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Abstract This paper contains equations for the motion of linear viscoelastic bodies inter-
acting under gravity. The equations are fully three dimensional and allow for the integration
of the spin, the orbit, and the deformation of each body. The goal is to present good mod-
els for the tidal forces that take into account the possibly different rheology of each body.
The equations are obtained within a finite dimension Lagrangian framework with dissipation
function. The main contribution is a procedure to associate to each spring–dashpot model,
which defines the rheology of a body, a potential and a dissipation function for the body
deformation variables. The theory is applied to the Earth (solid part plus oceans) and a com-
parison between model and observation of the following quantities is made: norm of the
Love numbers, rate of tidal energy dissipation, Chandler period, and Earth–Moon distance
increase.

Keywords Tide · Dissipative forces · Rheology · Planetary evolution

1 Introduction

Themodeling of tidal forces has challenged scientists since ancient times. The current theories
owe a lot to the seminal works of Newton, Laplace, Kelvin and Darwin, among others. In a
simplified way the present research is divided into two groups: one that uses first-principle
physics and sophisticated scientific apparatus to obtain detailed informationparticularly about
the Earth and theMoon tides, for instance Lambeck (1980),Wahr (1981), Yoder et al. (1981),
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Egbert and Ray (2001), and another that looks for simplified phenomenological models
adapted for the use in Celestial Mechanics, Mignard (1979), Ferraz-Mello (2013), Correia
et al. (2014), Efroimsky and Williams (2009), Zlenko (2014), Celletti (1990), Antognini
et al. (2014), Bambusi and Haus (2015), Boué et al. (2016) and Wisdom and Meyer (2016).
Mathematical models within the first group have infinitely many degrees of freedom while
those within the second group have finitely many. The class of models presented here falls
under the second group. The goal is to present a procedure based on physical principles and
within the framework of finite dimensional mechanics for modeling the tidal response of
almost spherical celestial bodies of different rheological behaviors.

This paper builds on our previous paper (Ragazzo and Ruiz 2015), on the dynamics of a
single isolated body. In that paper, the Lagrangian formalism with dissipation function was
used to obtain equations for the dynamics of a deformable body with a simple viscoelastic
response. Our main contribution in this paper is a procedure to include any linear viscoelas-
tic rheology of the bodies into the equations of the previous paper. The equations for the
motion of systems of deformable bodies interacting under gravity are easily obtained from
the Lagrangian and the dissipation functions of the isolated bodies.

As in Ragazzo and Ruiz (2015), our construction relies upon the following hypotheses.

(a) When the body is at rest (no rotational motion) its distribution of mass is spherically
symmetric.

(b) When the body has a rotational motion then its distribution of mass is almost spherically
symmetric in the sense that the level sets of the density function are approximately
ellipsoidal shells of small eccentricities.

(c) The body material has an incompressible behavior under small deformations.
(d) The body internal forces are such that the motion preserves the total angular momentum.

For systems of deformable bodies we must include the hypothesis:
(e) The minimum distance between two bodies is sufficiently large such that the almost

sphericity hypothesis (b) still holds.

The paper is organized as follows. In Sect. 2, starting from the Lagrangian function of
the rigid body, we explain how to derive the kinetic energy of our models of deformable
body. If the deformable body is incompressible or satisfies hypothesis (c) then the trace of
its moment of inertia tensor does not change with time [as shown by Darwin, see Rochester
and Smylie (1974)]. So, the key idea is to write the moment of inertia as I = I◦(I − B),
where I is the identity matrix and I◦ is the trace of the moment of inertia over 3, and take
B, the nondimensional traceless part of the moment of inertia tensor, as the configuration
variables of the deformation part.1 The rest of the modeling consists in finding the kinetic,
the potential, and the dissipation functions associated to B. We remark that B is proportional
to the moment of quadrupole tensor that is the quantity of primary interest in the gravitational
coupling between different bodies.

Section 3 contains our main contribution: a procedure that to each spring–dashpot model
that defines a rheology of a body associates a potential and a dissipation function for the
variable B. This principle, which we call “the Association Principle”, essentially says that
we can exchange the one dimensional displacement x of the spring–dashpot model by the
deformation matrix B.

1 The moment of inertia of a thin ellipsoidal shell about a principal axis is Ia = M(b2 + c2)/3, where M is
the mass of the shell and b and c are semi axis. Hypothesis (b) implies that b = R(1+ εb) and c = R(1+ εc)
where εb � 1 and εc � 1. Therefore Ia = 2M R2(1+ εb + εc + · · · )/3 and after integration over the radius
we obtain that hypothesis (b) is equivalent to |B| � 1.
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Fig. 1 a Wiechert model with the notation used in the text. b Wiechert oscillator that is used in this paper to
model the mechanical behavior of the Earth

In Sect. 4 we present equations of motion for one isolated body and for a system of two
bodies. In order to present explicit equations we suppose that each body has a Wiechert
rheology that is represented by the spring–dashpot system in Fig. 1a. The modifications for
other rheologies are straightforward.

Section 5 contains a full analysis of the tide response equations. These are the equations
for the deformations B of a body (planet) that rotates with constant angular velocity under
the tidal forcing of point masses (satellites) with prescribed orbits around it.

In Sect. 6 we apply the results of the previous section to the Earth. After several attempts,
we propose a model for the variations of B that is equivalent to the oscillator in Fig. 1b. In this
figure: the rheology of the Earth is described by the Wiechert model in Fig. 1a; the spring γ

sets the static flattening of theEarth (in the particular case of theEarthγ = 1.621×10−6 s−2 is
due to the self-gravitational force);2 μ is an inertia coefficient (for a null damping it allows for
the free oscillations of the system); and the tidal and the centrifugal forces are represented
by F(t). According to the association principle each component of the matrix B moves
according to the one dimensional equation associated to this oscillator.

The parameters of the rheology are determined by means of a fit procedure that uses
the Love numbers of the Earth as given in Petit and Luzum (2010) (for the diurnal and
semi-diurnal tides) and Ray and Erofeeva (2014) (for the longer period tides). The result is:

μ = 19.79 (dimensionless), α1 = 3.679 × 10−6 s−2, α2 = 8.879 × 10−7 s−2

η1 = 3.796 × 10+2 s−1, η2 = 6.663 × 10−3 s−1.
(1)

Notice that the first Maxwell element in the Wiechert model, represented by (α1, η1), has
a dashpot much harder than that of the second Maxwell element, represented by (α2, η2).
As a result, under harmonic forcing the spring of the first Maxwell element work almost in
parallel with the spring γ , they give the elastic rigidity of the system, while the dashpot of the
second Maxwell element dissipates most of the energy. Intuitively the first Maxwell element

2 If ΔIi j (spin) denotes the change of the inertia tensor due to the planet spin Ω , a is the planet
volumetric radius, and k◦ is the planet secular Love number, then ΔIi j (spin) = −I◦ Bi j (spin) =
k◦ a5

3G

{
Ωi Ω j − 1

3 |Ω|2δi j

}
[see, for instance, Williams et al. (2001), Eqs. (11)]. Therefore the moment of

inertia strainΔIi j /I◦ is related to themoment of inertia stress σi j =
{
Ωi Ω j − 1

3 |Ω|2δi j

}
as γΔIi j /I◦ = σi j .

This explains the unusual dimension s−2 of the stiffness coefficient γ . The same reasoning explains the unusual
dimensions of the other rheological constants.
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acts as the solid part of the Earth that in combination with gravity sets the elastic behavior
of the Earth (the real part of the Love number) and the second element acts as the ocean
that dissipates most of the energy (the imaginary part of the Love number). Section 6 ends
with a comparison between model and observation of the following quantities: norm of the
Love numbers, rate of tidal energy dissipation, Chandler period, and Earth–Moon distance
increase.

In Sect. 7 we turn our attention to the equations for the motion of one extended body
(planet) and a point mass (satellite). It can be shown that the asymptotic state of any bounded
(in phase space) orbit of this system is synchronous, that is the orbit of the satellite is circular
and lies on the equatorial plane of the planet and the planet spin rate coincideswith the satellite
orbital velocity (Hut 1980). In Sect. 7 we show that close to a synchronous state we can apply
a dimensional reduction to our equations of motion such that the resulting equations become
approximately those of Mignard (1979) (after a redefinition of parameters). In a previous
version of this paper, we applied the same reduction procedure to a system with a different
rheology (associated to a Voigt oscillator with the kinetic energy as in the “Appendix 1”) and
obtained the same result. It seems that, independently of the rheology, near a synchronous
state a dimensional reduction approach always lead to the equations of Mignard after a
redefinition of parameters.

In Sect. 8 we present the main result in this paper: a set of equations for the motion of N
deformable bodies interacting under gravity. The equations are presented in a self-contained
way. Equations similar to ours recently appeared in the paper (Boué et al. 2016). Themethods
they used to derive the equations are very different fromours. In Sect. 8wemake a comparison
of our results to those in Boué et al. (2016).

In the “Appendix 1”we propose a new form for the kinetic energy of the system. It contains
an additional term to the kinetic energy given in Sect. 2. This new form must be used when
the angular momentum of tidal waves is relevant in comparison to the angular momentum
due to the rotation of matter. For the Earth it seems that this additional term is negligible.

In the “Appendix 2” we show that the time average dissipation of energy in our model
is consistent with a formula of Zschau and Platzman (1984) obtained from a continuum
mechanics argument. In the same appendix we also show that the Lagrangian function asso-
ciated to our model corresponds to the time-average of the work done by the primary tidal
force in deforming the planet.

Finally, we remark that several quantities of geometric character, like the planet radius,
gravity acceleration at the “equator”, etc, will appear in this text. This happens because these
quantities are used in the definition of several astronomical numbers as, for instance, the
Love numbers. We stress that all this geometric quantities are meaningless within our theory.
For a body of mass m and mean moment of inertia I◦ = (Tr I)/3, the only “radius” that is
meaningful is the mean moment of inertia radius

RI = √5I◦/(2m) (2)

that coincides with the radius of a homogeneous ball of mass m and moment of inertia tensor
I◦I. For an incompressible deformable body this quantity does not change with time. No
geometric constant appear in our equations of motion.

Remarks about the notation:

• In this paper all matrices are written in boldface except for the identity matrix that is
represented as I.
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• We always denote both a skew-symmetric matrix and its associated vector by the same
letter distinguishing the matrix by the boldface. For instance, angular velocity matrix Ω

and angular velocity vector Ω .
• The norm of a matrix A is given by |A|2 = Tr (AT A) = ∑

i j A2
i j . The square of the

norm of a skew-symmetric matrix is twice the square of the norm of its associated vector:
|Ω|2 = 2|Ω|2.

2 A kinetic energy for the dynamics of an isolated deformable body

One of the greatest achievements in Newtonian mechanics is the Euler’s description of the
motion of a rigid body. A main step in Euler’s reasoning is the use of a frame of reference
“fixed to the body” in which the geometrical and the inertial properties of the body do not
change with time. In this paper we are interested in the motion of a deformable body for
which the choice of a special reference frame, in some sense related to that of Euler, is
crucial. Because of this and also to set a notation we recall Euler’s treatment of the rigid body
problem.

Let K be an orthonormal reference frame (the “body frame”) with its origin at the center
of mass of a rigid body that does not move with respect to K. Let κ be an inertial reference
frame in R

3. A trajectory of any point P in the body is given by

t −→ x(t) + Y(t)P ∈ κ, (3)

where x(t) represents the position of the center ofmass of the body at time t andY(t) : K → κ

is an orthogonal transformation (a rotationmatrix) that determines the orientation of the body
at time t . For each t , the image of the orthonormal frame K by the map (3) is an orthonormal
frame κ t . The family of “moving frames” t → κ t determines the motion of the body.

The velocity of a point P in the body is

v(t) = ẋ(t) + Ẏ(t)P = ẋ(t) + Y(t)Ω(t)P = ẋ(t) + Y(t)[Ω(t) × P],
where Ω(t) = Y−1(t)Ẏ(t) = YT (t)Ẏ(t) : K → K is the angular velocity operator (matrix)
given by

Ω =
⎛
⎝

0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

⎞
⎠ , and Ω =

⎛
⎝

Ω1

Ω2

Ω3

⎞
⎠

is the angular velocity vector in the frame K.
The kinetic energy of the rigid body is

m
|ẋ |2
2

+ Ω · IΩ
2

, (4)

where m is the mass and I : K → K is the inertia operator of the body.
There is an important relation between the moment of inertia matrix I and the moment of

quadrupole matrix Q. In the body frame K these matrices are given by:

Ii j =
∫

(|P|2δi j − Pi Pj )ρ(P)d3P, Qi j =
∫

(3Pi Pj − |P|2δi j )ρ(P)d3P, (5)

from which follows

Ii j = 1

3

(
(TrI)δi j − Qi j

)
.
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This equation shows that the moment of quadrupole tensor is proportional to the traceless
part of the moment of inertia tensor. Using the definitions

I◦ = 1

3
TrI and B = 1

3

Q
I◦

,

we write the above relation as
I = I◦(I − B). (6)

If the body is spherically symmetric then I◦ is itsmoment of inertia with respect to an arbitrary
axis through its center of mass. The matrix B is just a nondimensional form of the moment
of quadrupole matrix. Now, for a body with the center of mass at rest, the kinetic energy (4)
can be written as

L = I◦
Ω · (I − B)Ω

2
= I◦

4

(
|Ω|2 + 2Tr (ΩT BΩ)

)
, (7)

where we used that the norm of a matrix A is given by |A|2 = Tr (AT A) =∑i j A2
i j .

