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ABSTRACT

The gut microbiome of vertebrates is capable of numerous biotransformations of bile acids, which
are responsible for intestinal lipid digestion and function as key nutrient-signaling molecules. The
human liver produces bile acids from cholesterol predominantly in the A/B-cis orientation in which
the sterol rings are “kinked”, as well as small quantities of A/B-trans oriented “flat” stereoisomers
known as “primary allo-bile acids”. While the complex multi-step bile acid 7a-dehydroxylation
pathway has been well-studied for conversion of “kinked” primary bile acids such as cholic acid
(CA) and chenodeoxycholic acid (CDCA) to deoxycholic acid (DCA) and lithocholic acid (LCA),
respectively, the enzymatic basis for the formation of “flat” stereoisomers allo-deoxycholic acid
(allo-DCA) and allo-lithocholic acid (allo-LCA) by Firmicutes has remained unsolved for three
decades. Here, we present a novel mechanism by which Firmicutes generate the “flat” bile acids
allo-DCA and allo-LCA. The BaiA1 was shown to catalyze the final reduction from 3-oxo-allo-DCA to
allo-DCA and 3-oxo-allo-LCA to allo-LCA. Phylogenetic and metagenomic analyses of human stool
samples indicate that BaiP and BaiJ are encoded only in Firmicutes and differ from membrane-
associated bile acid 5a-reductases recently reported in Bacteroidetes that indirectly generate allo-
LCA from 3-oxo-A*-LCA. We further map the distribution of baiP and bai/ among Firmicutes in
human metagenomes, demonstrating an increased abundance of the two genes in colorectal
cancer (CRC) patients relative to healthy individuals.
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Introduction carboxyl group." When bile acids reach the terminal

ileum, they are actively transported across the epithe-

Bile acid synthesis in the liver represents a major route
lium into portal blood and returned to the liver in

for removal of cholesterol from the body and bile
acids function as an emulsifying agent for the diges-
tion of lipid-soluble dietary components in the aqu-
eous lumen of the small bowel.' In humans, the liver
synthesizes two abundant primary bile acids, cholic
acid (CA; 3a-,70-,12a-trihydroxy-5p-cholan-24-oic
acid) and chenodeoxycholic acid (CDCA; 3a-,7a-

a process known as enterohepatic circulation (EHC).
Daily, several hundred milligrams of bile acids escape
EHC and enter the large intestine. Colonic bacteria
are capable of carrying out numerous biotransforma-
tions of primary bile acids to diverse secondary bile
acids in the large intestine. The composition of intest-

dihydroxy-5p-cholan-24-oic acid) from cholesterol.
Before active secretion from the liver, bile acids are
conjugated to either taurine or glycine at the C-24

inal and fecal bile acids in germ-free animals reflects
the biliary composition.””> Meanwhile, in conven-
tional animals with a normal gut microbiota, fecal
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bile acid composition is diversified from only a few
primary bile acids synthesized by the host to an esti-
mated ~400 secondary bile acid products.>” Bacterial
modifications to bile acids provide a form of inter-
domain communication given that beyond mere
lipid-digesting detergents, bile acids are important
nutrient-signaling molecules.® Indeed, microbial
metabolism of bile acids is widely recognized to con-
tribute to numerous human disorders including, but
not limited to, cancers of the liver”'® and colon,"
obesity, type 2 diabetes, nonalcoholic fatty liver dis-
ease (NAFLD),'*" cholesterol gallstone disease,'*"”
Alzheimer’s disease,'>'” and cardiovascular disease.'®

A myriad of microbial bile acid biotransforma-
tions occur in the large intestine and include two key
transformations. First, the conjugated bile acids are
hydrolyzed to unconjugated bile acids and glycine or
taurine by bile salt hydrolase (BSH)."” Second, the
unconjugated primary bile acids CA and CDCA are
converted to deoxycholic acid (DCA; 3a-,120-
dihydroxy-5p3-cholan-24-oic acid) and lithocholic
acid (LCA; 3a-hydroxy-5p-cholan-24-oic acid)*
via 7a-dehydroxylation, respectively. BSH (EC
3.5.1.24) enzymes are widely distributed among pre-
dominant microbial phyla within the domains
Bacteria and Archaea inhabiting the human GI
tract and catalyze the substrate-limiting deconjuga-
tion of bile acid amides."® The resulting major sec-
ondary bile acids routinely measured in human fecal
samples are unconjugated derivatives of DCA and
LCA.”® A bile acid inducible (bai) regulon encoding
enzymes involved in the conversion of CA to DCA
(Figure 1), and CDCA and ursodeoxycholic acid
(UDCA; 3a-,7B-dihydroxy-53-cholan-24-oic acid)
to LCA has been elucidated over the past three
decades in strains of Lachnoclostridium scindens
(formerly Clostridium scindens), Peptacetobacter hir-
anonis (formerly Clostridium hiranonis), and
Lachnoclostridum hylemonae (formerly Clostridium
hylemonae).” Discovery and characterization of bai
genes have allowed recent studies to extend the
species distribution of 7-dehydroxylating bacteria
into new families within the Firmicutes through
bioinformatics-based searches of metagenomic
sequence databases.”*” Similarly, comparison of
the distribution of bai genes between fecal

metagenomes obtained from healthy and disease
cohorts has also enabled the association of the abun-
dance of bai genes with risk for adenomatous
polyps® or colorectal cancer.”* This agrees with
bile acid metabolomic studies that demonstrate
increased fecal and serum DCA and LCA derivatives
in subjects at high risk for CRC.*7*° Conversely,
lower abundance of bai genes is associated with
bile acid dysbiosis characterized by increased fecal
conjugated primary bile acids in inflammatory
bowel diseases.”"*?

