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Abstract
Effective models of quantum black holes inspired by loop quantum gravity
(LQG) have had success in resolving the classical singularity with polymerisa-
tion procedures and by imposing the LQG area gap as a minimum area. The
singularity is replaced by a hypersurface of transition from black to white holes,
and a recent example is the Ashtekar, Olmedo and Singh (AOS) model for a
Schwarzschild black hole. More recently, a one-parameter model, with equal
masses for the black and white solutions, was suggested by Alonso-Bardaji,
Brizuela and Vera (ABBV). An interesting feature of their quantisation is that
the angular part of the metric retains its classical form and the horizon area
is therefore the same as in the classical theory. In the present contribution we
solve the dynamical equations derived from the ABBV effective Hamiltonian
and, by applying the AOS minimal area condition, we obtain the scaling of
the polymerisation parameter with the black hole mass. We then show that
this effective model can also describe Planck scale black holes, and that the
curvature and quantum corrections at the horizon are small even at this scale.
By generating the exterior metric through a phase rotation in the dynamical
variables, we also show that, for an asymptotic observer, the Kretschmann
scalar is the same as in the classical Schwarzschild solution, but with a central
mass screened by the quantum fluctuations.
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1. Introduction

The challenge for a complete formulation of quantum gravity has, among its main goals, the
resolution of the black hole and cosmological singularities as the result of space-time quantisa-
tion at the Planck scale. A promising path in this way is given by loop quantum gravity (LQG),
a non-perturbative quantisation of General Relativity with Ashtekar-Barbero variables, per-
formed in the space of holonomies [1–4]. Nevertheless, the approach to the singularity prob-
lem, both in the cosmological and black hole scenarios, has only been achieved with the help
of effective models, inspired by full LQG [5].

In these models the black hole physical singularity is replaced by a transition hypersur-
face where a black hole to white hole tunnelling takes place [6, 7]. This is usually achieved
by the following steps. First, the identification of an isometry between the black hole interior
and a homogeneous background, e.g. the Kantowski-Sachs metric in the Schwarzschild case.
Second, the polymerisation of the classical metric by introducing a set of parameters that con-
trol its quantum fluctuations. Different polymerisation schemes have been proposed, leading to
quantum black holes with characteristic features. The dynamics is then driven by the LQG con-
straints, together with a minimal area postulation that constrains the evolution of the dynamical
variables, giving origin to the transition surface.

A model particularly studied in recent years is that proposed by Ashtekar, Olmedo and
Singh (AOS) [8, 9], where a particular polymerisation scheme is adopted and the LQGminimal
area is imposed on plaquettes defined by holonomies on the transition surface. In spite of giving
a proper dependence of the quantum corrections on the black hole mass, which decrease as the
mass increases, as well as the desired black hole to white hole transition and a smooth match
between the internal and external metrics, the external solution does not present the expected
asymptotic limit, as pointed out by some authors5 [11]. Other proposals try to treat this and
other problems with diverse polymerisation schemes [12–15].

An interesting approach was recently proposed by Alonso-Bardaji, Brizuela and Vera
(ABBV) [16], where the quantisation is performed under the condition that infinitesimal
coordinate transformations and gauge transformations coincide and define the same canon-
ical algebra. The authors find in this way an internal solution with a black hole to white hole
transition driven by a unique quantum parameter, and an external solutionwith a proper asymp-
totic behaviour. A remarkable feature of their quantisation scheme is that the angular part of
the metric maintains its classical form, and for this reason the horizon area is the classical one,
A= 16πm2, where m is the mass, the same for the black and white holes6.

The latter feature is noteworthy for two reasons. First, it was previously shown that the
horizon area correction in the AOS model is indeed negligible even for Planck scale black
holes [17]. For instance, for m= 1 (in Planck units) it follows that δA/A≈ 10−3. The other
reason is a curious coincidence between the classical horizon area of Planck scale extremal
black holes and that predicted from the eigenvalues equation of the LQG area operator [17,
18]. Indeed, the classical horizon area of an extremal rotating black hole, for which the angular
momentum is J= m2, is A= 8π J. For the smallest admissible angular momentum, given by
ℏ, the area can be written as

5 See, however, [10].
6 In other effective models the black and white holes have in general different masses, see e.g. [6, 7, 12, 13].
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A= 8πγl2p

