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Introduction
As stated in [9, Conjecture 1.1], L. Makar-Limanov made the following conjecture:

Conjecture 1. Let K be a field, A be an associative K-algebra and F be a field
extension of K. If F @ i A contains a free K-algebra on at least two free generators, then
A also contains a free K-algebra on the same number of free generators.

In [6, Theorem 1(b)], Z. Reichstein proved that Makar—Limanov’s conjecture holds true
when the field K is uncountable:

Theorem 2. Let K be an uncountable field, A an associative K-algebra and F a
field extension of K. If F ® g A contains a copy of a free (non-commutative) associative
K-algebra, then so does A.

In his proof, Z. Reichstein made essential use of the following result by L. Makar-
Limanov and P. Malcolmson [4, Lemma 1]:

Lemma 1. Suppose that K is a field with prime subfield Ky and A is an associa-
tive K-algebra. Then x4, ..., x, € A are the free generators of a non-commutative free
K-subalgebra if, and only if, they are the free generators of a free Ky-subalgebra.

(© The Author(s), 2021. Published by Cambridge University Press on Behalf
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Downloaded from https://www.cambridge.org/core. 03 Jan 2022 at 18:16:07, subject to the Cambridge Core terms of use. @ CrossMark


https://orcid.org/0000-0002-1718-5027
https://orcid.org/0000-0001-8071-8765
mailto:renato.fehlberg@ufes.br
mailto:jsanchez@ime.usp.br
https://crossmark.crossref.org/dialog?doi=10.1017/S001309152100078X&domain=pdf
https://www.cambridge.org/core

2 R. Fehlberg Junior and J. Sdnchez

On the other hand, A. Smoktunowicz proved in [9, Theorem 1.2] that this conjecture
fails when K is a countable field. More precisely, she showed that for every countable
field K, there is an associative K-algebra A without free subalgebras on at least two free
generators and a field extension F' of K such that the algebra F ®x A contains a free
K-algebra on at least two free generators.

The main aim of this paper is to illustrate the fact that similar phenomena about
the existence of free algebras hold true in the context of varieties of (not necessarily
associative) algebras.

Before giving more details, we fix some notation that will be used throughout. For
unexplained terminology, the reader is referred to [11, Chapter 1].

Let Y be a set and K be a field. Let X be a countable set of symbols X = {x1, zo, ...}
and let 9 be a variety of K-algebras with defining identities I C K{X}.

By K{Y}, we denote the free (non-associative) K-algebra on Y. Thus, for any
K-algebra A and map 0: Y — A there exists a unique homomorphism ©: K{Y} — A
which extends 6.

We will denote by Kop{Y} the free K-algebra in the variety 9t with set of free gen-
erators Y. Thus, for any K-algebra A € 9 and map 0: Y — A, there exists a unique
homomorphism of K-algebras ©: Kgn{Y} — A which extends 6.

Let K C F be a field extension. By M p, we denote the variety of F-algebras with
defining identities I.

We will only consider homogeneous varieties 9t of K-algebras. Hence, if A € 91, then
the K-algebra F' @ A € M. Moreover, F ® g Kon{Y'} is the free F-algebra of My with
set of free generators {1®@y1, ..., 1@y}, T Y ={y1, ..., yn}

Let K be a field and 9t be a homogeneous variety of K-algebras. We say that 91 is an
MLM wvariety if for any field extension K C F, any A € Mg, and subset of at least two
elements Y = {y1, ..., yn} C A such that the K-subalgebra of A generated by Y is the
free K-algebra in the variety 90t with set of free generators Y, then the F-subalgebra of
A generated by Y is the free F-algebra in the variety 9y with set of free generators Y.
The name MLM stands for Makar-Limanov and Malcolmson. Note that Lemma 1 states
that the variety of associative K-algebras is MLM.

Suppose that K is an uncountable field and 9 is a homogeneous variety of K-algebras.
We say that 9 is a Reichstein variety if for any A € 9 and field extension F' of K such
that F ®x A contains a free K-algebra in the variety 91 on at least two free genera-
tors, then A contains a free K-algebra in the variety 99t on the same number of free
generators. Note that Theorem 2 shows that the variety of associative K-algebras is
Reichstein.