There are additional bai genes yet to be accounted
for in strains of L. scindens that result in the formation
of stereoisomers of DCA and LCA known as “second-
ary allo-bile acids”. In 1991, Hylemon et al.** reported
that allo-deoxycholic acid (allo-DCA; 3a-,12a-
dihydroxy-5a-cholen-24-oic acid) formation is a CA-
inducible side-product of bile acid 7-dehydroxylation
by L. scindens. During the conversion of cholesterol to
the primary bile acids CA and CDCA, the liver
enzyme A*-3-ketosteroid-5B-reductase (3-oxo-A*-
steroid-5B-reductase; AKR1D1) saturates the A*-
bond generating steroid A/B rings in the cis-
orientation which appear “kinked” (Figure 1). When
CA is transported into bacteria expressing bai genes,
the first oxidative steps of bile 7-dehydroxylation,
catalyzed by BaiA and BaiCD, “resetting” A/B ring
stereochemistry through formation of the 3-keto-A*
structure.”® This is followed by the rate-limiting 7a-
dehydration (BaiE).** The BaiCD was shown to then
re-establish stereochemistry by catalyzing the conver-
sion of 3-oxo-A*-DCA (120-hydroxy-3-ox0-5@-chol
-4-en-24-oic acid) to 3-oxo-DCA (12a-hydroxy
-3-0x0-5B-cholan-24-oic acid), which is further
reduced by BaiAl and BaiA2 to DCA.” The current
model of bile acid 7a-dehydroxylation suggests that
another enzyme, currently unknown, acts on 3-oxo-
A*-DCA to form the alternative stereoisomer, 3-0xo-
allo-DCA  (12a-hydroxy-3-oxo-50-cholan-24-oic
acid), which is reduced by another unknown reduc-
tase to allo-DCA. Secondary allo-bile acids have
a “flat” shape owing to hydrogenation that results in
an A/B-trans orientation (Figure 1). While few studies
have reported measurement of allo-DCA and allo-
LCA (3-ox0-50-cholan-24-oic acid), two studies
have shown these bile acids are enriched in the feces
of patients with CRC.>>*” Derivatives of allo-LCA are
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Figure 1. A proposed pathway for the 7a-dehydroxylation of cholic acid (CA) and chenodeoxycholic acid (CDCA) to
deoxycholic acid (DCA) and allo-deoxycholic acid (allo-DCA), and lithocholic acid (LCA) and allo-lithocholic acid (allo-LCA).

BaiB, Bile acid CoA ligase; BaiA, 3a-hydroxysteroid dehydrogenase; BaiCD, 3—dehydro—A4—7a—oxidoreductase; BaiE, 7a-dehydratase; BaiF,
CoA transferase; BaiH, 3-dehydro-A*-7B-oxidoreductase. The enzymes involved in the sequential reduction of 3-oxo-A*-DCA and allo-

DCA are currently unknown.

also reported to be enriched in Japanese
centenarians,”® although there is a paucity of mea-
surement of secondary allo-bile acids across popula-
tions and disease states. Thus, determining the gene(s)
encoding reductases in L. scindens and other gut
microbes responsible for the formation of allo-DCA
and allo-LCA is of biomedical importance.

We recently reported genome-wide transcrip-
tome profiling of L. scindens ATCC 35704 in the
presence of CA and DCA and identified a potential
candidate bile acid-inducible 3-oxo-A*-5a-
reductase.” Here, we confirm that this candidate

bile acid-inducible gene encodes a novel bile acid
3-ox0-A*-50-reductase responsible for secondary
allo-bile acids formation. We have named this
gene in L. scindens ATCC 35704 the baiP gene.
We previously reported identification of the bai]
gene as part of a polycistronic operon in L. scindens
VPI 12708 and L. hylemonae DSM 15053, whose
function remained unknown.*’ Our current study
reports that the bai] gene also encodes a bile acid
3-ox0-A*-5a-reductase. The baiP and bai] genes are
distributed solely among the Firmicutes.
Identification of these bai genes may provide the
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ability to predict and potentiate the formation of
alternative forms of secondary bile acids whose ring
structures are “flat” rather than the “kinked” form
produced by the host. Indeed, we developed
Hidden Markov Models (HMMs) of bai proteins
and determined the distribution of baiP and baiJ in
human metagenomes, demonstrating increased
abundance in colorectal cancer (CRC) patients rela-
tive to healthy individuals.
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Results

The HDCHBGLK_03451 gene from L. scindens ATCC
35704 encodes a bile acid 50-reductase, yielding
secondary allo-bile acids

Prior work established that allo-DCA is a CA-
induced side-product of CA metabolism in cell-
extracts of L. scindens VPI 12708 (Figure 1). We
previously identified L. scindens ATCC 35704 gene
HDCHBGLK_03451 as CA-inducible and suggested
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Figure 2. The baiP gene from L. scindens ATCC 35704 encodes a bile acid 5a-reductase. (a) Formation of bile acid stereoisomers
after reduction of 3-oxo-A*LCA and 3-oxo-A*-DCA by 5a-reductase. (b) Gene organization of baiP with genomic context and domain
structure of BaiP. (c) Cloning strategy for heterologous expression of N-terminal his-tagged recombinant BaiP in E. coli BL21(DE3). SDS-
PAGE confirms expression of 60.5 kDa recombinant BaiP. (d) Representative LC/MS chromatograms after resting cell assay with E. coli
BL21(DE3) pETduet_Control or pETduet_BaiP incubated in anaerobic PBS containing 50 uM 3-oxo-A*-LCA (Top panels 1 & 2) or 50 pM
3-0x0-A*-DCA (Bottom panels 3 & 4). Standards are shown in Panel 5 (bottom). (e) Time course of 3-oxo-allo-LCA production by the
E. coli BL21(DE3) pETduet_BaiP strain. Data points indicate the mean concentration of 3-oxo-allo-LCA + SD (three biological replicates).



this is a likely candidate for bile acid 5a-reductase®
(Figure 2a). The gene HDCHBGLK_03451 encodes
a 563 amino acid protein comprising FMN (flavin
mononucleotide) and FAD (flavin adenine dinu-
cleotide)-binding domains (Figure 2b). The
HDCHBGLK_03451 gene from L. scindens ATCC
35704 was codon-optimized for E. coli and over-
expressed in E. coli (Figure 2c¢) for resting cell assays
with bile acid intermediates (Figure 2d). The stereo-
chemistry of the A/B ring junction is lost during the
steps leading up to and following 7a-dehydration of
CA (BaiE)," resulting in formation of a 7a-deoxy
-3-oxo-A*-intermediates of DCA or LCA, respec-
tively, which are reduced by the BaiH yielding
3-oxo-A*-intermediates.’® The 3-oxo-A-*
intermediate is then predicted to yield either 3-oxo-
DCA (BaiCD) or 3-oxo-allo-DCA (BaiP). The same
enzymatic steps are involved in the conversion of
CDCA to 3-oxo-A*-LCA followed by conversion to
3-ox0-LCA (3-0x0-5B-cholan-24-oic acid) or 3-oxo-
alloLCA (3-oxo0-50-cholan-24-oic acid) by BaiCD or
BaiP, respectively (Figure 1).