The equations of motion for the rigid body can be obtained from the Lagrangian function
(7) in the following way. The set of orthogonal matrices Y can be considered as the subset
of all 3 × 3 matrices that satisfy the constraints YT Y = I or, equivalently,

fkm(Y) =
∑

l

YlkYlm = δkm .

Let χkm denote the Lagrange multiplier associated to fkm . The equations of motion are
obtained from the extended Lagrangian function

L̂ = L −
∑
k,m

χkm fkm

in the usual way:

d

dt

(
∂L̂

∂Ẏi j

)
− ∂L̂

∂Yi j
=
(

d

dt

(
∂L̂

∂Ẏ

))

i j
−
(

∂L̂

∂Y

)

i j
= 0.

Using that fkm = fmk , which implies χkm = χmk , and

∑
k,m

χkm
∂ fkm

∂Yi j
= 2(Yχ)i j ,

we get that the constrained Euler–Lagrange equations associated to Y are

d

dt

(
∂L

∂Ẏ

)
− ∂L

∂Y
+ 2Yχ = 0.

Since χ is symmetric, in order to eliminate the Lagrangian multipliers of this equation it is
enough to multiply it by YT and to take its skew-symmetric part to obtain

(
YT
(

d

dt

(
∂L

∂Ẏ

)
− ∂L

∂Y

))
−
(

YT
(

d

dt

(
∂L

∂Ẏ

)
− ∂L

∂Y

))T

= 0. (8)

Substituting into this equation the expression for L given in Eq. (7) we obtain

Ω̇ + Ω̇B + BΩ̇ + ΩḂ + ḂΩ + [Ω2, B] = 0, (9)

where [A, B] = AB − BA is the usual matrix commutator.
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Equation (9) can be written in a more familiar form if we use the conservation of angular
momentum. Consider the action SO(3) × SO(3) → SO(3) given by (U, Y) → UY. The
Lagrangian function L̂ is invariant under this action. So, L̂ is invariant under the action
of any one dimensional subgroup of symmetries (s, Y) → exp(sξ)Y, where ξ is a skew-
symmetric matrix and s ∈ R. Noether’s theorem [see, for instance, Theorem 2 and Lemma
5 in Ragazzo and Ruiz (2015)] implies that

∑
i, j,k

∂L

∂Ẏi j
ξikYk j

is a conserved quantity. Since this holds for any skew-symmetric matrix ξ we obtain that the
skew-symmetric part of ( ∂L

∂Ẏ
)YT , namely

� =
(

∂L

∂Ẏ

)
YT − Y

(
∂L

∂Ẏ

)T

(10)

is a conserved quantity. A simple computation shows that

� = Y L YT where: L = I◦(Ω + BΩ + ΩB),

� is the angular momentum matrix in the inertial frame κ , and L is the angular momentum
matrix in the body frame K. Therefore, Eq. (9) can be written in the usual way as

L̇ + [Ω, L] = 0

that is equivalent to �̇ = 0.
While the motion of a rigid body has six degrees of freedom, that of a deformable body

has infinitely many. As a consequence, the motion of a deformable body is modeled by
partial differential equations, which are difficult to solve. Simplifications of these equations
were proposed by several authors including ourselves (Ragazzo and Ruiz 2015). The results
obtained in that article can be rephrased in the following way.

The equations for the motion of a deformable body could be derived from the Lagrangian
function (7) if the functions t → I◦(t) and t → B(t)were known. The supposed incompress-
ibility of the body under small deformations implies that I◦ is constant in time [as shown by
Darwin, see Rochester and Smylie (1974)]. So, the remaining time dependent unknown is
B, which is symmetric and traceless and therefore has five degrees of freedom. The central
idea in Ragazzo and Ruiz (2015) and in this paper is to use physical principles to write a
Lagrangian function depending on the variables (B, Ḃ), the deformation Lagrangian func-
tionLD . Then the differential equations for (Y, B) can be derived from aLagrangian function
that is the sum of LD and the function in Eq. (7). Dissipation of energy is being neglected.

In Ragazzo and Ruiz (2015) we simply chose LD = I◦
4

(
μ|Ḃ|2 − γ |B|2) (with μ = 1).

The constants I◦μ > 0 and I◦γ > 0 represent an effective inertia and an effective rigidity,
respectively, for the motion of B (μ is dimensionless while γ has dimension s−2). The
Lagrangian function obtained with this choice is

(B, Ḃ,Ω) → I◦
4

(
|Ω|2 + 2Tr (ΩΩT B)

)
+ I◦

4

(
μ|Ḃ|2 − γ |B|2) , (11)

which is the Lagrangian function of a rigid body plus the Lagrangian function of a harmonic
oscillator for B. The differential equations obtained from this Lagrangian function are

L̇ + [Ω, L] = 0 where: L = I◦(Ω + BΩ + ΩB)

μB̈ + γ B = −Ω2 + 1

3
(TrΩ2)I. (12)
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Integrating these equations we obtain B and Ω and further integrating Ẏ = YΩ we obtain
the orientation matrix Y(t) : K → κ . Notice that the expression for the angular momentum
can be written as L = IΩ . A “body-frame” K with the property that the angular momentum
is given by L = YT � = IΩ is called a Tisserand’s frame (see Munk and MacDonald 1961).
So, K is a Tisserand’s frame.

In Eq. (12), the constant γ /μ is the square of the angular frequency of free oscillations
of the inertia tensor. The constant γ (s−2) is inversely proportional to the secular Love
number. Indeed, the equilibrium deformation of a body due its own rotation is set by the
dimensionless secular Love number k◦ (Lambeck 1980, p. 29). The corresponding change
in the inertia coefficients are [see, for instance, Williams et al. (2001), Eqs. (11)]

ΔIi j (spin) = −I◦ Bi j (spin) = k◦
a5

3G

{
ΩiΩ j − 1

3
|Ω|2δi j

}
, (13)

where: a is the volumetric radius of the body and ΔIi j (spin) means the change of the inertia
tensor due to the planet spin Ω . From Eq. (12), the equilibrium matrix B for a body rotating
steadily with angular velocity Ω is given by

B = − 1

γ

{
Ω2 − 1

3
(TrΩ2)I

}
.

This equation compared with Eq. (13) leads to

γ = 3I◦G

a5

1

k◦
. (14)

As an example consider a mass m of homogeneous inviscid liquid under self-gravity. At
rest the liquid has a spherical shape and moment of inertia I◦ = 0.4ma2, where a is the
radius of equilibrium. Notice that in this case the geometric radius a coincides with the mean
moment of inertia radius RI defined in Eq. (2). For a homogeneous fluid body in hydrostatic
equilibrium it has been shown by Kelvin that k◦ = 3/2 (Munk and MacDonald 1961, p. 26).
From Eq. (14)

γ = γ f = 2I◦G

(
5

2

I◦
m

)−5/2

= 2I◦G

R5
I

. (15)

The square of the angular frequency of free oscillations of the spherical mass of fluid is
4
5Gm/a3 = 2I◦G/a5 [Lamb 1932, paragraph 262 Eq. (10)]. So, γ /μ = γ f which implies
that for a homogeneous body made of a perfect fluid the nondimensional inertia constant μ
is

μ f = 1. (16)

This is the same value obtained for the pseudo-rigid body in Ragazzo and Ruiz (2015).
The Lagrangian function (11) is composed by the potential energy term I◦γ ‖B‖2/4 and

the remainder kinetic energy. The potential energy term is clearly not enough to describe the
complex mechanical behavior of realistic bodies. In the next section we will fix this problem
by adding new terms to this potential energy and introducing dissipation of energy by means
of a Rayleigh dissipation function. The kinetic energy in the Lagrangian function (11) seems
to be suitable for the majority of the celestial bodies since most of their rotational kinetic
energy is dominated by the rotation of matter. Nevertheless, there may occur situations where
“tidal waves” (a motion not associated to mass displacement) may give a non-negligible
contribution to the rotational kinetic energy of the body. In this case a new term must be
added to the kinetic energy in the Lagrangian function (11). This exceptional additional term
is presented in the “Appendix”.
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3 Rheology: potential energy and dissipation function

This section is divided into two parts. In the first we present some basic elements of linear
viscoelasticity. In the second we present our “association principle” that allows for the tran-
sition from one dimensional rheological models to potential and dissipation functions for
B. We remark that an “association principle” is also presented in equation (10) in Correia
et al. (2014) and in Eq. (3) in Boué et al. (2016) using a physical integral that relates the
linear deformation with the potential. It is not clear that both “association principles” are
fully equivalent (see footnote 3).

3.1 Linear viscoelastic spring–dashpot models

The viscoelastic response of a linear material is analogous to the mechanical response of a
one dimensional spring–dashpot system (Bland 1960). The two simplest mechanical systems
for viscoelastic behavior are the Maxwell element and the Voigt element shown in Fig. 2.
From these elements complex models are constructed as those shown in Fig. 3. Each model
is associated to a force-extension relation. The force is represented by λ and the extension
by x . For instance, for the Wiechert model in Fig. 1a the force-extension relation is (Bland
1960)

λ̈ + c1λ̇ + c2λ = c3 ẍ + c4 ẋ (17)

Fig. 2 The Maxwell (left) and
the Voigt (right) elements

Fig. 3 Four different models that are equivalent. The first, from left to right, is the Burgers model. The second
is the Wiechert model
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where
c1 = α1

η1
+ α2

η2
, c2 = α1α2

η1η2
, c3 = α1 + α2, c4 = (η1 + η2)

α1α2

η1η2
. (18)

All the four models in Fig. 3 lead to the same force-extension relation in Eq. (17) and
therefore they are all equivalent from the dynamical point of view (Bland 1960).

To each spring–dashpot model is associated a one dimensional oscillator. The differential
equation for the motion of the oscillator can always be obtained from a Lagrangian function
plus a Rayleigh dissipation function. Our goal is to determine these two functions. In the
following we explain how to obtain the Lagrangian and the dissipation functions for the
oscillator in Fig. 1b, which we call the Wiechert oscillator. Notice that an additional spring
with elastic constant γ was added to the Wiechert model in Fig. 1a. In the next section this
extra spring will be associated to the self-gravity of the body, it sets an equilibrium position
for the system under a constant force. The same procedure can be applied to any other spring–
dashpot model. We remark that some models, as for instance the Voigt model in Fig. 2, have
an equilibrium spring due to the rheology. In this case the final equilibrium is set by the
addition of the rheological and the gravitational springs working in parallel. The resulting
stiffness coefficient can still be denoted by γ .3

For the Wiechert oscillator in Fig. 1b we first write the Lagrangian function with five
configuration variables x, x1, x̃1, x2, x̃2. The variable x represents the overall extension of
the system. The spring γ and each Maxwell arm must undergo the same extension x since
they are placed in parallel. The extension of the first Maxwell arm must be split into the
extension x1 of the spring α1 and the extension x̃1 of the dashpot η1, so x = x1 + x̃1. The
same analysis holds for the second Maxwell arm. The two constraints x = x1 + x̃1 and
x = x2 + x̃2 can be handled using two Lagrangian multipliers λ1 and λ2 that represent the
force acting on eachMaxwell arm. This procedure also works in the presence of a dissipation
function [see, for instance, Sect. 2.1 in Ragazzo and Ruiz (2015)]. The result is the following

L = μ
ẋ2

2
− γ

x2

2
− α1

x21
2

− α2
x22
2

− λ1(x − x1 − x̃1) − λ2(x − x2 − x̃2)

D = η1

˙̃x21
2

+ η2

˙̃x22
2

x = x1 + x̃1

x = x2 + x̃2. (19)

A time-dependent external force F(t) can be added to the system adding the term x F(t)
to L . The Euler–Lagrange equations with dissipation function, which for the x variable is
d
dt

∂L
∂ ẋ − ∂L

∂x + ∂D
∂ ẋ = 0, are

μẍ + γ x + λ1 + λ2 = F(t), α1x1 = λ1, α2x2 = λ2, η1 ˙̃x1 = λ1, η2 ˙̃x2 = λ2. (20)

Using the constraints these equations can be written as

μẍ = −γ x − λ1 − λ2 + F(t)

λ̇1 = − 1

τ1
λ1 + α1 ẋ, where τ1 = η1

α1

λ̇2 = − 1

τ2
λ2 + α2 ẋ, where τ2 = η2

α2
. (21)

3 In Boué et al. (2016) the self-gravitational spring is implicit in their “association principle” [see their Eq.
(6)]. It is not clear that the “association principle” in that reference is fully equivalent to ours. It certainly is in
the case of a Maxwell rheology as shown in Sect. 8.
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The constants τ1 and τ2 are the “relaxation times” of the material. The variables λ1 and λ2
have units of force. They represent the force acting upon each Maxwell element. At a given
time the external force F(t) splits into the inertial force μẍ and the elastic force γ x , which
do not dissipate energy, and λ1 and λ2, which do dissipate energy. Equation (21) can also be
written as

μẍ + γ x + λ = F(t)

λ̈ + c1λ̇ + c2λ = c3 ẍ + c4 ẋ,
(22)

where λ = λ1 + λ2.