In § 1, we prove that if K is an uncountable field, MLM varieties of K-algebras are
Reichstein. Also, as an easy consequence of [9], we show that if K is a countable field
and 9 is either the variety of K-algebras generated by the special Jordan K-algebras
or the variety of Lie K-algebras, then Smoktunowicz’s result holds. That is, there exist
a K-algebra A in 9 and a field extension F' of K such that A does not contain a free
K-algebra in 9 on at least two free generators but F' ® i A contains a free K-algebra in
I on at least two free generators.

In § 2, we show that if K is a field, the following homogeneous varieties of K -algebras
are MLM:
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On free subalgebras of varieties 3

e The variety Ax of all K-algebras

The variety Lx of all Lie K-algebras

The variety Cx of all commutative K-algebras
e The variety ACk of all anticommutative K-algebras
e The variety SJ i generated by the special Jordan K-algebras.

We end this introduction by showing that not all homogeneous varieties of K-algebras
are MLM. For example, the variety 7 rivg of K-algebras which satisfy the identity x1xo =
0 is not MLM. This variety can be identified with the class of K-vector spaces, and the
K-basis of these vector spaces with free set of generators. Let now F' be a non-trivial field
extension of K, and consider A, a one-dimensional F-algebra with basis {z} C A. Note
that if f1, fo € F' are K-linearly independent, then the K-subalgebra of A generated by
Y ={f1z, foz} is free on Y of rank two. On the other hand the F-algebra generated
by Y is not free on Y because fz, foz are F-linearly dependent. Another example of
a variety that is not MLM is the variety of commutative and associative K-algebras.
Indeed, consider the field of fractions F' of the polynomial ring in two variables K[z, y].
Clearly, F' contains a free K-algebra on two generators, but F does not contain a free
F-algebra on {x, y}.

1. MLM varieties are Reichstein

In the first part of this section, we prove results analogous to the ones in [6] in the context
of varieties of algebras. The proofs are natural adaptations of the ones by Z. Reichstein.
The proof of the following result can be found in [6, Lemma 1].

Lemma 2. Let K be an uncountable field and let X1, X5, ... be a countable number
of Zariski closed subsets of K™. If U, X; = K™, then X; = K" for some i > 1.

Let K be a field and F be a field extension of K. Suppose that 9t is a homogeneous
variety of K-algebras.

Let Ae9. If € F and a€ A, we shall denote za € F®yg A instead of
z®a. Let (a11, ..., a1py) €A™, ooy (Anty <oy Qnp, ) € A™. For 21 = (211, ..., 210, ) €
Frooo oz = (Zn1,y ooy Znr,) € F™ ) set

azi:ZzijaijEF@JKA, 26{1,,n}

Jj=1

Lemma 3. Let Y ={y1, ..., yn}, n > 2, be a finite set. Let f1, ..., fm € K{Y}
be polynomials in n variables. Then the n-tuples (zi, ..., z,) € F'*7 T such
that fi(az,, ..., az,), ...y fm(az, ..., a.,) € F®g A are F-linearly dependent, form
a Zariski closed subset of F™ T+ defined over K.

Proof. Let d be the maximum of the degrees of f1, ..., f,, and let ey, ea, ..., €5 be
a basis of the K-vector subspace of A spanned by all the possible evaluations in {a;;};
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4 R. Fehlberg Junior and J. Sdnchez

of the monomials in K{Y} of degree < d. Notice that ey, ..., es are also F-linearly
independent in F' ®p A. Then, for k=1, ..., m, we can write

S
fulaz, ... az) = Zpkt(zl, e Zn)€t,
=1

where each pg: is an associative and commutative polynomial in 1 + - - - + r,, variables
with coefficients in K.

If m >s, then the set consisting of the (z1,...,2,) € FT ™™ gsuch that
filas,, ooy az)), o oy fm(as,, ..., a,, ) are F-linearly dependent equals F" 1 +7n,

Suppose now that m < s. Then fi(az,, ..., az,), ..., fm(az, ..., az,) are F-linearly
dependent if, and only if, the m x s matrix (pri(21, ..., 2n))k,¢ has rank <m — 1.
This is equivalent to the vanishing of the m x m minors of this matrix. Each minor is a
commutative and associative polynomial in 211, ..., Zipy, .-+ Zni, -+, 2nr, With coefli-
cients in K. O

With these lemmas, we can prove the main result of this section.