We therefore chemically synthesized 3-oxo-A*-
DCA and 3-oxo-A*-LCA and incubated these sub-
strates (50 uM) with E. coli expressing
HDCHBGLK_03451 under anaerobic conditions
in PBS. When 3-oxo-A*-LCA was present as the
substrate, 3-oxo-allo-LCA (RT = 2.30 min; m/
z = 373.3) was synthesized, but not 3-oxo-LCA
(RT = 2.50 min; m/z = 373.3) (Figure 2d). The 6 h
reaction yielded 7.00 = 0.46 pM 3-oxo-allo-LCA
(Figure 2e). Similarly, incubation of resting cells
with  3-ox0-A*-DCA  yieldled a product
(RT = 1.08 min; m/z = 389.26) consistent with
3-oxo-allo-DCA (RT = 1.08 min; m/z = 389.26),
but not 3-oxo-DCA (RT = 1.20 min; m/
z = 389.26) (Figure 2d). These data confirm that
HDCHBGLK 03451 encodes a novel bile acid 5a-
reductase, and we propose the name baiP for this
gene (See Supplementary material, Figure S1).

We previously reported a cortisol-inducible
operon (desABCD) in L. scindens ATCC 35704
encoding steroid-17,20-desmolase (DesAB) and
NADH-dependent steroid 20a-hydroxysteroid
dehydrogenase (DesC).** DesC reversibly forms
cortisol and 20a-dihydrocortisol,** and DesAB cat-
alyzes the side-chain cleavage of cortisol yielding
11B-hydroxyandrostenedione (11 [S—OHAD).43
Because substrates and products in the desmolase
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pathway have 3-oxo-A*-structures analogous to
3-0x0-A*-DCA and 3-oxo-A*-LCA, we next per-
formed resting cell assays with E. coli strain expres-
sing the BaiP enzyme. LC/MS analysis of reaction
products indicates that cortisol and 113-OHAD
were not substrates for BaiP (Figure S2).

Phylogenetic analysis of BaiP followed by
functional assay reveals the baiJ gene also
encodes bile acid 5a-reductase

Having provided experimental evidence that baiP
encodes an enzyme with bile acid 5a-reductase activ-
ity, we wanted to determine the phylogeny of the
BaiP from L. scindens ATCC 35704. A subtree of the
>1,400 sequences representing close relatives of the
BaiP from L. scindens ATCC 35704 was generated
(Figure 3a). The proteins most closely related to BaiP
from L. scindens ATCC 35704 in the “BaiP Cluster”
were from Lachnoclostridium strains MSK.5.24,
GGCC_0168, and Lachnospiraceae bacterium
5_1_57FAA. Additional FAD-dependent oxidore-
ductase BaiP candidates from a penguin isolate,
Proteocatella sphenisci DSM 23131 (76% sequence
identity), and P. hiranonis'>** (72% sequence iden-
tity) were also identified at high bootstrap values
(90-100%). Previous work established bai genes in
P. hiranonis,* although the present data provide first
indication that P. hiranonis has the potential to form
secondary allo-bile acids (Figure 3a, 3b). P. sphenisci
has also been reported to encode the bai polycistro-
nic operon,”"** and our demonstration that
P. sphenisci harbors baiP indicate that secondary
allo-bile acids may constitute part of the bile acid
metabolome of penguin guano (Figure 3b).

A second closest FAD-dependent oxidoreduc-
tase cluster (~45% ID) to BaiP from L. scindens
ATCC 35704 was composed of the previously
named Bai] proteins from L. scindens VPI 12708,
L. hylemonae DSM 15053, and P. hiranonis
DSM13275, as well as Dorea sp. D27, and an
unclassified Clostridium sp. (“Bai] Cluster”). Prior
work established a novel bai operon in which the
bai] gene is adjacent to the baiK gene on
a polycistronic operon in L. scindens VPI 12708
and L. hylemonae DSM 15053.*° Evidence was
also presented that L. scindens VPI 12708 and
L. hylemonae DSM 15053 formed allo-DCA.*® It
was then reported that the BaiK is a paralog of
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Figure 3. Large scale phylogenetic analysis of BaiP from L. scindens ATCC 35704 reveals baiJ gene from C. scindens /Pl 12708
encodes a bile acid 5a-reductase. (a) Maximum-likelihood tree of >2,300 protein sequences from NCBI's non-redundant database
that were similar to BaiP from L. scindens. The subtree containing BaiP from L. scindens formed two clusters containing BaiP sequences
(Purple) from other Firmicutes known to convert CA to DCA. The second cluster contains Bail proteins, representing several strains
known to convert CA to DCA. (b) Arrangement of genes in the bile acid inducible (bai) operon in various species of bile acid 7a-
dehydroxylating gut bacteria. The gene encoding enzymes carrying out bile acid metabolism in gut bacteria capable of producing
secondary allo-bile acids. Biochemical pathway leading to secondary allo-bile acid formation is shown in Figure 1. (c) Cloning strategy
for baiJ gene from L. scindens VPI 12708 and SDS-PAGE after purification of recombinant His-tagged BaiJ. (d) Representative LC/MS
chromatographs after resting cell assay with E. coli BL21(DE3) pETduet_Control or pETduet_BaiJ incubated in anaerobic PBS containing
50 uM 3-oxo-A*-LCA (Top panels 1 & 2) compared to pETduet_BaiP (Panel 3). Panels 4 & 5 display chromatograms of reaction products
formed after incubation of E. coli BL21(DE3) pETduet_Control or pETduet_BailJ incubated in anaerobic PBS containing 50 pM 3-ox0-A*-
DCA compared to pETduet_BaiP (Panel 6). Standards are shown in Panel 7 (bottom). (e) Time course of 3-oxo-allo-LCA production by
the E. coli BL21(DE3) pETduet_BaiJ strain. Data points indicate the mean concentration of 3-oxo-allo-LCA + SD (two biological
replicates)



(b)