3.2 The association principle for the potential and the dissipation functions

The theory of linear viscoelasticity aims at the description of rheological behavior of several
materials, from crystalline solids to complex polymers. The material elastic constants and
relaxation times can be measured by means of laboratory experiments. In principle, it is not
clear that the same spring–dashpot models used in laboratory rheology can give good results
when applied to some very complex celestial bodies like, for instance, the Earth. The fact
is that these simple models have been used extensively to describe the rheology of planets
and satellites [see, for instance, Henning et al. (2009)]. In this case the model constants are
estimated using either astronomical data or molecular constants of some materials like ice,
granite, etc. The following association principle establishes a way of relating a rheology
related to a spring–dashpot model to a rheology for the nondimensional “deformation” ten-
sor B. We state the principle using the spring–dashpot system in Fig. 1b as a model. The
generalization to other spring–dashpot systems is immediate.

Rheology Association Principle: the Lagrangian and dissipation functions for B that are
associated to those functions for the one-dimensional spring–dashpot model in Fig. 1b are
obtained after replacing: x for B, xk for Bk , x̃k for B̃k , and λk for Λk ; where Bk , B̃k , and
Λk , k = 1, 2, are symmetric traceless matrices. Both the Lagrangian and the dissipation
functions for B must be subsequently multiplied by I◦/2. The result is (compare to equation
Eq. (19)):

LB = I◦
4

{
μ|Ḃ|2 − γ |B|2 − α1|B1|2 − α2|B2|2

}

− I◦
2

{
Tr {Λ1(B − B1 − B̃1)} + Tr {Λ2(B − B2 − B̃2)}

}

D = I◦
4

{
η1| ˙̃B1|2 + η2| ˙̃B2|2

}

B = B1 + B̃1

B = B2 + B̃2. (23)

Again a time-dependent external force matrix F(t) can be added to the system adding the
term I◦

2 Tr(F(t)B) toL .4 The equations of motion can be computed as in the “Appendix 1”,
the result is analogous to that in Eq. (21):

4 The term F (and alsoΛ j ) is being called “force” although it has dimension s−2. It could be more appropriate
to call it by “moment of inertia stress” as in the footnote 2 as well as to call B by “moment of inertia strain”.
For simplicity we will keep using the words force and deformation for F and B, respectively.
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μB̈ = −γ B − Λ1 − Λ2 + F(t)

Λ̇1 = − 1

τ1
Λ1 + α1Ḃ, where τ1 = η1

α1

Λ̇2 = − 1

τ2
Λ2 + α2Ḃ, where τ2 = η2

α2
. (24)

Again the constants τ1 and τ2 are the “relaxation times” of the system and, at a given time,
the external force F(t) splits into the inertial term μB̈ and the elastic force γ B, which do
not dissipate energy, and Λ1 and Λ2, which do dissipate energy. Equation (24) can also be
written as

μB̈ + γ B + Λ = F(t)

Λ̈ + c1Λ̇ + c2Λ = c3B̈ + c4Ḃ, (25)

where c1, c2, c3, c4 are the constants in Eq. (18) and Λ = Λ1 + Λ2.
We remark that our association principle relies upon the isotropy of space and upon the

incompressibility hypothesis (c) given in the Introduction. Indeed, consider the quadratic
function B →∑

i jkl Γi jkl Bi j Bkl , where Γi jkl is constant. The isotropy of space implies that
Γi jkl is a linear combination of the three tensors δi jδkl , δikδ jl , and δilδ jk [see, for instance,
Kearsley and Fong (1975)]. Since B is symmetric and traceless, Γi jkl can be taken as a
multiple of δikδ jl . Therefore, the space of quadratic isotropic functions over the matrices B
is one dimensional exactly as the space of quadratic functions over R. This allows for the
replacement of the scalar variable x by the matrix variable B in the Lagrangian function
(19). The same thing holds for the variables Ḃ, B1, etc. The incompressibility hypothesis
(c) implies that the trace of the inertia tensor I is constant or, equivalently, I◦ is constant. If
the body material were compressible then I◦ would be variable and the association principle
would have to be modified.

4 One and two-body systems

Equations of motion for systems of deformable bodies interacting under gravity can be easily
obtained from the Lagrangian and dissipation functions given in the previous sections.

At first, consider an isolated body and an inertial reference frame where the center of mass
of the body is at rest. In the body frame K the kinetic energy has a term due to its rotation
and another due to its deformation. In this paper two expressions for the rotational part are
proposed: one given in Sect. 2 and another given in the “Appendix 1”. Here we only consider
that given in Sect. 2 that is

I◦
4

(
|Ω|2 + 2Tr (ΩΩT B)

)
. (26)

The kinetic energy of deformation is just μI◦
4 |Ḃ|2 and is contained in the Lagrangian function

LB that depends on the rheology of the body. For the rheology associated to the Wiechert
oscillator inFig. 1b the expression for theLagrangian functionLB and thedissipation function
D are given in Eq. (23). In this case, the Lagrangian function of the isolated body is given by

L = I◦
4

(
|Ω|2 + 2Tr (ΩΩT B)

)
+ LB. (27)

The equations of motion are obtained from the Euler–Lagrange equations with dissipation
function by means of the same procedure as in the “Appendix 1” and in Sect. 2. The result
is:
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μB̈ + γ B = −Ω2 + 1

3
Tr (Ω2)I − Λ

Λ̈ + c1Λ̇ + c2Λ = c3B̈ + c4Ḃ

Ω̇ + (BΩ̇ + Ω̇B) = −(ḂΩ + ΩḂ) + [B,Ω2]. (28)

The Lagrangian function for a system of two bodies under gravitational interaction is
easily obtained from the Lagrangian function (27) for an isolated body. Let mi (mass), I◦i ,
γi , μi , etc, i = 1, 2, be the physical parameters of body one (i = 1) and body two (i = 2).
Let κ be an inertial frame of reference and x1 and x2 be the positions of bodies one and two,
respectively, with respect to κ . The configurational degrees of freedom of the body i are xi ,
Yi (or Ki ) and Bi and their associated velocities are ẋ i , Ω i and Ḃi , respectively. Suppose
that hypothesis (e) in the Sect. 1 is verified, namely, the two bodies never get too close. Then
the gravitational energy of interaction is approximately given by

−Gm1m2

|x | − 3G

2|x |5
{

m2I◦1[(Y1T x) · B1(Y1T x)] + m1I◦2[(Y2T x) · B2(Y2T x)]
}

,

where we used x = x1 − x2. Therefore, adding the Lagrangian functionsL1 andL2 of each
isolated body, given in Eq. (27), to the point mass kinetic energy and subtracting the potential
energy of interaction we obtain the Lagrangian function of the system:

L = m1
|ẋ1|2
2

+ m2
|ẋ2|2
2

+ L1 + L2 + Gm1m2

|x |
+ 3G

2|x |5
{

m2I◦1[(Y1T x) · B1(Y1T x)] + m1I◦2[(Y2T x) · B2(Y2T x)]
}
. (29)

The dissipation function of the system is just the sum of the dissipation function of each
body:

D = D1 + D2 (30)

where Di is the dissipation function of body i .
There are two types of two-body problems: two extended deformable bodies (I◦1 > 0 and

I◦2 > 0) and one extended deformable body plus one point mass (I◦1 > 0 and I◦2 = 0).
We focus in the second problem, for which the Lagrangian function can be simplified in the
following way. Since there are no more variables B2, Y2 (or K2), we can omit the index 1
from I◦1, γ1, η1, Y 1 (or K1), Ω1, and B1. We keep the indices in x1, x2, m1, and m2. Let xcm

denote the position of the center of mass of the bodies and let κ be an inertial reference frame
where xcm = 0 is at rest. Let q = YT x be the relative position in the rotating reference frame
K. Then, in terms of the configuration variables (q, Y) the Lagrangian function becomes

L = m
|q̇ + Ωq|2

2
+ I◦

4

(
|Ω|2 + 2Tr (ΩΩT B)

)
+ LB

+Gm1m2

|q| + 3Gm2I◦
2|q|5 q · Bq, (31)

where m = m1m2/(m1 + m2) is the reduced mass and LB is the Lagrangian function
associated to B for the extended body. Notice that Y does not appear inL . The equations of
motion obtained from the Lagrangian function in Eq. (31) and from the dissipation function
in Eq. (30) are
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Ḃ = U

μU̇ = −γ B − Λ1 − Λ2 − Ω2 + 1

3
Tr (Ω2)I + 3Gm2

|q|5
(

q ⊗ q − |q|2
3

I

)

α−1
1 Λ̇1 = −η−1

1 Λ1 + U

α−1
2 Λ̇2 = −η−1

2 Λ2 + U

Ω̇ = −(BΩ̇ + Ω̇B) − (UΩ + ΩU) + [B,Ω2] + 3Gm2

|q|5 [q ⊗ q, B]

q̇ = −Ωq + u

u̇ = −Ωu + G M

{
− 1

|q|3 q − 15

2

I◦
m1

1

|q|7 (q · Bq)q + 3
I◦
m1

1

|q|5 Bq

}
. (32)

The total angular momentum is given by

L = I◦(Ω + BΩ + ΩB) + m(u ⊗ q − q ⊗ u). (33)

The Lagrangian function for a system of N > 2 bodies under gravitational interaction is
easily obtained from the Lagrangian functions (27) of each isolated body as in the case of
two bodies. The dissipation function is again the sum of the dissipation functions of each
isolated body. The equations of motion are presented in the Sect. 8.

5 Frequency response to tidal forcing

In this sectionwe study the tides on aplanet inducedby amovingpointmass,which represents,
for instance, a satellite. The goal is to obtain equations that relate the parameters of the
rheology to the planet Love numbers. We suppose that the planet rotates with steady angular
velocity. Let K = (e1, e2, e3) be a frame that corotates with the planet in which the angular
velocity of the planet is Ω3e3. In this reference frame the trajectory of the satellite is given
by t → q(t). Let the mass of the planet and the satellite be m1 and m2, respectively. Suppose
that the rheology of the planet is that of the Wiechert oscillator in Fig. 1b. Then from the
Lagrangian and the dissipation functions in Eq. (23) and the Lagrangian function (31) we
obtain that B satisfies Eq. (25) with F(t) = C + A(t), where

C = −Ω2 + 1

3
(TrΩ2)I (34)

is a time independent matrix due to the planet rotation and

A(t) = 3Gm2

|q|5
(

q ⊗ q − |q|2
3

I

)
(35)

is a time dependent matrix that corresponds to the primary tidal force due to the point mass.
Since Eq. (25) is linear the effect of the forces C and A can be studied independently. So,
neglecting the steady force C, the tide response equations become

μB̈ = −γ B − Λ + A(t)

α−1
1 Λ̇1 = −η−1

1 Λ1 + Ḃ,

α−1
2 Λ̇2 = −η−1

2 Λ2 + Ḃ, (36)
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where Λ = Λ1 + Λ2 or, equivalently,

μB̈ + γ B + Λ = A(t)

Λ̈ + c1Λ̇ + c2Λ = c3B̈ + c4Ḃ,
(37)

where c1, c2, c3, c4 are the constants in Eq. (18).

5.1 Frequency domain analysis of Eq. (36) and Love numbers

Any quadratic function x ∈ R
3 → (x · Mx), where M is a traceless symmetric matrix, is a

harmonic function and therefore can be written as:

(x · Mx) = |x |2 Real
⎧⎨
⎩

2∑
j=0

m j N j P j
2 (cos θ)ei jφ

⎫⎬
⎭ ,

where P j
2 are the associated Legendre functions

P0
2 (cos θ) = 3

2
cos2 θ − 1

2
, P1

2 (cos θ) = 3 sin θ cos θ, P2
2 (cos θ) = 3 sin2 θ,

N j are normalizing coefficients

N j = (−1) j

√
5

4π

(2 − j)!
(2 + j)! , j = 0, 1, 2 (38)

and

x = |x |(sin θ cosφ, sin θ sin φ, cos θ).