Theorem 3. Let Q C K C F be field extensions with K uncountable, Yt be an MLM
variety of QQ-algebras and A € M. If F ®x A contains a free Q-algebra in the variety
I with a finite set of free generators greater or equal than two, then so does A. As a
consequence, if M is an MLM variety of K-algebras, then 9 is a Reichstein variety of
K-algebras.

Proof. Suppose that the elements

i
Ay, = E uijaij€F®KA, 1=1,...,n,
Jj=1

are the free generators of a free Q-algebra in the variety 9 for some (ui1, ..., Uiy, ) €
Frooo o (Unt, - o vy Uy, ) € F™ and a;; € A. Since M is MLM, these elements also
generate a free F-algebra in the variety MM p with free set of generators {ay,, ..., au, }-

Let {y1, ..., yn} be a finite set. Consider the free K-algebra K{y, ..., y,} and the
free algebra Kon{yi, ..., yn} in the variety 9 with free set of generators {yi, ..., yn}.
Consider the natural homomorphism of K-algebras

D K{yi,---,yn} — Ko{ys, .-, Un},  ¥i— i

For each d>1, fix monomials mg, ..., mgy, of degree d in the free algebra
K{yi, ..., yn} such that |J {@(ma1), ..., P(mas,)} is a K-basis of Kon{y1, .-, Yn}-
d>1

For p > 1, let X,, C F™#™ be the set of all n-tuples

((Z117 .- -azln)v R (ana .. '7zTLTn))

such that mg(az,, ..., az,),l =1, ..., tg, d < p, are F-linearly dependent. We will write
r1+ -+ 1, :=r. By Lemma 3, X,, is a closed subset of F'" defined over K.
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On free subalgebras of varieties 5

In order to prove the existence of the free algebra Kon{yi, ..., yn} in A, we must
show that all mg;(a.,, ..., a.,) are K-linearly independent for some (z1, ..., z,) € K.
Assume the contrary: for every (z1, ..., z,) € K", the elements a.,, ..., a,, are such

that there exists p > 1 with

Z Ad,ma, (Gzy s .. az,) =0, for some A\g, € K.

d<p,1<I<tq

In other words, (z1, ..., z,) € X,. Hence K" = |J X,(K), where

p>1
Xp(K) ={(z1,...,2n) € K" :mg,(az,,...,0as,), l=1,...,tq, d<p, are K-1.d.}.

By Lemma 2, X, (K) = K" for some integer p. Note that X,(K) C X,,. Now, since K" is
dense in F", we get that X,, = F". A contradiction because a,, generate a free algebra

Fonp{au,, -y au, }-
Now, if Q = K, one obtains the last assertion of the theorem. [

We end this section by showing that Theorem 2 does not hold for the variety of Lie
K-algebras and the variety generated by the special Jordan K-algebras when the field K
is countable.

Suppose that K is any countable field. By [9, Theorem 1.4], there exists a field extension
F of K and a nil associative K-algebra A such that the associative algebra F @ A
contains a non-commutative free K-algebra on a set of free generators of at least two
elements.

Consider the special Jordan K-algebra A(H). It is known that A(Y) is a special Jordan
nil K-algebra. Hence A™H) does not contain a copy of STk (Y), the free special Jordan
K-algebra with set of free generators Y, where Y possesses at least two elements. Now
since, F' ® ¢ A contains a non-commutative free K-algebra on a set of free generators of
at least two elements, the special Jordan algebra F @z A contains a copy of STk(Y)
where Y has at least two elements.

Now consider the Lie K-algebra A7) It is known that A(") is a Lie Engel K-algebra.
Hence A() does not contain a copy of L (V) where Y possesses at least two elements.
Now, since F' ® ¢ A contains a non-commutative free K-algebra on a set of free generators
of at least two elements, the Lie algebra F @x A() contains a copy of Lx (Y), the free
Lie K-algebra with set of free generators Y, where Y has at least two elements.