Lachnoclostridium scindens VPI 12708

GUT MICROBES (&) €2132903-7

P
barh ||| bais baif Y| baiG D[ bail  >[pail> —

AAC45410 45411
P

—

4' baiJ >|

ACF20978 ACF20979 ACF20980

Lachnoclostridium hylemonae DSM 15053

45413 45414 45415

E TspO

P07914

45416

45417 45418

P,
barA }J—{ baiB ) baicD Y bai£ Y[ baif Y| baiG > baiti

“BaiJ”
. LAJLEIBI 01436 01437 01438 01439 01440 01441 01442
e Cluster
baiJ baiK [ bail | ban >
01704 01705 01706 01707 5790
Peptacetobacter hiranonis DSM 13275
P .
barA || baiB ) baicD ) baiE Ypain2{ baiF | baiG > bait
GF422_RS_01185 01190 01195 01200 01205 01210 01215
[eaiv > < baip | —
03100 00792 01991
Lachnoclostridium scindens ATCC 35704
P
barA }—q bai8 ) baicD Y bai€ dbain2] baiF Y| baic > baih  [bail> —
HDCHBGLK_01430 01431 01432 01433 01434 01435 01436 01437
P TspO
h Ey RN | «g,ip
02470 03018 03451 Clust
uster

Proteocatella spaenicus DSM 23131
P

Q baiB ) baicD M baie dlbaia2] pair Y| bai6 Y[ bait

G588_RS0105955 01431

Figure 3. (b) (Continued).

BaiF in L. scindens VPI 12708, and both proteins
catalyze bile acid coenzyme A transferase from the
end-product secondary bile acids, DCA~SCoA and
allo-DCA~SCoA, to primary bile acids including
CA, CDCA, allo-CA, and UDCA.* The baiJ gene
has been shown previously to be enriched in the gut
microbiome in mouse models of liver cancer and
CRC,”** diseases reported to be enriched in sec-
ondary allo-bile acids in the biliary pool in the few
studies that have measured them.”” Taken together,
the close phylogenetic clustering of Bai] with BaiP
indicates that the bai] gene may also encode a bile
acid 50-reductase isoform (Figure 3a, 3b). 244

01432 01433 01434 01435 01436
0105615 0105590

To test this hypothesis, we cloned and overex-
pressed the bai] gene from L. scindens VPI 12708
(accession number: ACF20978) in E. coli BL21(DE3)
(Figure 3c), and measured conversion of 3-0x0-A*-
LCA and 3-oxo-A*-DCA in resting cell assays
(Figure 3d). When 3-oxo-A*-LCA (RT = 1.60; m/
z=371.25) was the substrate, a product eluting at the
same position as 3-oxo-allo-LCA (RT = 2.29; m/
z = 373.27), but not as 3-oxo-LCA (RT = 2.45; m/
z = 373.26), was observed. An anaerobic resting cell
assay (6 h) resulted in the formation of 4.4 + 0.54 uM
3-oxo-allo-LCA (Figure 3e). Similarly, when 3-oxo-
A*-DCA (RT = 0.90; m/z = 387.25) was the substrate,
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Figure 3. (c) (Continued).

a product that eluted at the same position as 3-oxo-
allo-DCA (RT = 1.08; m/z = 389.26), and different
from 3-oxo-DCA (RT = 1.20; m/z = 389.27), was
observed (Figure 3d). These results establish
a function for the bai] gene product and indicate
that strains of L. scindens and other bile acid 7a-
dehydroxylating bacteria encode distinct bile acid
5a-reductase isoforms.

BaiP and BaiA1 catalyze consecutive final
reductive steps in the formation of allo-DCA and
allo-LCA

Having established that BaiP converts 3-oxo-A*-
LCA to 3-oxo-allo-LCA, we next sought to identify
an enzyme from L. scindens ATCC 35704 catalyzing
the final reductive step from 3-oxo-allo-LCA to allo-
LCA. There is compelling evidence that BaiAl and
BaiA2 enzymes catalyze the first oxidative and last
reductive steps in the pathway.”>**** This comes
from substrate-specificity and kinetic analyses of
BaiAl and BaiA2 showing that 3-oxo-DCA and
3-0x0-LCA are substrates*® and by the observation
that BaiA is sufficient for the final reductive step
yielding DCA.> Prior work established that the
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baiA genes encode bile acid 3a-hydroxysteroid dehy-
drogenase (3a-HSDH) that catalyze the first oxida-
tion step, formation of 3-oxo-7a-hydroxy-5p3-bile
acids, and the final reductive step generating
7-deoxy-3a-hydroxy-5p-bile acids.”” However, the
ability of BaiA enzymes to recognize allo-bile acids
has not been established (Figure 4a). The baiAl gene
from L. scindens ATCC 35704 was codon-optimized
for E. coli and overexpressed in E. coli alone or in
combination with baiP (Figure 4b). Whole cell E. coli
assays with overexpressed BaiAl converted 3-oxo-
allo-LCA (RT = 2.30 min; m/z = 373.2) to a product
consistent with allo-LCA (RT = 2.74 min; m/

= 375.3), but not LCA (RT = 2.68 min; m/
z = 375.3). E. coli expressing both BaiP and BaiAl
converted 3-oxo-A*-LCA (RT = 1.65 min; m/
z = 371.3) to allo-LCA (RT = 2.74 min; m/
z = 375.3) and 3-0x0-A*-DCA (RT = 0.75 min; m/
z = 387.3) to allo-DCA (RT = 1.51 min; m/z = 391.3)
confirming the role of BaiP and BaiAl in the coop-
erative catalysis of the two final steps in formation of
secondary allo-bile acids (Figure 4c).

A previous bioinformatics study hypothesized
based on gene context and annotation that
CLOSCI_00522, a gene directly downstream from



baiN (CLOSCI_00523), encodes a predicted
NAD(FAD)-utilizing dehydrogenase involved in
the final reductive step®" (Figure S1). This gene
was named “baiO”.’>' An organism may encode
several proteins from different lineages that have
similar catalytic activity. Indeed, the BaiN>* is pre-
dicted to catalyze similar sequential reactions to
BaiH and BaiCD.” We therefore tested the hypoth-
esis that the previously annotated baiO encodes
either a bile acid 3-oxo-A*-reductase and/or bile
acid 30-HSDH. We cloned the baiO in pETduet
and verified the expression after His-tag purifica-
tion and SDS-PAGE (Figure Sla, S1b). Analysis of
bile acid products after 24 h incubation of E. coli
expressing BaiO enzyme in a resting cell assay with
either 3-oxo-LCA, 3-oxo-DCA (Figure Slc, S1d),
3-0x0-A*-LCA, or 3-oxo-A*-DCA (Figure Sle,
S1f), did not yield a detectable product by LC/MS.
While this does not disprove that CLOSCI_00522 is
involved in bile acid metabolism, we were not able
to confirm its function.