The functions

Y j
2 (θ, φ) = N j P j

2 (cos θ)ei jφ, j = 0, 1, 2,

are fully normalized complex spherical harmonics of degree 2 [see, for instance, Wahr
(1995)]. So, in the same way to every skew-symmetric matrix is associated a 3-dimensional
real vector, to every symmetric traceless matrix is associated a 3-dimensional vector

M −→ (m0, m1, m2) ∈ R × C
2, (39)

where the numbers m0, m1, m2 are related to the elements Mi j of the matrix M as:

N0 m0 = M33, N1 m1 = 2

3
(M13 − M23i), N2 m2 = 1

3
(ζ − M12i), (40)

where ζ = M11 + M33/2 = −(M22 + M33/2). This decomposition implies that M can be
written as the sum of three matrices

M =
⎛
⎝

− M33
2 0 0
0 − M33

2 0
0 0 M33

⎞
⎠+

⎛
⎝

0 0 M13

0 0 M23

M13 M23 0

⎞
⎠+

⎛
⎝

ζ M12 0
M12 −ζ 0
0 0 0

⎞
⎠ (41)

that are orthogonal with respect to the inner product (M · N) = Tr (MT N) and such that
their associated quadratic functions are proportional to the spherical harmonics P0

2 (cos θ),
Real{P1

2 (cos θ)eiφ}, and Real{P2
2 (cos θ)ei2φ}, respectively.
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If we apply the decomposition (39) to

A → (a0, a1, a2) and B → (b0, b1, b2)

then we can write the primary and the secondary potentials as

Ψ (x) = −1

2
(x · Ax) = −|x |2

2
Real

⎧⎨
⎩

2∑
j=0

a j Y
j
2 (cos θ, φ)

⎫⎬
⎭ (42)

and

Ψ ′(x) = −3

2

GI◦
|x |5 (x · Bx) = −3

2

GI◦
|x |3 Real

⎧⎨
⎩

2∑
j=0

b j Y
j
2 (cos θ, φ)

⎫⎬
⎭ , (43)

respectively. We remark that the parameters b j in the secondary potential (43) are related to
the normalized complex Stokes coefficients C2 j − i S2 j [see, for instance, Petit and Luzum
(2010), Eq. (6.1)] and to the unnormalized Stokes coefficients C2 j − i S2 j as

b j = 2

3

m1R2
e

I◦
(−1) j

√
4π(2 − δ j0)(C2 j − i S2 j ) = 2

3

m1R2
e

I◦
1

N j
(C2 j − i S2 j ), j = 0, 1, 2

(44)
where N j are those in Eq. (38) and δ j0 = 1 if j = 0 and δ j0 = 0 if j 	= 0.

The complex coefficients a j (t) can be Fourier expanded as

a j (t) =
∑

p

âpe
i(ωpt+ϕp),

where ωp and ϕp are the frequency and phase of the pth frequency component and âp > 0
is the amplitude. If the satellite orbital frequencies are much smaller than the planet spin rate
Ω3 then ωp ≈ jΩ3. So, j = 0 corresponds to long period tides, j = 1 to diurnal tides,
and j = 2 to semi-diurnal tides. The difference jΩ3 − ωp is a multiple of one of the orbital
frequencies of the satellite.

The linear tide response of the planet implies that for each term of the primary complex
potential of the form

− |x |2
2

Real
{

âei(ωt+ϕ)N j P2 j (cos θ)ei jφ
}

= Real{Ψ c
(|x |, θ, φ, t)}, (45)

there corresponds a term of the secondary potential of the form

Ψ ′(|x |, θ, φ, t) = −3

2

GI◦
|x |3 Real

{
b̂ei(ωt+ϕ)N j P2 j (cos θ)ei jφ

}
.

Let a be the radius of the planet. Then the complex Love number k(ω, j) is defined as

Ψ ′(|x | = a, θ, φ, t) = Real
{

k Ψ
c
(|x | = a, θ, φ, t)

}
,

that implies

k(ω, j) = 3I◦G

a5

b̂

â
. (46)

The Love numbers can be estimated from observations of the primary and secondary tidal
potentials.
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Let W be the time-average dissipation of tidal energy and J be the time-average tidal
balance of energy, as defined in “Appendix 2”. From Eqs. (46), (99), and (102), we obtain
that, for a term of the primary complex potential of the form (45),

J = 5

32π

a5

G
â2 Real k , W = − 5

32π

a5

G
â2 ω Imag k. (47)

From this relations it is possible to obtain a new expression for the body’s specific dissipation
function (or quality factor) Q−1 = −Imag (k)/Real(k),5

Q−1(ω, j) = − Imag (k)

Real(k)
= W

ωJ
. (48)

If we apply the decomposition (39) also to Λ → (λ0, λ1, λ2), then we can rewrite Eq.
(37) as

μb̈ j + γ b j + λ j = a j (t)

λ̈ j + c1λ̇ j + c2λ = c3b̈ j + c4ḃ j j = 0, 1, 2.
(49)

As before a j (t) can be Fourier expanded. For a term of the form a j (t) = âei(ωt+ϕ), there
corresponds a solution of the form b j (t) = b̂ei(ωt+ϕ), λ j (t) = λ̂ei(ωt+ϕ), such that â and b̂
are related as (

−ω2μ + γ + c3ω2 − c4ωi

ω2 − c1ωi − c2

)
b̂ = â. (50)

This equation and Eq. (46) imply that for the rheology of the Wiechert oscillator in Fig. 1b
the Love number depends on the frequency as

k(ω) = 3I◦G

a5

(
−ω2μ + γ + c3ω2 − c4ωi

ω2 − c1ωi − c2

)−1

. (51)

This equation can also be written as
(

3I◦G

a5k(ω)
+ ω2μ − γ

)
(−ω2 + c1iω + c2) + c3ω

2 − c4iω = 0, (52)

which is a convenient form for the fit of the parameters c1, c2, c3, c4.

5.2 The case of a circular orbit on the equatorial plane of the planet: dissipation
of energy and phase lag

In this section we obtain the tide response of a planet under the tidal forcing of a satellite on
the equatorial plane with circular orbit of radius r . In the inertial frame the orbital angular
velocity of the satellite is ne3. So,

q(t) = r cos((n − Ω3)t)e1 + r sin((n − Ω3)t)e2 = r cos(σ t)e1 − r sin(σ t)e2, (53)

where σ = Ω3 − n (in general σ > 0). Using the expression for A in Eq. (35) and Eqs. (41)
and (40) we obtain:

a0 = − 1

N0

Gm2

r3
, a1 = 0, a2 = 1

N2

Gm2

2r3
ei2σ t = âei2σ t . (54)

5 This definition of Q is due to Goldreich (1963). It is valid when the argument of k is negative and small,
which is usually the case. For a discussion on other definitions of Q see Efroimsky (2012).
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Fig. 4 Tidal phase-lag ψ with
respect to the phase of the tidal
force. The figure represents the
motion of the satellite (Moon)
from the point of view of an
observer fixed to the planet
(Earth). At t = 0 the observer is
aligned with the satellite. The
horizontal axis is fixed with
respect to the Earth at a certain
longitude

m2

σ t

r ψ

ψtσ

The time independent term a0 is responsible for an additional flattening of the planet (the
permanent tide). The time-varying tide is due to the semi-diurnal mode a2. It implies a tidal
response of the form

b2(t) = b̂ei2σ t = |b̂|ei2(σ t−ψ), where ψ = −1

2
arg b̂.

The angle ψ is the so called phase lag of the tide illustrated in Fig. 4.
From Eq. (46), b̂ = kâ (a5/3I◦G), where k is the Love number associated to j = 2 and

to the angular frequency ω = 2σ , that implies arg b̂ =arg k.
For the Wiechert rheology, from Eqs. (47), (48), (38), (51), and (18):

W = 9I◦
(

Gm2

2r3

)2
ω2

(
α1α2
η1η2

)2
(η1 + η2) + ω2

(
α2
1

η1
+ α2

2
η2

)

[(−μω2 + γ )(ω2 − c2) + c3ω2]2 + ω2[c4 + c1(−μω2 + γ )]2 ,

(55)
and

Q−1 = tan(2ψ) =
ω
(

α1α2
η1η2

)2
(η1 + η2) + ω3

(
α2
1

η1
+ α2

2
η2

)

(−μω2 + γ )[(ω2 − c2)2 + c21ω
2] + ω2[c3(ω2 − c2) + c1c4]

, (56)

where in both equations

ω = 2σ.

6 The Earth as a prototype

The rheology of the Earth is quite complex. The oceans are responsible for approximately
95% of the tidal energy dissipation (Munk 1997; Egbert and Ray 2001). The Love numbers
of the diurnal tides have a strong dependence on the frequency [see, for instance, Agnew
(2007), paragraph 3.06.3.2.1]. By the other hand the Earth is the most studied celestial body
and there are plenty of geophysical and astronomical data available. For these reasons we
chose the Earth as a prototype. This section is divided into the following. At first we present
some Love numbers which were estimated using experimental and observational data. Then
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we give a procedure to fit the parameters of the Wiechert model to the data. This procedure
is also convenient when working with the kinetic energy given in the “Appendix 1”. Finally,
we compare some quantities obtained from our model with those for the real Earth. We use
the following values for various geophysical constants (most of them are taken from Yoder
(1995)):

G = 6.673 × 10−11 m3 kg−1 s−2,
m1 = 5.9736 × 1024 kg (mass of the Earth),
I◦ = 8.01875022 × 10+37 kgm2 (mean moment of inertia of the Earth),
RI = √

5I◦/(2m1) = 5793 × 103 m [mean moment of inertia radius, Eq. (2)],
a = 6371.01 × 103 m (volumetric mean radius of the Earth),
Re = 6378.14 × 103 m(equatorial radius of the Earth),
Ω3 = 7.292115 × 10−5 rad s−1 (mean rotation rate of the Earth),
J2 = −C20 = 0.0010826265 (dynamic flattening of the Earth),
g = Gm1/a2 = 9.82022 m s−2 (nominal acceleration of gravity on Earth),
ge = 9.780 m s−2 (acceleration of gravity on Earth at the equator),

6.1 The Love numbers for the principal tidal constituents and nominal Love
numbers

Our main reference for the Love numbers of the Earth is Petit and Luzum (2010). In this
reference, algorithms are presented for the computation of the Love numbers ks for the solid
part of the Earth and ko for the oceans. The Love numbers k for the Earth are obtained adding
both, k = ks + ko. The Love numbers for the diurnal and semi-diurnal tides in Table 1 were
obtained from Petit and Luzum (2010).6 The Love numbers k for the longer-period tides in
Table 2 were taken from Table 3 of Ray and Erofeeva (2014). Our choice of tidal constituents
is based on Table 1 of Wahr (1995), from where we took the amplitudes and periods. The
amplitude H in Tables 1 and 2 is related to our amplitude â as

â = 2

a2 H,

which follows from the comparison of Eq. (1) in Wahr (1995) with our Eq. (42).
Thewaywewill fit the parameters of theWiechertmodel in the next section requires at first

the definition of nominal diurnal and semi-diurnal Love numbers. Nominal Love numbers
for the solid Earth tides are given in Petit and Luzum (2010), where they were described as:
“The choice of these nominal values has been made so as to minimize the number of terms
for which corrections will have to be applied”. Notice that the Love numbers of the solid
Earth of some tidal diurnal constituents vary considerably from their nominal values while
for the semi-diurnal constituents this variation is very small. In order to define nominal Love
numbers for the Earth we still need to define nominal Love numbers for the ocean tides. We
do it by means of a weighted average that preserves the overall time-average dissipation of
tidal energy W and the time-average tidal balance of energy J . The basic formulas used in

6 Notice that the Love numbers ko in Table 1 have negative real part. This and Eq. (47) imply that J < 0 for
the ocean tides. Since J gives the time-average balance of kinetic and potential energy, see footnote in the
Sect. 1, we conclude that for the oceans the inertia cannot be neglected (kinetic energy only exists when there is
inertia). We remark that the presence of an inertial term proportional toμ in our model changes completely the
behavior of the Love numbers at high frequencies. So, if we compare the imaginary part of the Love number
in Eq. (51) with that for the Burgers model in Table 1 of Henning et al. (2009), we conclude that they are not
the same, though the Burgers model and the Wiechert model are equivalent. The difference is the inertia. If
we make μ = 0 in Eq. (51), then our expression coincides with that in Henning et al. (2009) after redefinition
of parameters.
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Table 2 The amplitudes and notation are as in Table 1

Symbol (Solar days/years) Period H/ge (m) Amplitude k

Lunar nodal tide 18.613 years 0.0279 0.3334−0.0034i

Ssa (S) 182.621 days 0.0310 0.3261−0.0047i

Mm (L) 27.555 days 0.0352 0.3206−0.0128i

M f (L) 13.661 days 0.0666 0.3137−0.0199i

The Love numbers were obtained from Table 3 in Ray and Erofeeva (2014)

Table 3 Nominal Love numbers

Angular frequency ks ko k

Ω3 (diurnal) 0.2983−0.00144i −0.0180−0.01800i 0.2803−0.01944i

2Ω3 (semi-diurnal) 0.3010−0.00130i −0.0193−0.02194i 0.2817−0.02324i

Those for the solid Earth are taken from Table 6.3 in Petit and Luzum (2010). Those for the ocean are obtained
using formula (57) and the tidal constituents in Table 1. Ω3 is the mean rotation rate of the Earth

this weighted average are in Eq. (47). The result is

ko( j) =
∑

p H2
p Real [ko(ωp)]∑

p H2
p

+ i

∑
p ωp H2

p Imag [ko(ωp)]
jΩ3

∑
p H2

p
, (57)

where the sums are over the diurnal or the semi-diurnal values depending on whether j = 1
or j = 2, respectively. The nominal Love numbers are presented in Table 3.

