm) 35
1st → 1.60
2nd → 1.97
3rd → 3.24

196
240
396

2.45
2.82
3.40

3.0 2.34 (531 nm) 1.01 0.16 2.15 (576 nm) 43
1st → 3.12
2nd → 3.46
3rd → 4.55

220
245
322

2.34
2.64
3.00

3.3 2.24 (554 nm) 1.27 0.29 2.07 (599 nm) 50
1st → 2.92
2nd → 5.65
3rd → 8.54

155
300
454

2.24
2.50
2.85
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Therefore, these results confirm that parity selection rules were relaxed for the CdTe-GSH QDs
samples, presented here. Another interesting feature that can be observed in Figure 2 is that the 2PA
strength for the 1S3/2(h)→ 1S(e) transition normalized by the QD volume decreases with larger QDs.
More specifically, the 2PA figure of merit (FOM), defined as the 2PA cross sections divided by the QD
volume, decrease from 196 GM/nm3 (D = 2.5 nm) to 154 GM/nm3 (D = 3.3 nm).

This result is attributed to a decrease in surface defects and improvement of the structural
regularity for larger CdTe-GSH QDs. In fact, the fluorescence quantum yield for these samples rise
as a function of QD size (see Table 1) due to a better QDs surface quality ascribed to the Ostwald
ripening mechanism [35]. In this process, an increase in the synthesis time causes the dissolution of
smaller QDs, which precipitate onto the surface of larger QDs. As a consequence, the average QD size
increases causing an increase in the surface quality and structural regularity of nanocrystals.

In Figure 2, the 2PA spectra exhibits two higher-energy peaks, labeled as 2nd and 3rd, with a 2PA
cross section ranging from 1.97 × 103 to 5.65 × 103 GM. The magnitude of these 2PA peaks are in the
same order of those published in Ref. [25,29,32], indicating that the 2PA cross section in these regions
are predominantly related to higher energy 2PA-allowed excitonic transitions. However, as shown in
Figure 3b, a considerable contribution of the noncentrosymmetric 2PA transition channel was observed
for the higher energy region of the 2PA spectrum. It is interesting to note that the FOM for the 2nd
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and 3rd maxima increase with larger QDs, i.e., FOM2nd = 245 GM/nm3 and FOM3rd = 322 GM/nm3

for CdTe-507 and FOM2nd = 300 GM/nm3 and FOM3rd = 454 GM/nm3 for CdTe-554. This behavior
corroborates our previous results because a reduction of surface defects leads to a decrease in the 2PA
forbidden transition strength (as pointed by the FOM for the 1S3/2(h)→ 1S(e)), while it increases for
2PA-allowed transition, analogous to what occurs in organic chromophores [20,36].

3. Materials and Methods

We used the one-pot method, whose details can be found in Refs. [37,38], to synthesize
glutathione-capped CdTe QDs. The linear and nonlinear optical measurements were performed
in aqueous solutions of GSH-capped CdTe QDs, with concentrations on the order of 1016 QDs/cm3

and 1017 QDs/cm3, respectively. The steady-state absorption and fluorescence spectra were recorded
using a Shimadzu UV-1800 spectrophotometer (Shimadzu, Kyoto, Japan) and a Perkin Elmer LS55
fluorimeter (Waltham, MA, USA), respectively.

The fluorescence quantum yields (φf) of the nanocrystals were determined using the fluorescence
spectrum of the samples, in a comparative method that uses the fluorescence spectrum and quantum
yield of a reference sample [39]. Here, we used Rhodamine 6G dissolved in water as the standard
fluorescent dye (φf = 92%).

Fluorescence lifetime was measured by exciting the CdTe QDs at 532 nm (frequency double of
a Q-switched and mode-locked Nd:YAG—70 ps). The 532 nm beam was focused into the sample,
placed in a 2-mm-thick fused silica cuvette, with a lens with a focal length of 12 cm. The fluorescence
signal was collected perpendicularly to the excitation beam by an optical fiber positioned close to the
fluorescent spot. The signal was acquired by a silicon photodetector with a rise time of approximately
0.5 ns and subsequently averaged and recorded with a digital oscilloscope (5 GS/s).

4. Final Remarks

The relaxation of the parity selection rules in noncentrosymmetric CdTe-GSH QDs at the very
strong confinement regime was observed. Our results show a coincidence between 1PA and 2PA
peaks, indicating that a one-photon transition is also allowed by two-photon excitation. To explain this,
we considered that, due to the zinc-blended structure with Td symmetry, CdTe QDs do not present
inversion symmetry; therefore, the parity of the electronic states involved in optical transitions are
not precisely defined. Thus, the coincidence between the lowest energy 1PA and 2PA peaks can be
explained through the relaxation of the parity selection rules. In addition, we show that the reduction
in surface defects and structural irregularities with the increase in QD size, very common in colloidal
QD synthesis in the strong confinement regime, increases the centrosymmetric and decreases the
noncentrosymmetric 2PA channel strength.
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