The distribution of baiP and baiJ genes in public
human metagenome datasets

Having shown that BaiP clusters with the pre-
viously identified Bai] from L. hylemonae DSM
15053, the next objective was to determine the
presence of bai genes involved in bile acid 7-dehy-
droxylation among bacterial genomes from human
stool samples. We utilized reference sequences of
BaiP and Bai] as well as BaiE and BaiCD (Figure 5a)
to generate HMMs in order to search public human
metagenomic databases. We expected that the
occurrence of BaiE and BaiCD which are co-
transcribed on the multi-gene bai operon will coin-
cide with the relative abundances of BaiP and BaiJ.
As expected, genes for BaiE and BaiCD as well as
BaiP and Bai] were observed to have similar relative
frequency (1% and 0.9% of total metagenome
assembled genomes (MAGs), respectively). All
genes were largely represented by unclassified
Firmicutes and Lachnospiraceae. (Figure 5a).
Representative genera were analyzed to identify
candidates which possess multiple genes of the Bai
operon which revealed that unclassified Firmicutes,
unclassified Lachnospiraceae, and Flavonifractor
harbored all four genes analyzed. This pathway
analysis also revealed the novel finding that
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Flavonifractor and Pseudoflavonifractor harbor
genes for Dbile acid 7-dehydroxylation.
Intriguingly, while bai genes represented approxi-
mately 1% of total MAGs, genes were detected in
approximately one third of subjects (BaiCD 35%,
BaiE 35%, Bai] 30%, and BaiP 28%). An analysis of
differences in gene presence among healthy sub-
jects and those with adenoma and carcinoma
revealed that the genes had the greatest abundance
in patients with carcinoma, and that the genes
baiCD, baiE, and bai] were significantly associated
with carcinoma (Figure 5b, Table S4, S5)

Discussion

The results of the current study add to a growing
literature demonstrating that the colonic microbes
are capable of “resetting” stereochemistry of sterols
undergoing enterohepatic circulation through
expression of 5a-reductase and 5P-reductase
enzymes. So far, two mechanisms have been iden-
tified: (1) A direct mechanism whereby bacteria
encoding the multi-step bile acid 7a-
dehydroxylation pathway convert primary bile
acids to either secondary bile acids via BaiCD/
BaiN or as shown herein secondary allo-bile acids
via BaiP/Bai] activities; and (2) an indirect mechan-
ism in which certain species of Bacteroidetes con-
vert 5B-secondary bile acids DCA and LCA to
3-oxo-A*-intermediates, followed by reduction to
secondary allo-bile acids.>® The current work is
thus a significant advance toward determining the
enzymatic basis for the formation of secondary
allo-bile acids by the gut microbiome (Figure 6).
Bile acid intermediates in the 7a-dehydroxylation
pathway have been determined previously. Bjorkhem
et al.”>! utilized [3[3-3H] [24-'*C] and [5[3—3H]
[24-'*C] labeled cholic acid in whole cells and cell
extracts of L. scindens VPI 12708, observing loss of
both 3f- and 5B-hydrogens during conversion of CA
to DCA.” Administration of [3—"H] [24-C'*C] CA
and [5[5—3 H] [24-C™C] CA to volunteers followed by
analysis of tritium loss after extraction from duodenal
aspirates confirmed that 3-oxo-A*-bile acid inter-
mediates were formed during conversion of CA to
DCA.> Subsequent work incubating [24-'*C] CA
with cell extracts of L. scindens VPI 12708 revealed
a multi-enzyme pathway necessary to convert CA to
DCA (and CDCA to LCA).”? Hylemon and Bjorkhem
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(1991) isolated nine [24-'*C] CA intermediates after
incubation with cell-free extracts of CA-induced
whole cells of L. scindens VPI 12708 providing the
biochemical framework to search for enzymes
involved in bile acid 7a-dehydroxylation.>
Subsequent work determined that bile acid 7a-
dehydroxylation proceeds by two oxidation steps
yielding a 7a-hydroxy-3-oxo-A*-intermediate, the
substrate for the rate-limiting enzyme, bile acid 7a-
dehydratase (BaiE).***">® Removal of the C7-
hydroxyl yields a 7-deoxy-3-oxo-A*-intermediate
which is then reduced by flavoproteins BaiN>’ or
BaiH>® to a 7-deoxy-3-oxo-A*-intermediate. The
BaiCD and BaiA isoforms then convert 7-deoxy-
3-oxo-A*-intermediates to DCA or LCA.*>* One of
the bile acid-inducible [24-'*C] CA metabolites iden-
tified was [24-'*C] allo-DCA, indicating that
L. scindens possesses an enzyme with bile acid 5a-
reductase distinct from BaiCD (bile acid 5f-
reductase).”” The current results establish conclusively
that the baiP and bai] genes encode bile acid 5a-
reductases in different strains of L. scindens and
related Firmicutes that catalyze the formation of allo-
DCA and allo-LCA.

Previous work also demonstrated that BaiAl and
BaiA2 catalyze both the initial oxidation and final
reduction in the formation of DCA and LCA.>>*
However, a recent report named a gene
(CLOSCI_00522) adjacent to baiN, the “baiO” that
encodes a predicted 61 kDa flavin-dependent dehy-
drogenase proposed to catalyze the final reductive
step in the pathway.”’ We tested both BaiAl and
BaiO for reduction of allo-DCA and allo-LCA.
While the function of CLOSCI_00522 in bile acid
metabolism remains unclear, our results have
extended the functional role of the BaiAl. We
determined for the first time that this enzyme con-
verts 3-oxo-allo-DCA and 3-oxo-allo-LCA to allo-
DCA and allo-LCA, respectively.