6.2 The fit of the parameters

The construction of the differential equations for the tidal response had two steps: at first, in
Sect. 2, we introduced an inertial term, with inertia coefficient I◦μ, and an elastic restoring
force, with elastic coefficient I◦γ ; and then, in Sect. 3, we added forces due to the rheology of
the body. The number of parameters introduced in the second step depends on the complexity
of the rheological model. If the body is made of a perfect fluid, there is no rheology, then
γ > 0 due to the self-gravitational force. It can be that the body has a rheology that resists
to static forces. In this case γ has also a contribution from the rheology. For large bodies
gravity always dominate. In any case, the constant γ is associated to the equilibrium value of
B under steady forces. For bodies with an almost constant spin, like the Earth, the centrifugal
force causes a polar flattening that allows for the computation of γ independently from the
other parameters. We remark that time independent tidal forces as, for instance, that related
to the coefficient a0 in Eq. (54) also contribute to the flattening. This last effect is called the
“permanent tide”. For the Earth, the permanent tide contribution is 10−6 smaller than that
due to the spin (Petit and Luzum 2010, section 6.2.2). So, it can be neglected. Using Eq. (14)
or, equivalently, Eq. (11) in Ragazzo and Ruiz (2015) we obtain

γ = I◦
m1R2

e

Ω2
3

(−C20)
= 1.621 × 10−6 s−2. (58)
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Table 4 Rates of dissipation of tidal energy (Watts) by the longer period, diurnal, and semi-diurnal tides for
the constituents in Tables 1 and 2

Mode W using k from Tables 1 and 2 W using k from Eq. (51)

Longer period 9.33 × 108 1.15 × 108

Diurnal 5.20 × 1011 5.51 × 1011

Semi-diurnal 3.14 × 1012 3.05 × 1011

Total 3.66 × 1012 3.60 × 1012

The values are computed using W as given in Eq. (47)

If the Earth were made of a perfect fluid and had the radius equal to the mean moment of
inertia radius RI , then the value of γ would be γ f given in Eq. (15) that is 1.640× 10−6s−2.
So, gravity dominates the static response of the Earth.

As said before, the Earth has a complex rheological behavior. In this paper, it is not our
goal to find a model that reproduces all this complexity but to find one that at least gives the
correct rate of dissipation of energy and how the dissipation splits into the diurnal and the
semi-diurnal tides. Using the association principle in Sect. 3 we tested six different spring–
dashpot models to fit the Love numbers given in Tables 1 and 2. In some of them we used the
kinetic energy given in the “Appendix 1” in order to avoid negative values of μ. Among all
the models we tested the most successful was theWiechert model in Fig. 1a and its associated
Wiechert oscillator in Fig. 1b. In the following the Love number associated to the Wiechert
oscillator, which is given in Eq. (51), will be denoted by kw(ω, j) to differentiate it from
the Love numbers given in Tables 1 and 2 that remain being denoted as k(ω, j). Since the
parameter γ was already determined, for given values ofμ, ω, and j , Eq. (52) is linear on the
parameters c1, c2, c3, c4. So, consider the values (ω, j) = (Ω3, 1) and (ω, j) = (2Ω3, 2)
and their respective nominal Love numbers k( jΩ3, j), j = 1, 2, given in Table 3. The pair
of complex equations obtained after substituting ω = jΩ3 and kw( jΩ3, j), j = 1, 2, into
Eq. (52) has the solution c1(μ), c2(μ), c3(μ), c4(μ). The requirement that cn ≥ 0 implies
that μ must be restricted to a certain interval (μ0, μ1). In order to determine μ we minimize
the function

2∑
j=0

∑
p

H2
p

∣∣ Real |k(ωp, j) − kw(μ, ωp, j)]∣∣+ H2
p ωp

∣∣Imag [k(ωp, j) − kw(μ, ωp, j)]∣∣,

where the sum is over all frequencies in Tables 1 and 2. Notice that the weights of the
differences in this sum are the factors of k in Eq. (47) for J and W . The result of this
computation is:

μ = 19.79, c1 = 1.333 × 10−4 s−1, c2 = 1.292 × 10−12 s−2,

c3 = 4.567 × 10−6 s−2, c4 = 4.903 × 10−10 s−3
(59)

and using the relations in Eq. (18) we obtain the numbers in Eq. (1).
In Table 4 we present a comparison between the rates of dissipation of tidal energy as

given by the imaginary parts of the Love numbers in Tables 1 and 2 with those given by our
model.

In Fig. 5 (left) we show the graph of ω → −ω Imag kw and ω → Real kw and the
points that correspond to the values in Tables 1 and 2. In the same figure (right) we restrict
the frequency range to the diurnal and semi-diurnal frequencies and show that our Real kw
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Fig. 5 Left the graph in log–log scale of ω → −ω Imag kw and ω → Real kw , where kw is the Love number
as given in Eq. (51), and the points that correspond ω Imag k and Real k in Tables 1 and 2. Right The graph
of ω → Real kw on the diurnal to semi-diurnal frequency range (linear scale). The points correspond to the
values of Real k(ω) as given in Table 1

Fig. 6 Left the sign change of the real part of kw(ω). Right the imaginary part of −kw(ω)

overestimate all the corresponding values in Table 1 for the diurnal modes (the diurnal
nominal Love number in Table 3 used in the fit and taken from Petit and Luzum (2010) does
the same). In Fig. 6 we show the real and imaginary parts of the Love number kw in an
extended frequency scale. The real part of the Love number changes sign at a frequency that
corresponds to the period of 3.15h. This is the only frequency of free-oscillations of the Earth
according to our model.7 So, the period 3.15h corresponds to a resonance and any forcing
with a period below it is super-resonant (inertia dominates). At the end of Sect. 6.4 we show
that the Earth–Moon system has an unstable synchronous state that corresponds to a period
of 4.8h and to an Earth–Moon distance of 1.46× 107 m. This period and distance rely solely
upon conservation of angular momentum, they do not depend on the model for the rheology.
Below the radius 1.46 × 107m, circular Kepler orbits lead to collision due to dissipation of
energy. Therefore, 2π/4.8 rad/h can be taken as the upper limit of high frequencies for the
Earth periodic tidal forcing.

6.3 Chandler wobble

The equations for the motion of an isolated body are given in Eq. (28). This equation admits

a steady solution Ω = Ω3e3, Λ = 0, and B33 = −Ω
2
32/(3γ ), the remaining entries of B

being null. The linearization of Eq. (28) at this solution are

7 The eigenvalues of free oscillations of our model are (s−1): −1.15× 10−4, −9.17× 10−6 ± 5.54× 10−4i ,
and −2.96× 10−9. The relaxation times corresponding to these eigenvalues are 2.41h, 30.3h, and 10.7years,
respectively.

123



C. Ragazzo, L. S. Ruiz

μB̈ + γ B + Λ = −(ΩΩ + ΩΩ) + 2

3
Tr (ΩΩ)I

Λ̈ + c1Λ̇ + c2Λ = c3B̈ + c4Ḃ

Ω̇ + (BΩ̇ + Ω̇B) = −(ḂΩ + ΩḂ) + [B,Ω
2] + [B,ΩΩ + ΩΩ]. (60)

These equation can be written in terms of (b0, b1, b2), (λ0, λ1, λ2), obtained by means of the
decomposition (39) and (40), and (Ω1,Ω2,Ω3). This decomposition splits Eq. (60) into three
uncoupled equations for the normal modes of oscillation. The first contains only the three
real variables (b0, λ0,Ω3) and describes oscillations around the equilibrium that keeps the
spin direction fixed and the rotational symmetry of the ellipsoid of inertia. Only the spin rate
and the ellipsoid flattening change. The second contains only the complex variables b2, λ2
and describes oscillations that only change the two principal axis of inertia of the ellipsoid
that are perpendicular to e3. The third equation contains the variables b1, λ1,Ω1,Ω2 and
describes the precessions of the angular velocity around e3. This is the equation for the
Chandler wobble. If we write

z = B13 − i B23, λ = Λ13 − iΛ23, w = Ω2 + iΩ1,

then the equations for the Chandler wobble becomes

μz̈ = −γ z − λ + Ω3 wi

λ̈ + c1λ̇ + c2λ = c3 z̈ + c4 ż(
1 − Ω

2
3

3γ

)
ẇ = Ω3 żi + Ω

2
3z − Ω

3
3

γ
wi.

(61)

The characteristic equation associated to this equation has five roots. One of them is zero,
it corresponds to the family of steady solutions λ = 0 and γ z = Ω3 wi . There are two
roots that are real and negative. Finally, there is a pair of complex conjugate roots: the real
part is negative and the imaginary part is associated to the period of 438 days. The observed
Chandler period is 434 days.

6.4 An estimate of the variation of the Earth–Moon distance

The distance between the Earth and the Moon has been increasing at a rate of 3.82 ×
10−2 m/year (Dickey et al. 1994) due to the loss of energy by tidal heating. If the present
values of energy dissipation rate are extrapolated to the past then some computations put the
Moon extremely close to the Earth as recently as 1.5× 109 years [see, for instance, Bills and
Ray (1999)]. In this paragraph we use the dissipation of energy function in Eq. (55) and a
simplified orbital model to estimate the variation of the Earth–Moon distance. We alert that
this is a crude estimate: theMoon orbit is supposed circular and on the equatorial plane of the
Earth (only the M2 tidal mode is being considered) and the influence of the Sun is completely
neglected.

As already said, we assume that the orbit of the Moon is circular and that it satisfies
Kepler’s third law

n(r) =
√

G M

r3
,

where r is the Earth–Moon distance, and M = m1 + m2. The system angular momentum
L = I◦Ω + mnr2 is supposed to be constant, where Ω = Ω3 and m is the reduced mass. So,
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Ω(r) = L − mnr2

I◦
= L − m

√
G Mr

I◦
.

The energy of the system is

E(r) = 1

2
(mn2r2 + I◦Ω2) − Gm1m2

r
,

that implies

Ė =
(

mnn′r2 + mn2r + I◦ΩΩ ′ + Gm1m2

r2

)
ṙ = h(r)ṙ ,

where

n′ = dn

dr
= −3

2

√
G M

r5
and Ω ′ = dΩ

dr
= − m

2I◦

√
G M

r
.

Using that Ė = −W , where W (ω, r) is given in Eq. (55), and that ω(r) = 2(Ω(r) − n(r))

we obtain

ṙ = − W (ω(r), r)

h(r)
= f (r). (62)

The time t it takes for the distance r to change from ri to r f is

t (ri , r f ) =
∫ r f

ri

dr

f (r)
.

This equation was numerically integrated for ri = 2.5 × 108 m and r f = (G M/n2)1/3 =
3.84754 × 108 m, where n f = 2.6616995 × 10−6 rad s−1 is the present value of the Lunar
mean motion. The angular momentum we used was L = I◦Ω f + mn(r f )r2f = 3.44524 ×
1034 kgm2 s−1, whereΩ f = 7.292115×10−5 rad s−1 is the present value of the Earth mean
rotation rate. The values we got are: t (ri , r f ) = 1.58 × 109 years, f (ri ) = 41 cm/year and
f (r f ) = 3.5 cm/year for the Moon recession rate from the Earth, which is close to the value
in Dickey et al. (1994), W (ri ) = 8.2 × 1013 W and W (r f ) = 2.86 × 1012 W for the Earth
energy dissipation rate, and 2π/Ω(ri ) = 12.28 h and 2π/Ω(r f ) = 23.93 h for the length of
the sidereal day of the Earth.

We remark that the power dissipation at r f is considerably larger than the actual power
dissipation of the mode M2, W = 2.536 × 1012 W, given in Egbert and Ray (2001). This
happens because the value of r f is different from the effective radius 3.9638×108 m that is the
radius for which the hypothetical circular orbit of the Moon induces a primary average tidal
forcing that is equal to the actual M2 average tidal forcing. The amount of energy dissipated
by all constituents of the lunar tide is approximately 3.0 TW (Munk 1997).

The asymptotic behavior of any bounded orbit in phase space of a system composed by
a deformable body and a point mass is a synchronous state (Hut 1980). At a synchronous
state n = Ω that implies L(r) = (I◦ + mr2)n = √

G M(I◦r−3/2 + mr1/2). The function
L(r) has a unique minimum at rmin = √

3I◦/m where L(rmin) = Lmin = 4I◦nmin and

nmin =
√

G M/r3min . For a given value of L , the equation L = √
G M(I◦r−3/2 + mr1/2) has

no solution if L < Lmin (there is no bounded solution in phase space), has one solution at
r = rmin if L = Lmin , and two solutions ru < rs if L > Lmin (if r(0) < ru then r(t) → 0,
where r(t) is the solution of Eq. (62), if r(0) > ru then r(t) → rs). For the Earth L > Lmin

and: ru = 1.46 × 107 m, 2π/Ω(ru) = 4.8h, rs = 5.5 × 108 m, and 2π/Ω(rs) = 1121h.
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7 Tidal degree of freedom elimination and the Mignard’s model

Consider themotion of an extended body (planet) and a pointmass (satellite). This system has
a relative equilibrium where the satellite remains at rest in the planet reference frame K, the
synchronous state (Hut 1980). If the system is close to this equilibrium then the tidal degrees
of freedom represented by B can be eliminated using a perturbative analysis. From a physical
perspective the elimination of B is possible because the transient dynamics of B is faster
than the orbital transient motion. From amathematical perspective the elimination is possible
because the systemhas a hyperbolic attracting invariantmanifold in phase-space. The analysis
becomes easier in the synodic coordinate system, where the Lagrangian function is given
by (31) and the equations of motion are given in (32). The physical and the mathematical
analysis of the system becomes easier when these equations are appropriately written in
nondimensional form.