2. Examples of MLM varieties

Our aim in this section is to show that some important varieties of algebras are MLM.
Hence, when the ground field is uncountable, these varieties are Reichstein by Theorem 3,

To avoid repetitive arguments, we establish here a Setup that will be used at the
beginning of the proofs as a standard text.

Setup 4. Let K C F be a field extension and 2 be a variety of K-algebras. Let A be
an F-algebra in Ap. Suppose that Y = {y1, ..., yn} C A is a set of at least two elements
such that the K-subalgebra of A generated by Y is Ko{Y}, the free K-algebra in the
variety 2 with free set of generators Y .
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6 R. Fehlberg Junior and J. Sdnchez
Consider the homomorphism of F-algebras

e F ®K KQl{Y} — A
cRprcp

If we want to prove that 2 is an MLM variety, we must show that u is injective.
We proceed as in the proof of [4, Lemma 1]. Clearly u(c®p) =0 if, and only if, ¢ is
zero or p is zero. Either way, ¢ ® p is zero. Hence suppose that

1 <Z ¢ ®Pz‘> =0, (2.1)

where n > 1 is minimal. Note that the minimality of n implies that the ¢;’s and p;’s are
linearly independent over K.

2.1. Variety of all K-algebras

The homogeneous variety Ag of all K-algebras has the empty set of defining relations.
Consider K{Y}, the free K-algebra on a set Y. It is well known that every non-associative
word w of degree at least two has unique representation in the form of a product of two
non-associative words. Hence, one can introduce a total ordering in the set V(YY) of
non-associative words as follows. Order the words of length one (variables) arbitrarily.
Assuming that the words of length n, n > 1, have been already ordered in such a way that
words of smaller length precede words of greater length, then given two words wy, we €
V(Y) of length n + 1 and represented as a product of two non-associative words of lesser
length wy = wyv1, we = ugvy we define wy < wy if, and only if, uy < uy or u; = us and
v1 < vy. Observe that this total ordering of the non-associative words satisfies that if
wy < we then ww; < wws for all w € V(Y).

Theorem 5. The variety Ax is MLM.

Proof. Consider ) = Ax and Ar = A in Setup 4.
Suppose p,, is the p; of greatest degree > 1 and with the greatest word in the support
among the p;’s.

If H < Ci ®p7,) = Z ¢ip; = 0, then,
i=1 3

=1

0= (Z cm) Pn =P (Z Cipi)
i=1 i=1

n n—1
= ci(pipn —papi) = Y ¢ (PP — Pupi)
i=1 1

(2

Hence,

n—1
K (Z ¢ @ (pz-pn - pnpi)> =0.
i=1
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On free subalgebras of varieties 7

By the minimality of n, we have 0 = p;p,, — pnp; for i =1, ..., n. This equality implies
that p; and p, have the same maximal word in its support. Thus, there exists \; € K
such that p; — \;p,, has a lesser maximal word in its support. Since

we obtain that p; = A\;p,, for each i = 1, ..., n. This contradicts the fact that the p;’s are
K-linear independent. O

2.2. Variety of commutative K-algebras

The homogeneous variety Cx of commutative K-algebras has the defining relation
2129 — wax1. The free commutative K-algebra on a set Y will be denoted by Cx{Y}.
We will need a result and a definition from [8].

Let Y be a non-empty set. Consider the words on Y. Words of length one will be called
reqular and ordered arbitrarily. Assuming that regular words of length less than n, n > 1,
have been already defined and ordered in such a way that words of smaller length precede
words of greater length, a word w of length n will be called regular if

(1) w = uwv where u and v are regular words;
(2) u>w.

We order the regular words of length n defined in this way, declaring that wy = uqvy <
wy = ugvs if either uy < us or uy = us and vy < vo. Then we declare the regular words
of length n to be greater than regular words of smaller length. By [8, Theorem 1], the
collection of all regular words form a basis of Cx{Y}.

Theorem 6. The variety Cx is MLM.