The functional role of the previously reported
bai]KL operon in L. scindens VPI 12708 and
L. hylemonae DSM 15053 has also been extended
by the current study.*’ Ridlon and Hylemon (2012)
reported that BaiK and BaiF catalyze bile acid~CoA
transferase from secondary bile acids, including
allodeoxycholyl~SCoA, to primary bile acids.*’
The bai] gene was annotated as “flavin-dependent
fumarate reductase” and “3-ketosteroid-A’-
dehydrogenase”, and is co-expressed with baiKL

under the control of the conserved bai
promoter.”” We previously observed bile acid
induction of baiJKL genes by RT-PCR*’ and RNA-
Seq”* in L. hylemonae DSM 15053. Also, the bai]
gene was reported to be enriched in the gut micro-
biome in mouse models of liver cancer and
CRC.>** Fecal secondary allo-bile acids have also
been reported to be enriched in GI cancers.*’

Phylogenetic analysis of BaiP from L. scindens
ATCC 35704 revealed two clusters harboring
Firmicutes encoding the bai pathway, many of
which, such as P. hiranonis, L. hylemonae, and strains
of L. scindens, are known to convert CA and CDCA to
DCA and LCA, respectively. These clusters are also
represented by taxa such as Dorea sp. D27,
P. sphenisci, and Oscillospiraceae MAGs whose gen-
ome sequences contain bai operons.”"** Clusters with
more distant homologs of BaiP are also worth exam-
ining in future studies for novel bile acid 3-oxo-A*-
reductases. Mining human metagenomic datasets for
“core” Bai proteins (BaiCD, BaiE) as well as BaiP and
Bai] sequences confirmed that these enzymes are only
encoded in Firmicutes. Roughly a third of healthy,
adenoma, and carcinoma subjects had detectable
BaiE enzymes representing ~1% of MAGs.
A combination of low abundance bile acid 7-dehy-
droxylating Firmicutes and stringency of the HMM
search likely explains the low representation of sub-
jects with detectable Bai enzymes. Intriguingly, and in
line with previous reports,”* Bai enzymes are enriched
in CRC subjects relative to healthy subjects.

There is a paucity of studies on secondary allo-bile
acids, and the literature which exists is conflicting as to
whether to regard these hydrophobic “flat” bile acids
as beneficial, disease promoting, or contextually
important.’*>** Recent work measured the second-
ary allo-bile acid iso-allo-LCA in fecal samples at an
average concentration of ~20 uM, and that low micro-
molar levels, such as those achieved in our resting cell
assays, inhibit the growth of gram-positive pathogens
including Clostridioides difficile®® (Figure 6). There is
a recent growing interest in the immune mechanisms
of action of secondary bile acid derivatives and iso-
mers in the colon. Secondary bile acid derivatives,
including 3-oxo-DCA, 3-oxo-LCA, iso-DCA (3p,
12a-dihydroxy-5p-cholan-24-oic acid), iso-LCA (3p-
hydroxy-5p-cholan-24-oic acid), and certain second-
ary allo-bile acids (e.g. iso-allo-LCA: 3B-hydroxy-5a-
cholan-24-oic acid), regulate the balance of regulatory



T cells (Treg) and pro-inflammatory Ty17 cells by
promoting expansion of Tregs.”>>’ The current
work is thus an important contribution in a rapidly
evolving area of the role of diverse bile acid metabo-
lites generated by the gut microbiome on mechanisms
underlying host health and disease.

Materials and methods
Bacterial strains and chemicals

E. coli Topl0 [F- mcrA A(mrr-hsdRMS-mcrBC)
¢80lacZAM15 AlacX74 recAl araD139 A(ara-leu)
7697 galU galK rpsL (Str™) endAl nupG] competent
cells from Invitrogen (Carlsbad, CA, USA) were used
for manipulation of plasmids, and E. coli BL21(DE3)
[F—, ompT, hsdSB(rB— mB-), gal, dcm, rnel31 (DE3)]
was also purchased from Invitrogen and used for
protein expression. 3-oxo-A*-LCA, 3-oxo-allo-LCA,
3-0x0-LCA, allo-LCA, LCA, and 3-oxo-DCA were
purchased from Steraloids (Newport, RI, USA).
Isopropyl (-D-1-thiogalactopyranoside (IPTG) was
purchased from Gold Biotechnology (St. Louis, MO,
USA). All other reagents were of the highest possible
purity and purchased from Fisher Scientific
(Pittsburgh, PA, USA).

Bile acid synthesis

Authentic 3-oxo-A*-DCA and allo-DCA were
synthesized as previously described®® and con-
firmed by nuclear magnetic resonance (NMR)
spectroscopy (Fig. 83, $4).

Cloning of bai operon genes from L. scindens
strains

The strains/plasmids, primers, and synthetic DNA
sequences used in this study are listed in Table S1,
$2, and S3, respectively. First, baiP gene encoding
FAD-dependent oxidoreductase and baiAl gene
encoding 3a-HSDH from L. scindens ATCC 35704,
bai] gene encoding FAD-dependent oxidoreductase
from L. scindens VPI 12708, and baiO encoding
a predicted 61 kDa flavin-dependent dehydrogenase
were codon-optimized for E. coli and synthesized
using gBlocks service from Integrated DNA
Technologies (IDT, IA, USA). To construct a BaiP,
Bai], BaiO or BaiA1 expression plasmid (pBaiP, pBai],
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pBaiO or pBaiAl), a DNA fragment (vector fraction)
was amplified from the pETduet plasmid using
a primer pair of VI-F and V1-R, VI-F and VI1-R,
V1-F and V1-R, or V2-F and V2-R, respectively.
Another DNA fragment (insert fraction) was ampli-
fied from the synthetic oligomers of BaiP, BaiJ, BaiO
or BaiAl using a primer pair of BaiP-F and BaiP-R,
BaiJ-F and BaiJ-R, BaiO-F and BaiO-R or BaiAl-F and
BaiA1-R, respectively. The two pairs of PCR products
were ligated together by in vitro homologous recom-
bination using a Gibson assembly cloning kit (NEB,
Boston, MA, USA), respectively. For construction of
a BaiP and BaiAl co-expression plasmid (pBaiP-A1l),
a DNA fragment (vector fraction) was amplified from
the pBaiP plasmid using a pair of the primers V2-F
and V2-R, and another DNA fragment (insert frac-
tion) was amplified from the synthetic oligomer of
BaiAl using a pair of the primers BaiAl-F and
BaiA1-R. The two PCR products were ligated together
by the Gibson assembly cloning kit (NEB)

Recombinant plasmids (Table S1) were trans-
formed into chemically competent E. coli Top10 cells
via heat-shock method, respectively, plated, and
grown for overnight at 37°C on lysogeny broth (LB)
agar plates supplemented with appropriate antibiotics
(Ampicillin: 100 pg/ml). A single colony from each
transformation was inoculated into LB medium (5 ml)
containing the corresponding antibiotic. The cells
were subsequently centrifuged (3,220 x g,
10 min, 4°C) and plasmids were extracted from the
cell pallets using QIAprep Spin Miniprep kit (Qiagen,
CA, USA). The sequences of the inserts were con-
firmed by Sanger sequencing (ACGT Inc, Wheeling,
IL, USA).