4∑
1

√
ji( ji+ 1), (1)

where lp is the Planck length, provided that γ =
√
3/6 and ji = 1/2. The above equation can be

identified with the eigenvalues equation of the LQG area operator [19] if we identify γ with the
Barbero-Immirzi parameter. It represents a horizon pierced by four lines in the fundamental
representation of SU(2), and the secondary quantum numbers, for which |mi|= 1/2, can be
chosen in order to fulfil the projection constraint

∑
mi = 0. In this way we have an isolated

horizon, as should be for an extremal horizon for which there is no Hawking radiation.
The value found for γ is 5% above the approximate value found from the Bekenstein–

Hawking entropy of large mass horizons when we adopt the Gosh-Mitra counting of micro-
states [20, 21]. Furthermore, with γ =

√
3/6 we obtain precisely the correct leading order

slope of the entropy × area relation for Planck scale black holes [17]. This value for γ also
allows an approximate identification between the LQG minimum area and the frequency gap
in the high-tone quasi-normal modes spectrum of extremal rotating black holes [22].

Another curious case is that of an extremal charged black hole, for which the classical
horizon area is A= 4πm2 and the relative correction obtained from the AOS model is ≈6%
form= 1 [17]. For a Planck mass, the horizon area corresponds to the LQG area eigenvalue of
a horizon pierced by two lines with ji = 1/2, which, again, can be made isolated. AsQ=m for
extremal horizons, we see that Q= 1 in this case. This charge could, in principle, be identified
with the elementary charge at the Planck scale, if we assume a large charge screening leading
to the observed elementary charge e≈ 0.1 at low energies. It is also worth of note that extremal,
Planck scale primordial black holes, rotating or charged, have been shown as viable candidates
for composing the cosmological dark matter [23, 24].

The above correspondence between classical areas and LQG eigenvalues may, therefore,
suggest that the quantum corrections to the horizon area are not only negligible, as in the AOS
model, but actually null, as in the ABBV formulation. The main goal of the present paper is
to explore some aspects of the latter, in particular the solution of the dynamical equations and
the derivation of an explicit dependence of the polymerisation parameter on the black/white
hole mass, following the AOS prescription of minimum areas on the transition surface. The
Kretschmann scalar will also be computed, showing that it peaks at the transition surface and
is very low at the horizon, even in the case of a Planck scale black hole. At the exterior region,
with a metric derived through a phase rotation in the dynamical variables, the curvature meas-
ured by an asymptotic observer is the same as in the classical Schwarzschild solution with a
screened central mass.

2. Classical and effective Hamiltonians

The classical Hamiltonian for the homogeneous metric is given by [16]

H̃cl =
1
G

[
− Ẽφ

2
√
Ẽx

(1+ K̃2
φ)− 2

√
ẼxK̃xK̃φ

]
, (2)

where Ẽx and Ẽφ are the components of the reduced triad and K̃x and K̃φ their conjugate
momenta. The AOS variables, on the other hand, obey the algebra {b,pb}= Gγ and {c,pc}=
2Gγ. Therefore, if we use the substitutions Ẽφ → pb, Ẽx → pc, K̃φ → b/γ and K̃x → c/2γ, we
obtain
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H̃cl =
1
G

[
− pb
2
√
pc

(
1+

b2

γ2

)
−

√
pc
γ2

bc

]
. (3)

Multiplying this result by the AOS lapse

Ncl =
γ

b
√
pc, (4)

we have

H̃cl[Ncl] =− 1
2Gγ

[
2cpc+

(
b+

γ2

b

)
pb

]
= H̃AOS

cl [Ncl]. (5)

This expresses the classical Hamiltonian in terms of the variables used in the AOS paper. Now,
we perform a polymerisation by substituting7 [26]

b→ sin(δbb)
δb

, pb →
pb

cos(δbb)
, (6)

and by including the regularisation factor

cos(δbb)√
1+ γ2δ2b

. (7)

This results in the effective Hamiltonian

Heff[Neff] =− 1

2Gγ
√
1+ γ2δ2b

[
2cpc cos(δbb)+

(
sin(δbb)

δb
+

δbγ
2

sin(δbb)

)
pb

]
. (8)

On the other hand, if we first multiply (2) by the AOS classical lapse in variables of extrinsic
curvature,

