

48^a
Reunião Anual da
Sociedade
Brasileira de
Química

**Emergências Climáticas?
A Química Age e Reage!**

ANAIS

08 a 11 de junho de 2025, Campinas, Expo Dom Pedro

Copyright © 2025 para os autores

Revisão textual e gramatical: Responsabilidade dos respectivos autores.

Todos os direitos reservados 2025
A reprodução não autorizada desta publicação, no todo ou em parte,
constitui violação de direitos autorais (Lei 9.610/98).

**Dados Internacionais de Catalogação na Publicação (CIP)
(Câmara Brasileira do Livro, SP, Brasil)**

Reunião Anual da SBQ (48. : 2025 : Campinas, SP)
Anais da 48^a Reunião Anual da SBQ [livro
eletrônico] / Sociedade Brasileira de Química. --
1. ed. -- Campinas, SP : Aptor Software, 2025.
PDF

Vários autores.
Vários colaboradores.
Bibliografia.
ISBN 978-85-63273-70-3

1. Química I. Sociedade Brasileira de Química.
II. Título.

25-282696

CDD-540

Índices para catálogo sistemático:

1. Química 540

Eliete Marques da Silva - Bibliotecária - CRB-8/9380

Computational study of the Copper-catalyzed water oxidation catalytic cycle using macrocyclic ligands: unraveling the role of HPO_4^{2-}

Bruno S. Sampaio (PG),¹ Vitor H. Menezes da Silva (PQ),² Joel L. Nascimento (PG),² João P.C.S. Neves (PG),² Tiago V. Alves (PQ)²

brunosamp08@gmail.com; brunosamp08@gmail.com

¹Physical-Chemistry Department, USP, São Carlos, SP; ²Physical-Chemistry Department, UFBA, Salvador, BA

Palavras Chave: *water oxidation, catalysis, computational chemistry, density functional theory*

Highlights

- The catalytic cycle of copper-catalyzed water oxidation with a macrocyclic N-donor ligand was computationally investigated based on previous experimental studies
- The reaction intermediates and transition states were computed using quantum chemical calculations, in which the energy profile of the catalytic cycle reproduces well the experimental turnover overall frequency (TOF).
- Computational analysis reveals that HPO_4^{2-} facilitates O–O bond formation.

Resumo/Abstract

The oxidation of water is a key reaction in both natural and artificial photosynthesis mechanisms. This process is thermodynamically challenging, and therefore, the development of efficient water oxidation catalysts (WOCs) is crucial for achieving industrial-scale applications [1]. Specifically, Yu *et al.* [2] reported an efficient electrocatalytic water oxidation using a Cu-based catalyst with the 1,4,8,11-Tetramethylcyclam (TMC) ligand. A TOF of 30 s^{-1} was achieved under neutral pH conditions (0.1 M phosphate buffer), demonstrating excellent electrocatalytic water oxidation activity. However, the catalytic cycle remains poorly understood. We computationally investigated the electrochemical transformations, including the role of HPO_4^{2-} , possible intermediates and transition states of the water oxidation mechanism with Cu-TMC complexes. Specifically, when the O–O bond formation transition state by a single water molecule was calculated (Fig. 1a), the barrier was found to be 40 kcal/mol. However, in the presence of HPO_4^{2-} as a proton acceptor with H_2O (Fig. 1b) lowered this barrier to 17 kcal/mol, highlighting the important role of phosphate in enhancing the catalytic efficiency of water oxidation.

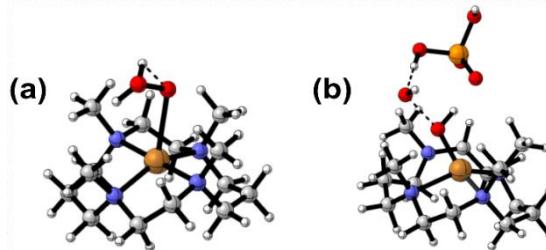


Figura 1: O–O bond formation transition states of the catalyst with: (a) a single water molecule; (b) a phosphate and a water molecule

All calculations were carried out using the B3LYP-D3 density functional, associated with the LANL2TZ(f) and def2-SVP basis sets for copper and lighter atoms, respectively. The solvent effects were considered implicitly using the SMD model.

[1] Marenich *et al.* *Angewandte Communications*, 51, 12810–12814. 2012; [2] Yu *et al.* *Chemical Communications*. 52, 10377–10380. 2016.

Agradecimentos/Acknowledgments