Proof. Consider % = Cx and Ar = Cg in Setup 4.
Suppose p,, is the p; of greatest degree > 1 and with the greatest word in the support
among the p;’s.

If u (E G ® pi) = Y ¢;p; = 0, then, for all regular words w,
i=1 =1

0= ((Z Cilh‘) w) Pn — (Pnw) Z Cipi)

n n—1

= > a(@w)pn — aw)pi) = 3 e ((piw)pn — (paw) )

i=1 i=1

Hence,

M (TLZI ¢ ® ((pz-w)pn - (pnw)pi)> =0,
i=1

for all regular words w. By the minimality of n,

0 = (p;w)pn — (prw)p; for all regular words w and for i =1, ...
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8 R. Fehlberg Junior and J. Sdnchez

From the commutativity of the product and the definition of regular words, this equality
implies that p; and p,, have the same maximal regular word in its support. Thus, there
exists A\; € K such that p; — A\;p,, has a lesser maximal regular word in its support. Since
((pi = Niprn)w)Dn — (Pnw)(p; — Aipn) = 0 for all regular words w and i =1, ..., n, we
obtain that p;, = \;p, for each i =1, ..., n, a contradiction. O

2.3. Schreier varieties satisfying =2 = 0

Let 91 be a variety of K-algebras. We say that 91 is a Schreier variety if any subalgebra
of a free algebra in 91 is a free algebra in 9t. The main examples of homogeneous Schreier
varieties are: the varieties of all algebras [2], commutative and anticommutative algebras
[8], Lie algebras [7, 10], and algebras with zero multiplication.

Let A be a free K-algebra in 9. Let (1, ..., 2p), (Y1, -+, yn) € A™. Let V and W be
the K-subspaces of A generated by (x1, ..., z,) and (y1, ..., yn), respectively. We say
that a transformation 7: (z1, ..., x,) — (7(z1) = y1, ..., 7(z,) = yn) is an elementary
transformation if either:

(1) 7 induces a non-singular K-linear transformation between V' and W, or

(2) 1 =21, Y2 =22, -y Yn—1 = Tp—1 and y, = x, + u, where u, belongs to the
K-subalgebra of A generated by z1, ..., Tp_1.

Observe that inverses of elementary transformations are also elementary transforma-
tions.

It is known that homogeneous Schreier varieties 9t are Nielsen, see, for example, [3] or
[5, Chapter 11]. In other words, if A is a free algebra of 9, one can transform any finite
set of elements aq, ..., a, € A to a free set of generators of the free subalgebra generated
by ai, ..., a, by using a finite number of elementary transformations and cancelling
possible zero elements.

Lemma 4. Suppose that 9 is a homogeneous Schreier variety of K-algebras that
satisfies the identity x> = 0 and does not satisfies the identity z1x2 = 0. Let Y be a set
of at least two elements and denote by Kon{Y} the free algebra in the variety 9 with set
of free generators Y. Suppose that p, ¢ € Kop{Y'}, ¢ # 0, such that pg = 0. Then p = A\q
for some A € K.

Proof. Since M is a Schreier variety, the subalgebra B of Kgn{Y} generated by p, ¢
is a free subalgebra of Kgn{Y}. There exist elementary transformations

(p,q)ﬂ"'ﬂ(x,y),

such that z, y (and y may be zero) are free generators of B. If the rank of B is two, then
there exist elementary transformations (the inverses of the previous ones)

(z,y) = — (p,9)

Since B is free on z, y, the elementary transformations induce automorphisms of
K-algebras. Hence, there exists an isomorphism of B that sends = +— p, y — ¢. Hence
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On free subalgebras of varieties 9

p, q are free generators of B. Since pg = 0, and p? = ¢® = 0, it implies that the free alge-
bra in the variety 91 on two free generators has zero product. Therefore, all the algebras
in 90 satisfy the identity xix2 = 0, a contradiction. It implies that B is a free algebra
of rank one. Since x2 = 0, the free subalgebra generated by one non-zero element is of
dimension 1. Now B is generated by ¢, as desired. (I

Between the homogeneous Schreier varieties that satisfy the conditions of Lemma 4,
we highlight the following:

e The variety of Lie K-algebras Lx. Its defining relations are: z? and (zi29)7s +
(xows)xy + (x3x1)22.
e The variety of anticommutative K-algebras AC . It has the defining relation: xzs +

Xolq.