Ncl =

√
Ẽx

K̃φ

, (9)

we obtain

H̃cl[Ncl] =
1
G

[
− Ẽφ

2

(
1

K̃φ

+ K̃φ

)
− 2ẼxK̃x

]
. (10)

Now, by performing the polymerisation in the ABBV form [16]

K̃φ → sin(λKφ)

λ
, Ẽφ → Eφ

cos(λKφ)
, (11)

we find

Heff[Neff] =
1
G

[
− Eφ

2cos(λKφ)

(
λ

sin(λKφ)
+

sin(λKφ)

λ

)
− 2ExKx

]
. (12)

We then multiply it by the regularisation factor

cos(λKφ)√
1+λ2

, (13)

7 For a discussion on the covariance of this and other polymerisation schemes, see [25].
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to obtain

Heff[Neff] =− 1

G
√
1+λ2

[
Eφ

2

(
λ

sin(λKφ)
+

sin(λKφ)

λ

)
+ 2ExKx cos(λKφ)

]
. (14)

Finally, substituting Eφ → pb, Ex → pc, Kφ → b/γ and Kx → c/2γ, we find

Heff[Neff] =− 1

2Gγ
√
1+λ2

2cpc cos(λb
γ

)
+

γ sin

(
λb
γ

)
λ

+
λγ

sin

(
λb
γ

)
pb

 . (15)

Comparing the terms inside brackets in equations (8) and (15), we see that the two expressions
are identical if λ= γδb. The classical Hamiltonian is recovered for δb → 0.

3. Dynamical equations and solutions

The dynamical equations are derived as usually from the Hamiltonian formalism and are writ-
ten as

ḃ= {b,Heff}= Gγ
∂Heff

∂pb
=− 1

2
√
1+ γ2δ2b

(
sin(δbb)

δb
+

δbγ
2

sin(δbb)

)
, (16)

ċ= 2Gγ
∂Heff

∂pc
=−2ccos(δbb)√

1+ γ2δ2b

, (17)

ṗb =−Gγ ∂Heff

∂b

=
1

2
√
1+ γ2δ2b

[
−2cpc sin(δbb)δb+

(
1− δ2bγ

2

sin2(δbb)

)
pb cos(δbb)

]
, (18)

ṗc =−2Gγ
∂Heff

∂c
=

2pc cos(δbb)√
1+ γ2δ2b

, (19)

where the dot means derivative with respect to the AOS time variable T.
The solution for b(T) is given by8

cos(δbb) = b0

[
1+ b0 tanh

(
T
2

)
b0 + tanh

(
T
2

) ] , (20)

with

b0 =
√
1+ γ2δ2b . (21)

Using (20) into (17) and (19) we have, after integration,

c(T) = c(0)
[
b0 cosh

(
T
2

)
+ sinh

(
T
2

)]−4

, (22)

8 The integration constant was chosen so that the horizon corresponds to T= 0, when cos(δbb) = 1 and, inmetric (34),
the lapse diverges and pb vanishes.
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pc(T) = p(0)c

[
b0 cosh

(
T
2

)
+ sinh

(
T
2

)]4
. (23)

The solution for (18) can be obtained from the Hamiltonian constraint Heff = 0,

pb(T) =− 2cpc
tan(δbb)

δb
+

γ2δb
sin(δbb)cos(δbb)

. (24)

The minimum value for pc(T) is found from ṗc = 0,

sinh(TT /2) =− 1
γδb

, (25)

pmin
c = pc(TT ) = p(0)c γ4δ4b , (26)

with TT corresponding to the transition surface. At the horizon we have

phorc = p(0)c b40. (27)

It is worth of note that, from (26) and (27), we always have pmin
c < phorc , that is, the transition

surface is inside the horizon whatever the value of δb, which is not generally the case in the
AOS model [17].

The value of p(0)c can be expressed in terms of the invariant mass [16]

m=

√
pc
2

(
1+

sin2(δbb)
γ2δ2b

)
. (28)

At the horizon we have, from (20), sin2(δbb) = 0, i.e.

p(0)c =
4m2

b40
. (29)

Therefore, the horizon area is given by

A= 4πphorc = 16πm2, (30)

that is, the same classical area, as expected since the angular term of the metric is unperturbed
in the adopted polymerisation.