7.1 Nondimensionalization of the variables

Our almost spherical hypothesis (b) implies that the planet deformation due to steady rotation
must be small. So,we define a small parameter ε thatmeasures the initial gravitational flatness
of the planet

ε = |Ω(0)|√
γ

� 1, (63)

such that |B| ≈ |Ω|2/γ is of order ε2. Then we define a nondimensional angular velocity
matrix Ω̃ ,

Ω = ε
√

γ Ω̃, (64)

such that |Ω̃| is of order one, and a rescaled B̃,

B = ε2B̃, (65)

such that |B̃| is also of order one. The Lagrangian multipliers Λ1 and Λ2 are rescaled as B:
Λ1 = ε2Λ̃1 and Λ2 = ε2Λ̃2.

At the synchronous state the third Kepler law implies |Ω|2r3 = G M that suggests the
length scale (G M/ε2γ )1/3 and the nondimensional distance q̃,

q =
(

G M

ε2γ

)1/3
q̃, (66)

such that q̃ is of order one. The equation q̇ = −Ωq +u suggests the nondimensional velocity
ũ,

u = (G Mε
√

γ )1/3ũ (67)

such that ũ is also of order one.
A natural time scale for the dynamics of B is the undamped natural frequency

√
γ /μ. So,

we define a nondimensional Ũ,

U = ε2
√

γ

μ
Ũ, (68)

such that |Ũ| is of order not greater than one. Finally we define a nondimensional time t̃

t =
√

μ

γ
t̃ (69)
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and use the notation

d

dt̃
f (t̃) = f ′(t̃).

In terms of the nondimensional variables Eq. (32) become

B̃′ = Ũ

Ũ′ = −B̃ − 1

γ
(Λ̃1 + Λ̃2) − Ω̃

2 + 1

3
Tr (Ω̃

2
)I + m2

M

1

|q̃|5
(
3q̃ ⊗ q̃ − |q̃|2I)

α−1
1 Λ̃

′
1 = − 1

γ
η̃−1
1 Λ̃1 + Ũ

α−1
2 Λ̃

′
2 = − 1

γ
η̃−1
2 Λ̃2 + Ũ

Ω̃
′ = ε2

{
−(B̃Ω̃

′ + Ω̃
′
B̃) − (ŨyΩ̃ + Ω̃Ũ) + ε

√
μ[B̃, Ω̃

2] + m2

M

3ε
√

μ

|q̃|5
[
q̃ ⊗ q̃, B̃

]}

q̃ ′ = ε
√

μ
{
−Ω̃ q̃ + ũ

}

ũ′ = ε
√

μ

{
−Ω̃ ũ − 1

|q̃|3 q̃

+ ε2
I◦
m1

(
γ ε2

G M

)2/3 (
−15

2

1

|q̃|7 (q̃ · B̃q̃)q̃ + 3
1

|q̃|5 B̃q̃

)}
, (70)

where
η̃1 = η1√

μγ
, η̃2 = η2√

μγ
(71)

are nondimensional damping coefficients. The total angular momentum becomes

�

I◦
√

γ
= Y

{
εΩ̃ + ε3(B̃Ω̃ + Ω̃ B̃ + ε

√
μ[Ũ, B̃]) + m

I◦
√

γ

(G M)2/3

γ 1/6ε1/3
(ũ ⊗ q̃ − q̃ ⊗ ũ)

}
YT ,

where Y is determined from

Y′ = ε
√

μYΩ̃.

7.2 The Mignard equation

For ε = 0, Eq. (70) have a nine-dimensional invariant manifold of equilibria that can be
described as the graph of the function

B̃ = B̃0(Ω̃, q̃, ũ) = −Ω̃
2 + 1

3
Tr (Ω̃

2
)I + m2

M

1

|q̃|5
(
3q̃ ⊗ q̃ − |q̃|2I)

Ũ = Ũ0(Ω̃, q̃, ũ) = 0

Λ̃1 = Λ̃10(Ω̃, q̃, ũ) = 0

Λ̃2 = Λ̃20(Ω̃, q̃, ũ) = 0. (72)

Using the Routh–Hurwitz theorem and an algebraic manipulator we can show that this invari-
ant manifold is hyperbolic and attractive and therefore, for ε > 0 sufficiently small, it can be
continued to a smooth ε-family of invariant manifolds, which are hyperbolic and attractive
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[see Theorem 2 in Carr (1981)]. This continuation can be written as

B̃ = B̃0(Ω̃, q, u) + εB̃1(Ω̃, q, u) + O(ε2), Ũ = εŨ1(Ω̃, q, u) + O(ε2)

Λ̃1 = εΛ̃11(Ω̃, q, u) + O(ε2), Λ̃2 = εΛ̃21(Ω̃, q, u) + O(ε2).

These relations and equation B̃′ = Ũ imply

B̃′ = (∂
Ω̃

B̃0) Ω̃
′

︸︷︷︸
=O(ε2)

+(∂q̃ B̃0) q̃ ′
︸︷︷︸
=O(ε)

+O(ε2) = εŨ1 + O(ε2)

and so

εŨ1 = (∂q̃ B̃0)q̃
′ 
⇒ Ũ1i j = √

μ
∑

k

(∂q̃k B̃0i j )(−Ω̃ q̃ + ũ)k .

After some computations we obtain

Ũ1 = 3
√

μ
m2

M

1

|q̃|5
{(

−5
q̃ ⊗ q̃

|q̃|2 + I

)
(q̃ · ũ) + q̃ ⊗ (−Ω̃ q̃ + ũ) + (−Ω̃ q̃ + ũ) ⊗ q̃

}
.

(73)
The equation for Ũ′ in Eq. (70) imply that

Ũ′ = ε

⎧⎪⎨
⎪⎩

(∂
Ω̃

Ũ1) Ω̃
′

︸︷︷︸
=O(ε2)

+(∂q̃ Ũ1) q̃ ′
︸︷︷︸

=O(ε)

+(∂ũŨ1) ũ′︸︷︷︸
=O(ε)

⎫⎪⎬
⎪⎭

= −εB̃1 − ε

γ
(Λ11 + Λ21) + O(ε2)

and therefore

B̃1 = − 1

γ
(Λ11 + Λ21). (74)

Finally, the equations for Λ̃
′
i imply that

Λ̃
′
i = O(ε2) = −ε

η̃−1
i

γ
Λ̃i1 + εŨ1 + O(ε2),

so, 1
γ
Λ̃i1 = η̃i Ũ1 and

1

γ
(Λ̃11 + Λ̃12) = η̃Ũ1,

where
η̃ = η̃1 + η̃2 = η√

μγ
(75)

is a nondimensional damping coefficient and η = η1 + η2. This perturbative procedure can
be continued to compute the invariant manifold up to higher orders of ε. Here we stop at the
first order and just write

B̃ = B̃0 − εη̃Ũ1 + O(ε2), Ũ = εŨ1 + O(ε2), B̃′ = εŨ1 + O(ε2)

Λ̃1 = εγ η̃1Ũ1 + O(ε2), Λ̃2 = εγ η̃2Ũ1 + O(ε2).
(76)

For ε > 0, the dynamics on the invariant manifold is obtained from the equations for Ω̃
′
, q̃ ′,

and ũ′ in Eq. (70) after the substitution of B̃ and Ũ by the expressions in Eq. (76).
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At this point it is convenient to return to the dimensional variables t , Ω , q , and u and to
the inertial reference frame

x = Yq, v = Yu, ω = YΩYT .

After all the substitutions the reduced equations for x and v can be written as

ẋ = v

v̇ = G M

{
− 1

|x |3 x − 15

2

I◦
m1

1

|x |7 (x · bx)x + 3
I◦
m1

1

|x |5 bx

}
,

where

b = 1

γ

{
−ω2 + 1

3
Tr (ω2)I + Gm2

|x |5
(
3x ⊗ x − |x |2I)

}

− η

γ

3Gm2

|x |5
{(

−5
x ⊗ x

|x |2 + I

)
(x · v) + x ⊗ (v − ωx) + (v − ωx) ⊗ x

}
.

This equation can also be written in vectorial form as

ẍ = −G M
x

|x |3 − I◦
m1γ

3G M

|x |5
{
1

2
|ω|2x − 5

2

(ω · x)2

|x |2 x + (ω · x)ω

}

− I◦
γ m1

9G2Mm2

|x |8 x − η

γ 2

I◦
m1

9G2Mm2

|x |8
{

ẋ + x × ω + 2
(ẋ · x)

|x |2 x

}
. (77)

The term proportional to η is the “Mignard Force” [Mignard 1979, Eq. (5)] after we make
the identification

Δt = 3I◦G

a5

1

k2

η

γ 2 ,

where we use that the equatorial radius of the planet, used by Mignard, is approximately the
volumetric radius a and M/m1 ≈ 1.

8 Summary and conclusion

The main result in this paper is a set of equations for the dynamics of N extended bodies
interacting under gravity. As an example we suppose that the rheology of each body is that
of the Wiechert model in Fig. 1.

The i th body is characterized by the following physical parameters:

• mi (kg), mass;
• I◦i (kg m2), mean moment of inertia (the trace of the moment of inertia tensor divided

by three);
• γi (s−2), static stiffness coefficient of the moment of inertia;
• μi (nondimensional), inertia coefficient for the moment of inertia variations (μi = 1 for

a homogeneous body made of a perfect fluid);
• α1i and α2i (s−2), dynamic stiffness coefficients associated to theWiechert rheology [see

Fig. 1];
• η1i and η2i (s−2), damping coefficients associated to the Wiechert rheology [see Fig. 1].

Let κ be an inertial reference frame. The configuration variables of each body of the system
are: xi the position with respect to κ , Yi the orientation (rotation matrix) that defines the
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body reference frame Ki by means of Yi : Ki → κ , and Bi the nondimensional quadrupole
matrix [Qi = 3I◦Bi , where Qi is the quadrupole matrix, see Eq. (5)] with respect to the body
frameKi . The traceless symmetric matricesΛi

1 andΛi
2 represent internal stresses (dimension

s−2) that act upon the Maxwell arms of the Wiechert model, see Fig. 1 (at t = 0 they can
be taken as the null matrices). The velocities associated to the configuration variables are ẋ i ,
Ω i (angular velocity matrix), and Ḃi = Ui . The angular momentum matrix of the body with
respect to the frame Ki is

Li = I◦i (Ω
i + BiΩ i + Ω i Bi ). (78)

The relative position xi − x j is denoted as xi j = xi − x j and the identity matrix as I. The
equations for the motion of the system with respect to these variables are:

Ḃi = Ui

μi U̇i = −γi Bi − Λi
1 − Λi

2 − (Ω i )2

+1

3
Tr ((Ω i )2)I +

∑
j 	=i

3Gm j

|xi j |5
(

YiT xi j ⊗ xi j Yi − |xi j |2
3

I

)

α−1
1i Λ̇

i
1 = −η−1

1i Λi
1 + Ui

α−1
2i Λ̇

i
2 = −η−1

2i Λi
2 + Ui

L̇i = −[Ω i , Li ] +
∑
j 	=i

3Gm j I◦
|xi j |5

[
YiT xi j ⊗ xi j Yi , Bi

]

Ẏ i = Y i Ω i

ẍ i =
∑
j 	=i

G

{
− m j

|xi j |3 xi j − 15

2mi

1

|xi j |7
((

m j I◦i Y
i Bi YiT + mi I◦ j Y

j B j Y jT
)

xi j · xi j
)

xi j

+ 3

mi

1

|xi j |5
(

m j I◦i Y
i Bi YiT + mi I◦ j Y

j B j Y jT
)

xi j
}

, i = 1, . . . N , (79)

where x ⊗ y denotes the tensor product of the vectors x and y, i.e., the symmetric matrix
whose coordinates are given by (x ⊗ y)km = xk ym and [A, B] = AB − BA is the usual
matrix commutator.

In the inertial reference frame κ the body variables become: bi = Yi Bi YiT , ui =
Yi Ui YiT , �i = Yi Li YiT , and λi

j = YiΛi
j Y

iT . So, using the following relation, valid

for any matrix m = Yi MYiT ,

ṁ = d

dt
(Yi MYiT ) = [ωi , m] + Yi ṀYiT ,

we obtain the equations of motion with respect to the inertial reference frame:

ḃi = [ωi , bi ] + ui

μi u̇i = μi [ωi , ui ] − γi bi − λi
1 − λi

2 − (ωi )2 + 1

3
Tr ((ωi )2)I

+
∑
j 	=i

3Gm j

|xi j |5
(

xi j ⊗ xi j − |xi j |2
3

I

)

α−1
1i λ̇

i
1 = α−1

1i [ωi ,λi
1] − η−1

1i λi
1 + ui

α−1
2i λ̇

i
2 = α−1

2i [ωi ,λi
2] − η−1

2i λi
2 + ui

�̇
i =

∑
j 	=i

3Gm j I◦
|xi j |5

[
xi j ⊗ xi j , bi

]
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ẍ i =
∑
j 	=i

G

{
− m j

|xi j |3 xi j − 15

2mi

1

|xi j |7
((

m j I◦i b
i + mi I◦ j b

j
)

xi j · xi j
)

xi j

+ 3

mi

1

|xi j |5
(

m j I◦i b
i + mi I◦ j b

j
)

xi j
}

�i = I◦i (ω
i + biωi + ωi bi ). (80)

The advantage of the equations in the inertial frame is the absence of the orientation variables
Yi . The drawback is that the equations for Bi , Ui ,Λi

j are linear with constant coefficients in
the body frame Ki but not in the inertial frame.