Theorem 7. Let 9 be a Schreier variety of K-algebras that satisfies the identity
22 = 0 and does not satisfy the identity x x5 = 0. Then 9 is MLM. In particular, the
varieties L and AC g are MLM.

Proof. Consider 2 = 91 and A = My in Setup 4. Then

n

n—1 n n
Iz <Z ¢ ® pipn> =H (Z Ci ®pipn> = cipipn = (Z Cipi) pn=0-pn=0.
=1 i=1 i=1

i=1
By the minimality of n, p;p, =0 for all i =1, ..., n. By Lemma 4, and the fact that
pn £ 0, we get that p; = \;pn, where \; € K for ¢ =1, ..., n, a contradiction. O

2.4. Variety generated by special Jordan algebras

Let K be a field. If A is an associative K-algebra, we define on the K-vector space
A a new multiplication o, which is connected with the associative multiplication by the
formula zoy = %(xy + yx). In this way, a new K-algebra is obtained and it is denoted
by A The K-algebra A is a Jordan algebra (that is, satisfies x129 = xox; and
(v2x9)x1 = 22 (2271)). If J is a K-subspace of A which is closed with respect to the
operation o, then J together with o is a subalgebra of At), and consequently a Jordan
algebra. Such a Jordan algebra is called special Jordan algebra. The variety generated by
all special Jordan K-algebras will be denoted by SJ k¢ and it consists of all K-algebras
which can be obtained as homomorphic images of special Jordan K-algebras.

Let Y be a set. Consider K(Y'), the free-associative K-algebra on the set Y. The
K-subalgebra SJ i (Y) of the algebra K (Y')(*) generated by the set Y is the free special
Jordan K-algebra on Y and it is the free K-algebra on the set Y in the variety SJ k.

Theorem 8. Let K be a field of characteristic not two. Then SJ i is MLM.

Proof. Consider A =SJk and Ar = ST in Setup 4.
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10 R. Fehlberg Junior and J. Sdnchez

Suppose p,, is the p; of the greatest degree. If it is of degree zero, then all p; are of degree
zero and the result follows from the case n = 1 because there exist a; € K such that

[ (Zci ®pi> = <Zc¢ai ® 1) —0
=1 =1

From now on, we suppose that p,, is of positive degree.
Claim 1: p; and p,, commute as elements of K(Y).

If (Z ¢ ®pi) = > ¢ipi =0, then, for all z € STk (Y)

i=1 i=1

_ ((i cipi> oz> (Z qm) (z0pn)

n —

Z ((pioz)opn — (pio(z0py)) Z ((pioz)opn —(pio(20pn)))-

Hence,

<Z% ((io=) opn—(pz-o(zopn)))> ~0.

By the minimality of n, 0 = (p;oz)op, —p;o(zopy) for i =1, ..., n. Using that
STk (Y) is a subalgebra of K(Y)*) we get

0= (pioz)op, —pio(z0opy)
1
= 5((22% +piz) 0 pn — pi © (2Pn + Pn2))
1
1
1

= Z[Z(pipn — Pupi) — (PiPn — Pnpi)Z].

2PiPn + DiZPn + Pn2Pi + PnPiz — (PiZDn + PiPnZ + 2DnDi + Pn2Di))

This implies that p;p, — ppp; commutes with any variable z € Y C STk (Y). Hence
DiPn — Pnpi 18 in the centre of K(Y), that is, p;p, — pnp; € K. But this is only possi-
ble if p;p, — pnp; = 0, because the term of zero degree in p;p,, — pnp; is zero. Therefore,
p; and p, commute in K(Y) and the claim is proved.

Claim 2: There exists \; € K such that p; = \;p, for i =1, ..., n. A contradiction
with the fact that the p;’s are K-linear independent.