4. Planck scale black holes

In effective models the quantum corrections are controlled by the polimerisation parameters
(δb in the present case). From a physical viewpoint, we expect that such corrections decrease
for larger black holes, vanishing in the classical limit. For example, in the present model the
radius of the transition surface is determined by (26) and vanishes for δb → 0, when we recover
the classical singularity. The procedure adopted in the AOS model for establishing the relation
between the polimerisation parameters and the black hole mass has been criticised for the fol-
lowing reason [27, 28].When deriving the equations of motion from the effective Hamiltonian,
those parameters are considered constant on the phase space, while the invariant mass is con-
stant along a given dynamical trajectory, but evidently depends on the phase space variables
(see (28), for example).

A possible way to formally circumvent this loophole is to enlarge the phase space, treat-
ing the polimerisation parameters as additional conjugate variables that are constant along
a dynamical trajectory [9]. In this way, the relation between δb and m to be found in this

6
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Figure 1. δb × black hole mass dependence.

section can be thought as a constraint that selects, from the physical trajectories of the effect-
ive Hamiltonian, those that match the full LQG area gap on the transition surface. Despite this,
we are aware of the controversy surrounding this procedure9.

In order to determine the dependence of the quantum parameter δb on the black hole mass,
we follow the AOS procedure of imposing the LQG area gap as the minimum area for any
plaquette defined by holonomies on the transition surface [9]. Since in the ABBV scheme
the radial coordinate is not polimerised, these minimal plaquettes can only be defined on θ-φ
2-surfaces, and the AOS constraint is written as

4πpmin
c (αδb)

2 = 4π
√
3γ (lp = 1), (31)

where α is a positive parameter that defines the minimum length of the plaquette links as
proportional to the polymerisation parameter δb [17]. Using (21), (26) and (29), we obtain

δ6b
(1+ γ2δ2b)

2
=

√
3

4γ3(mα)2
. (32)

As 4πpmin
c ⩾ 4π

√
3γ, we also have the constraint

αδb ⩽ 1. (33)

From (32) and figure 1 we see that the quantum corrections vanish when m→∞. On the
other hand, as δb increases when m→ 0, for a given value of α there is a minimum allowed
mass, that saturates (33). If this minimummass has the Planck scale10,mmin ≈ 1, the maximum
δb, for γ =

√
3/6, is δmax

b ≈ 2.6, and we have α≈ 0.4. On the other hand, if we fix α= 1, as
in the AOS paper, δb ⩽ 1 and the minimum mass is mmin ≈ 4.5mp.

An absolute lower bound for the black hole mass is obtained when the transition surface
approaches the horizon. From (26) and (27) this corresponds to the limit γδb ≫ 1. Hence,

9 In any case, the results of the next sections do not depend on the constraint (32), which will only be used to fix m
and δb in the figures.
10 In full LQG, an isolated horizon of area 16πm2 has minimal mass mmin ≈ 0.5, for γ =

√
3/6.
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from (32) we have α2δ2b =
√
3γ/(2m)2, which saturates (33) for m2 =

√
3γ/4. Incidentally,

this is the minimum mass allowed in full LQG for a horizon of area 16πm2, corresponding
to a horizon pierced by a single spin network line with j = 1/2. This bound is actually never
reached, since we always have pmin

c < phorc .

5. Curvature invariants

The polymerisation removes the singularity present in the classical metric, and this can be
evidenced by calculating some curvature invariants as, for instance, the Kretschmann scalar.
At the same time, we can use it to evaluate the effect of the quantum corrections at the horizon.
The Kretschmann scalar is a combination of several terms and can be calculated using the
homogeneous metric, which, after polimerisation, can be written in AOS variables as

ds2 =−N2dT2 +
p2b

pc cos2(δbb)
dx2 + pcdΩ

2, (34)

with the lapse given by

N2 =
γ2δ2bpc
sin2(δbb)

. (35)

Using the solutions of section 3, it is possible to rewrite metric (34) in the ABBV form [16]

ds2 =−
(
2m
r̃

− 1

)−1(
1− r0

r̃

)−1
dr̃2 +

(
2m
r̃

− 1

)
dτ 2 + r̃2dΩ2, (36)

where we defined

τ =
c(0)p(0)c

mγ
x, r̃=

√
pc, (37)

r0 =
√
pmin
c =

2mγ2δ2b
b20

. (38)

The Kretschmann expression at the horizon (T= 0) is11

Khorizon =
48+ 24γ2δ2b + 17γ4δ4b
64m4(1 + γ2δ2b)

2
. (39)

For small quantum corrections, δb → 0, the classical result Kclassic = 3/(4m4) is recovered. In
figure 2 we show the behaviour of K/Kclassic at the horizon as a function of δb, for γ =

√
3/6,

which shows that the curvature does not deviate considerably from its classical level whatever
the value of δb.