Heterologous expression and purification of Bai
enzymes in E. coli

For protein expression, the extracted recombinant
plasmids were transformed into E. coli BL21(DE3)
cells by use of electroporation method, respectively,
and cultured overnight at 37°C on LB agar plates
supplementary with appropriate antibiotics. Selected
colonies were inoculated into 10 mL of LB medium
containing the corresponding antibiotic and grown
at 37°C for 6 h with vigorous aeration. The pre-
cultures were added to fresh LB medium (1 L),
supplemented with appropriate antibiotics, and
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aerated at 37°C until reaching an ODgg (optical
density of a sample measured at a wavelength of
600 nm) of 0.3. IPTG was added to each culture at
a final concentration of 0.1 mM to induce and the
temperature was decreased to 16°C. Following 16 h
of culturing, cells were pelleted by centrifugation
(4000 x g, 30 min, 4°C) and resuspended in 30 ml
of binding buffer (20 mM Tris-HCl, 300 mM NaCl,
10 mM 2-mercaptoethanol, pH 7.9). The cell sus-
pension was subjected to an ultra sonicator (Fisher
Scientific) and the cell debris was separated by cen-
trifugation (20,000 x g, 40 min, 4°C).

The recombinant protein in the soluble fraction
was then purified using TALON Metal Affinity
Resin (Clontech Laboratories, CA, USA) per man-
ufacturer’s protocol. The recombinant protein was
eluted using an elution buffer composed of 20 mM
Tris-HCl, 300 mM NaCl, 10 mM 2-mercaptoetha-
nol, and 250 mM imidazole at pH 7.9. The resulting
purified protein was analyzed using sodium dode-
cyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE).

Whole cell bile acid conversion assay

E. coli BL21(DE3) strains harboring the con-
structed plasmids were cultured aerobically at
25°C on LB medium (10 mL) supplementary
with appropriate antibiotics and expressed the
corresponding proteins by IPTG induction at
25°C. Following 16 h of culturing, the strains
were pelleted by centrifugation (3,220 x g,
10 min) and washed twice with anaerobic PBS
solution. The washed E. coli strains were inocu-
lated along with 50 puM bile acid substrates
(3-0x0-A*-LCA, 3-0x0-A*-DCA, or 3-oxo-allo-
LCA) into 10 mL of PBS and incubated anaero-
bically at room temperature for 12 h. The whole
cell reaction cultures were centrifuged at
3,220 x g for 10 min to remove bacterial cells
and adjusted the pH of the supernatant to pH
3.0 by adding 25 puL of 2 N HCI Bile acid
metabolites were extracted by vortexing with
two volumes of ethyl acetate for 1 to 2 min.
The organic layer was recovered and evaporated
under nitrogen gas. The products were dissolved
in 200 pL methanol and analyzed by liquid
chromatography-mass spectrometry (LC-MS).

Liquid chromatography-mass spectrometry

LC-MS analysis for all samples was performed using
a Waters Acquity UPLC system coupled to a Waters
SYNAPT G2-Si ESI mass spectrometer (Milford, MA,
USA). For the bile acids as substrates and products of
whole cell bioconversion assay by the E. coli strains
expressing BaiP, Bai], or BaiP-A1 enzymes (3-oxo-A*-
LCA, 3-ox0-A*-DCA, 3-0x0-LCA, 3-oxo-allo-LCA,
3-0x0-DCA, LCA, allo-LCA, DCA, and allo-DCA)
analysis, LC was performed with a Waters Acquity
UPLC HSS T3 C18 column (1.8 pum particle size,
2.1 mm x 100 mm) at a column temperature of
40°C. Samples were injected at 0.2 pL. Mobile phase
A was a mixture of acetonitrile and methanol (50/50,
v/v), and B was 10 mM ammonium acetate. The
mobile phase composition was 75% of mobile phase
A and 25% of mobile phase B and ran an isocratic
mode. The flow rate of the mobile phase was 0.5 mL/
min. MS was carried out in negative ion mode with
a desolvation temperature of 400°C and desolvation
gas flow of 800 L/hr. The capillary voltage was
2,000 V. Source temperature was 120°C, and the
cone voltage was 30 V. Chromatographs and mass
spectrometry data were analyzed using Waters
MassLynx software. Analytes were identified accord-
ing to their mass and retention time. For quantifica-
tion of 3-oxo-allo-LCA produced by the E. coli BL21
(DE3) expressing BaiP/Bai] strains, a standard curve
was obtained, and then 3-oxo-allo-LCA was quanti-
fied based on the standard curve (Figure S5). The limit
of detection (LOD) for 3-oxo-A*-LCA, 3-oxo-allo-
LCA, and allo-LCA was 0.1 pmol/L.

For the cortisol and 113-OHAD as substrates
and products of whole cell bioconversion assay
by the E. coli strain expressing BaiP enzyme
analysis, LC was performed with a Waters
Acquity UPLC BEH C18 column (1.7 um parti-
cle size, 2.1 mm x 50 mm) at a column tem-
perature of 40°C. Samples were injected at
0.2 pL. Mobile phase A was a mixture of 95%
water, 5% acetonitrile, and 0.1% formic acid, and
B was a mixture of 95% acetonitrile, 5% water,
and 0.1% formic acid. The mobile phase gradient
was as follows: 0 min 100% mobile phase A,
0.5 min 100% A, 6.0 min 30% A, 7.0 min 0%
A, 8.1 min 100% A, and 10.0 min 100% A. The
flow rate of the mobile phase was 0.5 mL/min.
MS was carried out in positive ion mode with
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Figure 4. Recombinant BaiA1 from L. scindens ATCC 35704 catalyzes the final reductive step in the formation of allo-DCA and
allo-LCA. (a) Formation of bile acid stereoisomers after reduction of 3-oxo-allo-LCA and 3-oxo-allo-DCA by 3a-HSDH and gene
organization of baiAT in L. scindens ATCC 35704. (b) Cloning strategy of baiA1 and baiA1 + baiP in pETduet. SDS-PAGE of His-tagged
purified recombinant BaiA1 and BaiA1 + BaiP expressed in E. coli BL21(DE3). (c) Representative LC/MS chromatograms after resting cell
assay with E. coli BL21(DE3) pETduet_Control or pETduet_BaiA1 incubated in anaerobic PBS containing 50 pM 3-oxo-allo-LCA (Top
panels 1 & 2), E. coli BL21(DE3) pETduet_BaiP-BaiA1 incubated with 50 pM 3-oxo-A*-LCA (Panel 3) and E. coli BL21(DE3) pETduet_BaiP-
BaiA1 incubated with 50 pM 3-oxo-A*-DCA (Panel 4). Standards are shown in Panel 5 (bottom). The overall two-step reaction is shown

on the panels.