By [1, Corollary 6.7.7] and Claim 1, there exists a polynomial v € K(Y') of degree at
least one such that p; € k[u], i=1, ..., n
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n

From (2.1), Z ¢ipi = 0. Thus, for all z € ST (Y),

(écmz> (z0p2) ((ZCJ%) n)o(zopn)

Ci (( o(zoph))—(piopn)e(z Opn))

Il
H'MH g

(0o o)~ Giom o (om),

where we have used that (z o p?)op, = p2 o (2 0p,) in the last equality.
Hence

<ZCZ Zopn))_(piopn)o(zopn)}> =0.

By the minimality of n, and using Step 1 and ST (V) C K(Y)(+),

0=p;o(zop2)— (piops)o(zopy)

1 1
= ipi o (Zpi +p3LZ) - Z(pipn + pnpi) o (an + an)
1
=1 Zp2 + piPez + ZDapi + D zpi)
1
= 1 (Pipnzpn + DiP2Z + 2DnPiPn + Pn2PiPn)
1 2 2
= Z(pi 2Py + Pp2ZPi — PiPnZPn — PnZDiPn)
1

= —(pi(2Pn — Pn2)Pn — Pn(PnZ — 2Dn)Di)-

N

Hence, p; (an - pnz)pn = pn(zpn - an)pi for all ze€STk (Y) - K<Y>(+) and
t=1,...,n

Let now z € SJ k(Y") such that = does not commute with w. By [1, Corollary 6.7.4], u
and x form a free set over K. Then, rewriting the last equality, we obtain p;(u)(xp, (u) —
Pn(Wz)pn(u) = pp(u)(zpn(v) — pp(u)z)pi(u).

Suppose that the degree on u of p;(u) is smaller than the degree of p,, (u). Considering
the lexicographic order in K(x, u) with x < u, we obtain that the greatest monomial
on the right-hand side of the equation is obtained from —p,,(u)?zp;(u), which cannot be
obtained from any other monomial on the left-hand side of the equality. A contradiction.

Hence p; and p,, are polynomials on u of the same degree. Thus, there exists \ € K
such that p;(u) — Ap,(u) has degree smaller than the degree of p,, and

(pi(u) = Apn(u))(@pn(w) — pn(w)2)pp(u) = po(u)(@pn(u) — po(u)z)(pi(w) — Apn(u)).

By the foregoing, the only possibility is that p; = \;p, for some \; € K. O
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2.5. Variety of non-commutative poisson K-algebras

In this subsection, we deviate from our notation and consider a variety of alge-
bras endowed with more than one product. More precisely, the variety NCPy of all
non-commutative Poisson K-algebras.

A vector space P over a field K endowed with two bilinear operations z - y (a multi-
plication) and {z, y} (a Poisson bracket) is called a non-commutative Poisson algebra if
P is an associative algebra under x -y, P is a Lie algebra under {x, y}, and P satisfies
the Leibniz identity: {x -y, z} = {z, z} -y + x - {y, z} for all x, y, z € P.

Let Y be a set. The free non-commutative Poisson K-algebra Pk (Y') is constructed as
follows. Let Lk (Y) be the free Lie K-algebra on Y and suppose that X = {z1, z2, ...}
is a K-basis of Lk (Y). Then Pr(Y) is the free associative algebra on the set of free
generators X. Using the Leibniz identity one can uniquely extend the Lie bracket {z, y}
of Lk (Y') to a Poisson bracket {z, y} on Px(Y), and Px(Y) becomes a Poisson algebra.

Corollary 1. The variety NCPf is MLM.

Proof. Let K C F be a field extension and let A € NCPr. Suppose that A contains a
free non-commutative Poisson K-algebra on a free set of generators Y C A of at least two
elements. The free Lie K-algebra (with respect to {x, y}) generated by Y is the free Lie
K-algebra L (Y). By Theorem 7, the Lie F-subalgebra of A generated by Y is the free
Lie F-algebra L (Y') with set of free generators Y. Note that we can pick the same basis
B for Lk(Y) and Lr(Y). Now, by Lemma 1, the associative F-subalgebra generated by
B is the free associative F-algebra on B, as desired. O

We would like to finish noting that one can mimic the proof of Theorem 3 to show that
the variety NCP g is Reichstein when K is an uncountable field.
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