Remarks

• The total angular momentum

� =
N∑

i=1

�i + mi (ẋ i ⊗ xi − xi ⊗ ẋ i )

is conserved.
• The total energy of the system is

E =
N∑

i=1

{
mi

|ẋ i |2
2

+ Ω i · IiΩ i

2
+ I◦i

4

(
μi |Ḃi |2 + γi |Bi |2 + α1i |Bi

1|2 + α2i |Bi
2|2
)}

−
∑
i 	= j

{Gmi m j

|xi j | + 3G

2|xi j |5
{
m j I◦i (xi j · bi x i j ) + mi I◦ j (xi j · b j x i j )

}}
, (81)

where the rotational kinetic energy Ω i ·Ii Ω i

2 == I◦ Ω·(I−B)Ω
2 = I◦

4

(|Ω|2 + 2Tr (ΩT BΩ)
)

is written in terms of the angular velocity vectorΩ i and the inertia tensor Ii = I◦i (I−Bi ).
The energy is decreasing along the motion:

Ė = −2D ≤ 0, where D =
N∑

i=1

I◦i

{ |Λi
1|2

2η1i
+ |Λi

2|2
2η2i

}
.

Therefore, any bounded solution (in phase space) is asymptotic to a solution that does
not dissipate energy, for which Ḃi = 0, i = 1, 2, . . . , N .

• For a given body of mass m and mean moment of inertia I◦ we can define the mean
moment of inertia radius RI = √

5I◦/(2m) and the gravitational fluid frequency

ω f =
√
2I◦G

R5
I

=
√
4mG

5R3
I

= √
γ f , (82)

that is the lowest frequency of gravitational oscillations of a homogeneous mass m of
incompressible fluid about the spherical shape of radius RI seeEq. (15) and the text below.
The three numbers m(kg), RI (m), and ω f (s−2) can be used to nondimensionalize all
mechanical quantities, in particular:

γ̃ = γ

γ f
, α̃ j = α j

γ f
, η̃ j = η j

ω f
, j = 1, 2.

Bodies for which the rheology follows the samemodel (for instance, theWiechert model)
and all nondimensional rheological parameters (μ, γ̃ , α̃ j , η̃ j ) are the same are said to
be physically similar. Bodies with very different sizes and with the same composition
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cannot be similar, because the self-gravitational forces (volume forces) increases with
the cube of the dimension of the body, while elastic forces (surface forces) increase with
the square of the dimension. For physically similar bodies this nondimensionalization
gives an idea on how the rheological parameters depend on m and I◦. For instance, γ̃

is almost one for the Earth and close to one for several planets in the solar system [see
Table 1 in Ragazzo and Ruiz (2015)].

• The parameters I◦i , γi , μi , α j i , and η j i , may undergo secular variations, particularly due
to cooling (planets) or internal evolution (stars).

• A particular extended body i can be replaced by a point mass simply by making I◦i = 0
in the above equations. If a body has a rheology simpler than that of the Wiechert model,
then some of the parameters and variables in the above equation are null. For instance,
if a Maxwell rheology is assumed (as in Boué et al. 2016), then it is enough to make
Λi

2 = 0, α2i = η2i = 0 in the equations above.

In a recent paper (Boué et al. 2016), Boué, Correia, and Laskar proposed equations for
the motion of deformable bodies that are similar to our Eq. (79). Two of the main ideas in
our paper, the characterization of the deformations by the quadrupole moment tensor and an
“association principle” for the rheology, are also present in their paper, however the derivation
of the equations of motion is completely different. This difference may be an indication that
the equations are physically sound.

In Boué et al. (2016) explicit equations are only presented for the motion of an extended
body (planet) with Maxwell rheology and a point mass (star). As the authors argue, equa-
tions for systems of bodies with Maxwell rheology can be easily obtained using the same
ideas. Their tidal response equations are the same as ours, Eq. (36), after a special choice of
parameters.8 In the following we discuss three main differences between the results in Boué
et al. (2016) and ours.

The first is that in Boué et al. (2016) no inertia is associated to the deformations, namely
μ = 0. Therefore the deformable body cannot sustain damped free oscillations. There is no
doubt that body deformations have inertia, which is considered for instance in Wisdom and
Meyer (2016), but is arguable that this inertia plays any role in the dynamics of tides. It is our
feeling that in many situations this inertia is important (see footnote 6) and moreover it must
always be in the physical model. The irrelevance of the inertial term, if any, must be noticed
a posteriori as a consequence of the integration of the equations of motion. We recall that the
coefficient of inertia of a body made of a perfect fluid is μ = 1, see Eq. (16). We also remark
that μ = 0 prevents the existence of tidal waves as those discussed in the “Appendix 1”.

The second difference is that our equations of motion are obtained within a Lagrangian
framework while a vectorial approach is adopted in Boué et al. (2016). From the Lagrangian
function the expression (81) for the energy is easily obtained and from the dissipation func-

8 The deformation variables used in Boué et al. (2016), Z2,m , m = 0, 1, 2, are proportional to the bm we
defined in Sec. 5.1, namely Z2,0 = ε1b0, Z2,m = ε1bm/2, m = 1, 2, where: Z denotes the complex
conjugate of Z and ε1 = √

45/(16π)I◦/(m1a2) with m1, a, I◦ being the mass, radius, and moment of
inertia of the planet, respectively. Using the decomposition −(Ω i )2 + 1

3 Tr ((Ω
i ))I → (p0, p1, p2) given

in Eqs. (39) and (40), we obtain that the tidal force coefficients in Boué et al. (2016), denoted as Ze
2,m ,

m = 0, 1, 2, are given in terms of our coefficients am given in Sec. 5.1 by means of Z
e
2,0 = ε2(p0 + a0),

Z
e
2,m = ε2(pm +am)/2, m = 1, 2, where ε2 = √

5/(16π)a3k02/(m1G)with k02 being the fluid Love number

of the planet. Their parameters (k20 , τ2, τe) are related to ours (μ, γ, α1, α2, η1, η2) as: μ = α2 = η2 = 0,

γ = ε1/ε2, τe = η1/α1, and τ2 = η1(α
−1
1 + γ −1). With these identifications their tidal response equation

in the body frame Z2,m + τ2 Ż2,m = Ze
2,m + τe Że

2,m , m = 0, 1, 2, coincides with our Eq. (49) with the term
pm added to the left-hand side.
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tion follows the relation Ė = −2D ≤ 0. The dissipation of energy for planar motions is
analysed in Correia et al. (2014) section 4.3 [the model in Boué et al. (2016) is a nonplanar
generalization of of the planar model in Correia et al. (2014)], where only the time derivative
of the rotational Ėrot and orbital Ėorb energies are considered. The energy due to the body
deformation Edef , which is much smaller than Erot and Eorb, is neglected in that reference.
However, the time variation of Edef may be relevant, especially for systems with more than
two bodies. The analysis of the deformation energy although possible in the approach in
Boué et al. (2016) is not as easy as it is in ours.

A third difference is that in Boué et al. (2016) the deformations can be parameterized by
spherical harmonics of all degrees and not only by those of second degree as in our paper.
This extra degrees of freedom can also be included in our model within the linear viscoelastic
assumption. Our association principle has to be modified and extra rheological parameters
may have to be added (by the same reason that compressibility implies in the addition of a
bulk viscosity and a modulus of compressibility).

Acknowledgements We are very grateful to Sylvio Ferraz Mello for all discussions and advices. We also
thank Alexandre Correia for the discussions about his work. This paper is part of a project supported by
FAPESP 2011/16265-8. C. Ragazzo is partially supported by FAPESP 2011/16265-8.

Appendix 1: The kinetic energy when the angular momentum of tidal waves
is relevant

The following analysis of a particular set of solutions to Eq. (12) shows that the Lagrangian
function (11) sometimes misses important physical features of the dynamics.

Equation (12) have an interesting set of “tidal wave” (or “quadrupole wave”) solutions:

Ω = 0, B = âR(ω◦t)SRT (ω◦t), (83)

where â > 0 is the wave amplitude,

ω◦ = 1

2

√
γ

μ
(84)

is the wave angular velocity,

R(ω◦t) =
⎛
⎝
cos(ω◦t) − sin(ω◦t) 0
sin(ω◦t) cos(ω◦t) 0

0 0 1

⎞
⎠ and S =

⎛
⎝
1 0 0
0 −1 0
0 0 0

⎞
⎠ . (85)

Since Ω = 0, the body frame K is an inertial frame (if Y(0) = I then K = κ for all t) and
the angular momentum I◦(Ω + BΩ + ΩB) ∈ K is null in both K and κ . This seems to be
not physically correct since waves do usually have an associated momentum, as explained
by the following interesting remarks taking from Peskin (2010). “The phenomenon of wave
momentum is remarkable in several respects. First, it is not clear a priori that waves ought
to have associated momentum. Waves are commonly divided into two types: transverse and
longitudinal waves. In the transverse case, since nothing is moving in the direction of prop-
agation, how can there be associated momentum in that direction? Even in the longitudinal
case, since the wave motion is typically oscillatory, one would think that the average momen-
tum density would be zero. How can there be net momentum in the direction of the wave?”.
The same type of question applies to the tidal wave above, which is transverse to the radial
direction. The answer is essentially the same as that given in Peskin (2010) for water waves,
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which are also transverse waves: “The motion of fluid particles in water waves is circular,
and one might think that the net momentum in the direction of propagation would be zero.
This reasoning is incorrect, however, because of the correlation between the height of the
water and the direction of horizontal motion. As any swimmer knows, the water is moving
forward (i.e., in the direction of the wave) at the crest of the wave, and backward in the
trough. This asymmetry is the fundamental source of net momentum in the direction of wave
propagation. . .”

The arguments in the previous paragraph shows that a termmust be added to theLagrangian
function (12) in order to a tidal wave solution to have an associated angular momentum even
when Ω = 0 (or even when there is no mass net rotation). The term we add is motivated by
an “ε-expansion” of the pseudo-rigid body Lagrangian function in Ragazzo and Ruiz (2015)
(it is the only term of order ε5/2 in that expansion). The new Lagrangian function is

L = I◦
4

(
|Ω|2 + 2Tr (ΩΩT B)

)
+ I◦

4

(
μ|Ḃ|2 − γ |B|2)+ I◦βμTr (BḂΩ), (86)

where β is a dimensionless constant. The Lagrangian function (86) is invariant under the
action SO(3)×SO(3) → SO(3) given by (U, Y ) → UY . As in the case of the rigid body the
angular momentum � defined in Eq. (10) is a conserved quantity. Again a computation gives
that � = Y L YT but in this case the angular momentum L in the body frame K is given by
L = I◦(Ω +BΩ +ΩB)+ I◦βμ[Ḃ, B]. In this expression, the first term I◦(Ω +BΩ +ΩB) :
K → K represents the angular momentum of the body relative to the inertial frame κ as if it
had no motion relative to K. The second term I◦βμ[Ḃ, B] represents the angular momentum
of the body relative to the frame K. The value of β is directly connected to the choice of the
body frame K. In particular, unless βμ[Ḃ, B] = 0, the frame K is not a Tisserand frame (see
Munk and MacDonald 1961).

As before, the equation for Ω derived from the Lagrangian function (86) is

L̇ + [Ω, L] = 0 where: L = I◦(Ω + BΩ + ΩB) + I◦βμ[Ḃ, B]. (87)

The equations of motion for B can be obtained in the following way. The set of matrices B
can be considered as the subset of all 3 × 3 matrices that satisfy the constraints fkm(B) =
Bkm − Bmk = 0 and f0(B) = TrB = 0. Let χmk and χ0 denote the Lagrange multipliers
associated to these constraints. The equations of motion are obtained from the extended
Lagrangian function

L̂ = L − χ0 f0 −
∑
m,k

χmk fmk

in the usual way:

d

dt

(
∂L̂

∂Ḃ

)
− ∂L̂

∂B
= 0.

Using the expressions for L̂ we obtain

I◦
2

(
μB̈ − 2βμ(BΩ̇ + [Ḃ,Ω]) + γ BΩ2)+ χ0I + χ − χT = 0.

In order to eliminate the Lagrange multipliers χi j we add this equation to its transpose and
divide by two to obtain

I◦
2

(
μB̈ − μβ([B, Ω̇] + 2[Ḃ,Ω]) + γ B + Ω2)+ χ0I = 0.
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In order to determine χ0 we take the trace of this expression to get

χ0 = − I◦
2

1

3
TrΩ2.

So, the differential equation for B is

μB̈ − βμ[B, Ω̇] − 2βμ[Ḃ,Ω] + γ B = −Ω2 + 1

3
(TrΩ2)I. (88)

Equations (87) and (88) have the same tidal wave solution as that in Eq. (83). The angular
momentum associated to this wave is

� = I◦βμ[Ḃ, B] = I◦βμ4ω◦â2

⎛
⎝
0 −1 0
1 0 0
0 0 0

⎞
⎠ ,

which implies that the angular momentum vector have components �1 = 0, �2 = 0, and
�3 = I◦βμ4ω◦â2. The energy associated to this wave is

E = I◦
4

(
μTr Ḃ2 + γ TrB2) = I◦

4

(
μâ28ω2◦ + γ â22

) = â2γ I◦.