In figure 3 we plot the Kretschmann scalar as a function of T, for m= 1 and δb = 2.6. As
can be seen, it has no singularity, presents a maximum at the transition surface and is very
small at the black hole horizon T = 0. Note the symmetry between the black hole and white
hole phases. From (25), the transition surface in this figure occurs at Tmin ≈−2.2, while the
white hole horizon corresponds to T≈−4.4. At the transition surface the Kretschmann scalar
is generally given by

K(TT ) =
(1+ γ2δ2b)

4(9+ 2γ2δ2b + 17γ4δ4b)

64m4γ12δ12b
. (40)

11 We acknowledge the use of the MATHEMATICA package xAct in our computations: www.xact.es.
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Figure 2. K/Kclassic at the horizon as a function of δb.

Figure 3. The Kretschmann scalar as a function of T for the homogeneous solution.

For completeness, we obtained the Ricci scalar (gµνRµν), the square of the Ricci tensor
(RµνRµν) and the Weyl scalar at the horizon and the transition surface:

gµνR
µν |horizon =

3γ2δ2b
8m2(1+ γ2δ2b)

, (41)

gµνR
µν |TT =

3(1+ γ2δ2b)
3

8m2γ6δ6b
, (42)

RµνR
µν |horizon =

17γ4δ4b
128m4(1+ γ2δ2b)

2
, (43)

RµνR
µν |TT =

(1+ γ2δ2b)
4(9+ 14γ2δ2b + 17γ4δ4b)

128m4γ12δ12b
, (44)

CαβγδC
αβγδ|horizon =

3(4+ γ2δ2b)
2

64m4(1+ γ2δ2b)
2
, (45)

9
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CαβγδC
αβγδ|TT =

3(−1+ γ2δ2b)
2(1+ γ2δ2b)

4

64m4γ12δ12b
. (46)

At the horizon all these scalars reduce to the classical ones for δb = 0. At the transition surface,
all of them diverge for δb → 0, as expected.

6. The asymptotic limit

Let us finish this discussion on the ABBV model with an analysis of the asymptotic limit
for Planck scale black holes. While in the ABBV paper the homogeneous and static metrics
are derived from the same polimerised Hamiltonian (14) in different gauges, we will generate
the exterior metric from the homogeneous one through the substitutions b→ ib and pb → ipb,
which relates the interior and exterior classical metrics [9]. From (34) and (35) this leads to

ds2 = N2dT2 − p2b
pc cosh

2(δbb)
dx2 + pcdΩ

2, (47)

where now

N2 =
γ2δ2bpc

sinh2(δbb)
. (48)

The solutions for c and pc remains the same as in section 3, while b and pb are now determ-
ined from

cosh(δbb) = b0

[
1+ b0 tanh

(
T
2

)
b0 + tanh

(
T
2

) ] , (49)

pb(T) =
2cpc

tanh(δbb)
δb

− γ2δb
sinh(δbb)cosh(δbb)

. (50)

On the other hand, the invariant mass (28) acquires the form

m=

√
pc
2

(
1− sinh2(δbb)

γ2δ2b

)
, (51)

which is identically satisfied by (23) and (49).
With these solutions, it is possible to show that metric (47) can be written in the ABBV

form [16]

ds2 =−
(
1− 2m

r̃

)
dτ 2 +

(
1− 2m

r̃

)−1(
1− r0

r̃

)−1
dr̃2 + r̃2dΩ2, (52)

where we used again the definitions (37) and (38). A comparison with (36) shows that the
exterior metric can also be obtained from the interior one through analytical continuation.
This metric does not represent a Schwarzschild spacetime sourced by a central massm, except
for δb ≪ 1 [i.e. m≫ 1 in view of (32)]. Nevertheless, in figure 4 we show the ratio K/Kclassic

as a function of T for both the homogeneous and static regions. For T→−∞ it goes to zero
since Kclassic diverges at the origin. For T→∞ it tends to a constant, equal to 1 for m→∞
and to 5.05 form= 1. Therefore, for an asymptotic observer the curvature is the same as in the
classical Schwarzschild solution, but with an effective central mass screened by the quantum
fluctuations. As Kclassic = 3e−6T/4m4, for m= 1 the screened mass is meff ≈ 0.67. That the

10
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Figure 4. K/Kclassic as a function of T for m= 1 and α= 0.4.

mass measured from infinity does not equal half of the Schwarzschild radius (given by 2m
from (30)) is a general feature of polymer black holes [13]12.