a desolvation temperature of 450°C and desolva-
tion gas flow of 800 L/hr. The capillary voltage
was 3,000 V. Source temperature was 120°C, and
the cone voltage was 30 V.

NMR spectroscopy

To determine the molecular structure of the chemi-
cally synthesized 3-oxo-A*-DCA and allo-DCA at the
atomic level, NMR spectroscopy was perfor
med.'H-NMR spectra were recorded on a ]NM-ECA
-500 spectrometer (JEOL Co., Tokyo, Japan) at

500 MHz, with pyridine-Ds as the solvent. Chemical
shifts are given as the d-value with tetramethylsilane
(TMS) as an internal standard. The abbreviation used
here: s, singlet; d, doublet; bs, broad singlet.

Phylogenetic analysis

Sequences for phylogenetic analyses were retrieved
from NCBI's NR protein database using the
sequence of HDCHBGLK_03451 as the query and
limiting the number of resulting database matches
to five thousand and allowing a maximum
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Figure 5. Hidden-Markov Model search reveals enrichment of bai genes in colorectal carcinoma. (a) Distribution of microbial
genomes with putative 5a-reductase genes (baiP and baiJ) present across the five metagenomic studies. (b) Dot plots of selected genes
related to allo-bile acids production across three disease states: carcinoma, adenoma, and healthy. The size of each dot indicates the
proportion of participants with at least one copy of the gene in their bacterial metagenomic assembled genomes (MAGs) and the color
of each dot indicates the mean number of MAGs with that gene in the subset of participants that have at least one copy of the gene.

alignment E-value of 1E-10 for BLASTP v. 2.12.0 +.-
> The retrieved alignments showed high sequence
conservation, therefore the worst E-value seen in
the alignments was about 3E-37.

Given the high sequence similarities observed in
the search step, sequences were clustered with
USEARCH v. 11.0.667%° to remove redundancy

from the dataset. The cluster_fast command was
used with an identity threshold of at least 95% to
cluster sequences. Each cluster was represented in
the phylogenetic analysis by one representative, the
centroid sequence. The only exception was the
sequences in the same cluster as the query sequence
used above, in which case all sequences from the
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deconjugated, mainly in the large intestine, by diverse gut microbial taxa. Free cholic acid is imported into a few species of Firmicutes
that harbor the bai regulon. Direct Pathway: After several oxidative steps, and rate-limiting 7a-dehydration, 3-oxo-A*-DCA becomes
a substrate for BaiCD forming DCA or BaiP/BaiJ) forming alloDCA. Indirect Pathway: DCA is imported into Bacteroidetes strains that
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secondary bile acids such as DCA and secondary allo-bile acids are inhibitory toward C. difficile vegetative cells in the Gl tract.
Secondary bile acids, including DCA and allo-DCA, are associated with increased risk of colorectal cancer (CRC).

cluster were used in the analysis, instead of just the
centroid. Clustering resulted in 1,603 sequences
included in the downstream analyses.

Centroids 25% shorter or longer than the average
sequence length calculated for the whole dataset
(596 amino acids) were removed from the dataset,

thus keeping in the analysis only sequences with at
least 446 and at most 744 amino acids in length.
The 1,460 protein sequences remaining in the data-
set were aligned by MUSCLE v. 3.8.1551°" and the
best-fitting sequence substitution model was iden-
tified using ModelTest-NG v. 0.1.7.°> Phylogenetic
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tree inference was performed using the maximum
likelihood criterion as implemented by RAXML v. -
8.2.12,%° using the WAG sequence substitution
model with empirical residue frequencies, gamma-
distributed substitution rates, and bootstrap pseu-
doreplicates (whose number, 250, was determined
automatically by the program at run-time). The
resulting phylogenetic tree was edited with
TreeGraph2 v. 2.15.0-887°* and Dendroscope
v. 3.7.6% and further cosmetic adjustments were
performed with the Inkscape vector editor
(https://inkscape.org/ last accessed on January,
20th, 2022).

Bai gene identification in MAG database

A database of publicly available MAGs from five
cohorts varying in CRC status was previously anno-
tated for open reading frames and used for this
study.®*®” Custom Hidden Markov Model (HMM)
profiles were created for each of the 4 genes of interest
(baiCD, baiE, baiP, and bai]) by creating an alignment
of reference protein sequences in this study and blastp
results with 60% identity to those reference sequences
and then passing the alignments to hmmbuild to
create an HMM profile. Initial HMM cutofts were
generated by querying protein sequences from the
Human Microbiome Project.’® To further refine
HMM profile cutoffs, blast databases were made of
each alignment and a concatenated file of predicted
open reading frames from the 16,936 MAGs
described earlier were queried against the alignment
databases. The MAG database was searched using the
HMM profiles with finalized cutofts and hmmsearch
within HMMER 3.1b2. All custom HMM profiles
used for these searches can be found at: https://
github.com/escowley/BileAcid_Lee].

Summary calculations and statistical analysis for
association of Bai genes with disease state from
MAG database

Summary calculations of number of gene hits in the
MAG database, number of participants with the
gene of interest, and disease information were per-
formed in R and can be found in Table S4. Methods
for determining associations between Bai genes and
disease state were previously described.®® Briefly,
chi squared tests were performed on a dataset of

binarized participants that were designated as “pre-
sence” if any of their MAGs contained a copy of the
gene of interest or “absence” if none of their recov-
ered MAGs contained a copy of the gene of interest.
P-values less than 0.05 are designated as significant
(Table S5).
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