As in Sect. 2, consider a massm of homogeneous inviscid liquid under self-gravity. At rest
the liquid has a spherical shape and moment of inertia I◦ = 0.4ma2, where a is the radius of

equilibrium. In this case μ = μ f = 1 and γ = γ f = 2I◦G
(
5
2
I◦
m

)−5/2
as given in Eqs. (16)

and (15), respectively. Suppose that the liquid is rotating uniformly with constant angular
velocity Ω = Ω3e3. The equation for the small free oscillations of B about the equilibrium
shape is

B̈ − 2β[Ḃ,Ω] + γ f B = 0.

The decomposition of matrix B → (b0, b1, b2) given in Eqs. (39) and (40) can be used to
rewrite this equation as:

b̈ j − 2 jβΩ3i ḃ j + γ f b j = 0, j = 0, 1, 2. (89)

The frequency of small oscillations σ obtained from this equation is

σ = ±√
γ f + β jΩ3 + O(Ω2

3 ).

Comparing this expression to that in Eq. (87) in Bryan (1889) we obtain that for a mass of
perfect liquid

β = β f = 1

2
. (90)

For several types of waves (electromagnetic waves, soundwaves, water waves, and certain
kinds of traveling waves on strings under tension) the following simple relation holds (Peskin
2010)

wave momentum · wave phase velocity = wave energy.

For a wave moving along a circular path, like the tidal wave above, this relation could be
changed as

momentum · R︸ ︷︷ ︸
angular momentum

·

angular veloci ty︷ ︸︸ ︷
1

R
· phase velocity = energy
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where R > 0 is some reference radius. If we assumed that the previous relation would hold
for the tidal wave solution then, using the expressions for �3 and E above, we would obtain
β = 1. Therefore, it seems that β ≥ 0 can vary depending on the rheological nature of the
body.

To finish, consider the tide response equations [compare to Eq. (37)]:

μB̈ − 2βμ[Ḃ,Ω] + γ B + Λ = A(t)

Λ̈ + c1Λ̇ + c2Λ = c3B̈ + c4Ḃ,
(91)

where Ω̇ = 0 and Ω = Ω3e3. If we apply the decomposition B → (b0, b1, b2), A →
(a1, a2, a3), and Λ → (λ0, λ1, λ2) given in Eqs. (39) and (40) we rewrite Eq. (91) as
[compare to Eq. (49)]:

μb̈ j − 2 jβμΩ3i ḃ j + γ b j + λ j = a j (t)

λ̈ j + c1λ̇ j + c2λ = c3b̈ j + c4ḃ j j = 0, 1, 2.
(92)

As before a j (t) can be Fourier expanded. For a term of the form a j (t) = âei(ωt+ϕ), there
corresponds a solution of the form b j (t) = b̂ei(ωt+ϕ), λ j (t) = λ̂ei(ωt+ϕ), such that â, b̂, and
λ̂ are related as

{μω(−ω + 2 jβΩ3) + γ }b̂ + λ̂ = â

(−ω2 + c1ωi + c2)λ̂ = (−c3ω
2 + c4ωi)b̂ j = 0, 1, 2.

For the diurnal and the semi-diurnal frequencies ω = jΩ3, j = 1, 2, the first of these
equations becomes

{μ(2β − 1)( jΩ3)
2 + γ }b̂ + λ̂ = â,

that is an equation equal to that obtained in Sect. 5.1 for the same frequencies except for the
change μ → μ(1 − 2β). This is very convenient in the fit of the parameters c1, c2, c3, c4
as we did in Sect. 6.2. Essentially, the same procedure used in that section can be used in
this case and since μ(1 − 2β) can be either positive or negative this relaxes the positivity
condition we had on the parameter μ.

Appendix 2: The planetary dissipation of tidal energy and the average work
done by the tidal force: relations to the dissipation function and to the
Lagrangian function, respectively

In this appendix we present a classical formula of Zschau and Platzman for the time-average
planetary dissipation rate of tide energy W . We apply this formula to our model and show
that it gives the time average of the dissipation function of the model, which shows that our
choice of dissipation function is consistent with results obtained from continuummechanics.
The clear and elegant deduction of the formula of Zschau and Platzman in Platzman (1984)
lead us to an analogous, apparently new, formula for the time-average of the work done by
the primary tidal force in deforming the planet. This new formula, deduced in Appendix
“The average work done by the tidal force and the Lagrangian function” section, gives the
“time-average planetary tidal balance of potential and kinetic energy”9 J . This new formula

9 The origin of the name is the following. Consider the harmonic oscillator μẍ + ηẋ + γ x = F(t).
Multiplying both sides of the equation by ẋ and time-averaging gives limT →∞ 1

T

∫ T
0 F(t)ẋ(t)dt =
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is related to the Lagrangian function of ourmodel in the sameway as the Zschau and Platzman
formula is related to the dissipation function.

Appendix 2.1: A formula of Zschau and Platzman for the planetary dissipation
function and the Rayleigh dissipation function

Following Platzman (1984), letΨ be the primary astronomical potential (due to the satellite),
Ψ ′ be the secondary potential due to the tidal redistribution of the mass of the planet, and
Ψ = Ψ + Ψ ′ be the complete tide potential. Let

Ψ =
∑

n

[
Ψ n

( r

a

)n + Ψ ′
n

(a

r

)n+1
]

(93)

be the solid harmonic decomposition ofΨ , where:Ψ n andΨ ′
n are spherical surface harmonics

of degree n, (r, θ, φ) are spherical coordinates in the rotating reference frame K, and a is
the radius of a spherical surface Sa that contains the planet inside and does not contain
the satellite. In Platzman (1984, Eq. (6)), it is shown that the time-average of the planetary
dissipation of tidal energy is given by

W = 1

4πGa

∑
n

(2n + 1)
∫

Sa

〈Ψ n∂Ψ ′
n/∂t〉d S, (94)

where d S is the surface element and 〈·〉 denotes the average over a period tide. Since Ψ is
dominated by Ψ 2, all terms in this formula but those of second-degree can be neglected

W = 5

4πGa

∫

Sa

〈Ψ 2∂Ψ ′
2/∂t〉d S. (95)

The energy dissipation rate W is related to the Rayleigh dissipation function D in Eq. (23)
as follows.

In our model, the primary potential has only the the second-degree harmonic

Ψ (x) = −1

2
(x · Ax) = |x |2

a2 Ψ 2(x̂), (96)

where x = |x |x̂ . The secondary potential is

Ψ ′(x) = −3

2

GI◦
|x |5 (x · Bx) = a3

|x |3Ψ ′
2(x̂). (97)

Footnote 9 continued
limT →∞ 1

T

∫ T
0 ηẋ2(t)dt = W that is the time-average dissipation rate.Multiplying both sides of the equation

by x and time-averaging gives limT →∞ 1
T

∫ T
0 F(t)x(t)dt = limT →∞ 1

T

∫ T
0 [−μẋ2(t) + γ x2(t)]dt = J

that is the time-average balance of kinetic and potential energy.
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Using that d S = a2 sin θdθdφ = a2dx̂ on Sa , where (θ, φ) are polar coordinates on the unit
sphere, Eq. (95) can be written as

W = 5

4πGa

∫

Sa

〈Ψ 2∂Ψ ′
2/∂t〉d S

= 15

16π
I◦
〈∫

S1
(x̂ · Ax̂)(x̂ · Ḃx̂)dx̂

〉

= 15

16π
I◦

〈∑
i jkl

Ai j Ḃkl

∫

S1
x̂i x̂ j x̂k x̂ld x̂

︸ ︷︷ ︸
=Γi jkl

〉
.

Now, the same argument as that given at the end of Sect. 3 implies that Γi jkl is a linear
combination of the three tensors δi jδkl , δikδ jl , and δilδ jk . An easy computation using polar
coordinates shows that

Γi jkl = 4π

15
(δi jδkl + δikδ jl + δilδ jk)

and

W = 15

16π
I◦

〈∑
i jkl

Ai j ḂklΓi jkl

〉
= I◦

2
〈TrAḂ〉 = I◦

2

1

T

∫ T

0
TrAḂdt. (98)

In principle the time average must be taken over a period tide. It happens that the tide is
not exactly periodic but only almost periodic usually with a dominance of the semi-diurnal
mode, so the average is still well defined as T → ∞. For the computations, T must be taken
as a large multiple of the semi-diurnal period.

Finally, multiplying both sides of the first equation in (36) by Ḃ, taking the trace and the
averaging of both sides, and using that the average of a time derivative is zero 〈 d f

dt 〉 = 0, we
obtain

〈TrΛḂ〉 = 〈TrΛ1Ḃ〉 + 〈TrΛ2Ḃ〉 = 〈TrAḂ〉.
Multiplying both sides of the second and third equations in (36) by Λ1 and Λ2, respectively,
taking the trace and the averaging of both sides, we obtain

〈TrAḂ〉 = 〈Tr ḂΛ1〉 + 〈Tr ḂΛ2〉 = η−1
1 〈|Λ1|2〉 + η−1

2 〈|Λ2|2〉 = η1〈| ˙̃B1|2〉 + η2〈| ˙̃B2|2〉,
where we used that Λ1 = η1

˙̃B1 and Λ2 = η2
˙̃B2, similarly to η1 ˙̃x1 = λ1 and η2 ˙̃x2 = λ2 in

Eq. (20). This last equation and Eqs. (98) and (23) imply that

W = I◦
2

〈TrAḂ〉 = 1

T

∫ T

0
(2D)dt. (99)

This equation shows that the planetary dissipation of tidal energy as given inEq. (95) coincides
with the average power dissipated by the planet in our model.

Appendix 2.2: The average work done by the tidal force and the Lagrangian func-
tion

There are two fundamental functions in our theory of tide response: the LagrangianLB and
the dissipationD functions both given in Eq. (23). After we showed the relation between the
formula of Zschau and Platzman in Eq. (95) and the dissipation function D , we wandered
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whether there would exist a similar relation for LB. Indeed there is, LB is equal to the
time-average of the work done by the tidal force to deform the planet or equivalently to the
“time-average planetary tidal balance of energy”(see footnote at the first page).

Let J̃ be the work done by the primary tidal force to deform the planet

J̃ = −
∫

Ba

ρ(d · ∇Ψ )dV ,

where: Ba is a solid ball that contains the planet and does not contain the satellite, d is the
displacement vector, ρ is the density of the deformed state, and −ρ∇Ψ is the primary tidal
force [see Lambeck (1980), p. 7 for details]. It is convenient to suppose that the density
is a smooth function that vanishes outside the planet, so the nontrivial part of the integral
is restricted to the planet interior. The result we obtain below is the same as that obtained
supposing that ρ varies discontinuously at some interfaces [see Platzman (1984) for the
treatment of discontinuities]. Partial integration, the use of ∇2Ψ ′ = −4πG∇(ρd) [see
Lambeck (1980), p. 7], and that ρ = 0 over the spherical surface Sa leads to

J̃ = − 1

4πG

∫

Ba

Ψ ∇2Ψ ′dV .

Partial integration twice and the use of ∇2Ψ = 0 in Ba implies that

J̃ = − 1

4πG

{∫

Sa

Ψ (∇Ψ ′ · er )d S −
∫

Sa

Ψ ′(∇Ψ · er )d S

}
.

Then, by using the solid harmonic decomposition of Ψ ′ and Ψ in Eq. (93) the integral
becomes

J̃ = 1

4πGa

∑
n

(2n + 1)
∫

Sa

Ψ nΨ ′
nd S.

Finally, taking the time average of this equation we obtain

J = 〈 J̃ 〉 = 1

4πGa

∑
n

(2n + 1)
∫

Sa

〈Ψ nΨ ′
n〉d S, (100)

that is similar to Eq. (94) of Zschau and Platzman. Since Ψ is dominated by Ψ 2, all terms
but those of second-degree can be neglected in the above formula, so

J = 5

4πGa

∫

Sa

〈Ψ 2Ψ
′
2〉d S, (101)

that is similar to Eq. (95).
The same reasoning that lead to Eq. (98) shows that the average planetary tidal balance

of energy can be written as

J = I◦
2

〈TrAB〉 = I◦
2

1

T

∫ T

0
TrABdt. (102)

Finally, multiplying both sides of the equation of motion (36) by I◦
2 B, using the constraints

B = B1+B̃1 andB = B2+B̃2, using the relationsΛ1 = α1B = η1
˙̃B1 andΛ2 = α2B = η2

˙̃B2,
which are similar to those in Eq. (20), and using Eq. (102) we obtain

J = 1

T

∫ T

0

I◦
2

{
−μ|Ḃ|2 + γ |B|2 + α1|B1|2 + α2|B2|2

}
dt = 1

T

∫ T

0
(−2LB)dt, (103)
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that is similar to Eq. (99). Therefore, J is related to the Lagrangian functionLB given in Eq.
(23) in the same way as the rate of dissipation of tidal energy W is related to the dissipation
function D given in Eq. (23).
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