7. Concluding remarks

After three decades of development, LQG is nowadays a solid theory from the foundational
and mathematical points of view, at least solid enough to be considered one of the best can-
didates for a quantum gravity theory, in spite of some loopholes that still await for a satisfact-
ory treatment [2–4]. At the same time, LQG-inspired effective models have been successful in
resolving classical singularities, both at the cosmological and black hole contexts. On the other
hand, finding observational signatures of space-time quantisation or some phenomenological
prediction of such models also constitutes important challenge.

Recently, the possibility that Planck scale primordial and stable black holes were formed
after inflation, composing today the cosmological dark matter, has been explored [23, 24, 29].
It is unlikely that this could be verified in the near future, but it certainly deserves some interest
as a theoretical proposal. On the other hand, its realisation is based on the assumption that the
classical area of extremal horizons remains unchanged at the quantum level. This was indeed
shown to be a good approximation in the realm of the AOS model [17]. The coincidence
between classical horizon areas of Planck scale extremal black holes and eigenvalues of the
LQG area operator also corroborates this assumption.

In the present paperwe have analysed a recently proposed effectivemodel where the horizon
area of a spherically symmetric black hole does not suffer any quantum correction, maintaining
its classical dependence on the black hole mass. Our main goal was twofold. First, an explicit
derivation and solution of the dynamical equations from the ABBV effective Hamiltonian in
AOS variables (see also [30]). Second, the use of the solutions found to evaluate the model
at the Planck scale, in particular the minimal allowed mass and the quantum corrections at
the horizon. The AOS model was originally proposed for the resolution of the singularity of

12 Note, however, that the effective mass defined here does not coincide with the ADM mass, given by MADM =
m+ r0/2 [30].
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macroscopic black holes, where the authors used an approximate solution for the dependence
of the polymerisation parameters on the black hole mass. In [17] an exact solution for these
parameters was found, which permitted the model extension to the Planck scale.

This was also possible in the ABBV case, reinforcing the potential of effective models to
mimic the main features of full LQG at so short scales [31]. With the proportionality parameter
α of the order of unity, it was possible to describe black holes of Planck mass. Even adopting
α= 1 as in the original AOS proposal, the allowed mass can be as small as four Planck masses.
We have also estimated some curvature scalars at the horizon and at the black hole to white
hole transition surface. They do not diverge anywhere, with the Kretschmann scalar presenting
a maximum at the transition surface. Interesting enough, this scalar is comparatively negligible
at the horizon even for a Planck scale mass, corroborating again the possibility of using this
and other effective models at this scale. Finally, the exterior metric was derived through a phase
rotation in the dynamical variables. By computing the Kretschmann scalar we have verified
that, asymptotically, it presents the classical Schwarzschild form, with a central mass screened
by quantum fluctuations.

The possibility of describing Planck scale black holes in the context of effective models
may seem curious in view of the common belief that they are not valid approximations in
the realm of high quantum corrections. Nevertheless, let us remind that, even in the case of
large black holes, quantum fluctuations are large at the transition surface, whose existence is
established with the help of effective models. In this sense, the potential of such models for
describing microscopic black holes should not sound so surprising. Anyway, the discussion of
section 4 suggests an inferior mass limit for the validity of the present model, of the order of
the Planck mass. The Planck scale remains therefore a frontier beyond which a full quantum
gravity approach is unavoidable.

A similar comment is in order on the quantum corrections at the horizon. From figures 2
and 4 we see that, for a Planck mass black hole, the Kretschmann scalar at the horizon is
≈40% lower than in the classical solution. Although significant, this difference is not so large
as one would expect for microscopic horizons. On the other hand, from figure 3 we see that
the curvature on the horizon is negligible when compared to that at the transition surface. As
the Schwarzschild radius is equal to 2m, this suggests again that quantum fluctuations are only
important at trans-Planckian scales.
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