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1 | INTRODUCTION

This paper is mainly motivated by the fact that, in turbulence, numerous investigations assume often implicitly that the
closure relationships are additional constrains coupled with differential transport equations for the moments of hydrody-
namic quantities, resulting to an overdetermined system of equations. As it was noted by Chorin in [11], closure formulas in
turbulence are, as a rule, derived using empirical hypotheses and assumptions which are often poorly justified. With this,
the method of differential constrains suggested by Yanenko in [3] provides a symmetry analysis approach to investigation
of overdetermined systems on their compatibility. It is worth observing that the fundamental results on overdetermined
systems were obtained by Cartan quite long ago [12]. We can associate closure relationships with the (differential) con-
strains which present equations of invariant manifolds introduced in [13] for an arbitrary system of evolution equations.
Thisis anontrivial generalization of the notion of invariant set which appears in systems of ordinary differential equations.
The difficulties in propounding such a theory are that a straight-forward transfer of the known scheme of group analysis
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to finding invariant manifolds of PDEs is not impossible in general [15]. Several approaches to this problem were worked
out during a long history of studying invariant of the highest symmetries of differential equations and in some cases it
leads to successful attempts in deriving the invariant manifolds, see for details [13]. However, an important question is
whether a differential constrain to be an invariant manifold of PDEs is very effective verified by the direct methods [13].

To the author’s knowledge the approach based on the method of differential constrains which leads to the explicit
justification of the closures of several models of turbulence has not received due attention. Unlike the first works [1], [14],
which proposed this approach, were published in the form of short communications. In [14], we considered a shear-
free mixing turbulent layer. It was established that the tensor-invariant Hanjalic-Launder (Zeman-Lumley) closure for
an unstratified (stratified) flow is a compatible differential constrain of the model. Local equilibrium approximations of
second-order moments were analyzed in [1] wherein the problem of dynamics of a far plane turbulent wake is considered.
It was announced that the application of the LEA is associated with vanishing the Poisson bracket, that is, {e, U;} = 0 for
the deviation of the averaged longitudinal velocity component U; and of the turbulence energy e. The results of numerical
experiments carried out in a far turbulent wake were presented in the form of graphs and table.

The aim of this paper is the presentation of a full version of the results obtained in [1]. Namely, we give the background
of the method of differential constrains adopted to the closure problem in turbulence. Then, we prove the results obtained
in [1], that provide the correctness of replacing the corresponding second-order moment by the LEA. It will be based
on the following elements: (a) To obtain the conditions which guarantee the compatibility of the closure in the model
under consideration. (b) To verify that the condition obtained (vanishing the Poisson bracket {e, U;} = 0) in the item a) is
realized in the model and it will be done by numerical experiments. A discussion and summary of results are given in the
conclusion Section 5.

2 | BACKGROUND

This section has the purpose to summarize the basic definitions from the symmetry analysis of differential equations to
define several constructions of the method of differential constrains.
Every dynamic system of ordinary differential equations:

x! = fix), o)

where 1 < i < nand x = (xq, ..., X ), generates the local one-parameter group G with the vector field

Vf:fla%+---+f”ain. 2
A manifold M given by the equations
g ==g"®, k<n, 3)
is an invariant manifold of the group G if the following equalities
Vigh|, =0 1<is<k 4
hold. Invariant sets of the dynamical system (1) are defined as invariant manifolds of the one-parameter group G.
Consider the system F of evolution equations
ul = Fi(t,x,ul,...,ui,... ), 1<i<m, ©)

where 1 = (14, ..., 4,), ul/{ = 6"”1,11‘/696111 6x;l1”. Let L be a system of differential equations of the variables ¢, x, ..., X,,.
Denote by [L] the set generated by the system L and all its differential consequences. Let [L], denote the system and all
its consequences in the variables xy, ..., x,. We use the notations D;, D, ..., D, for the operators of total differentiation
with respect to ¢, x1, ... , X;,.
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Consider the formal vector field generated by the system (5)

Vi = g + iFli + iD“(Fi)i (6)
Poorm & oui T 4 oul,’
i=1 i=1 a
where a = (a4, ...,a,) and D% = D;‘ll fo;’
A manifold H given by the equations
hitxul, . uk ) =0, 1<j<I (7)

is an invariant manifold (compatible differential constrain) of the system (5) if
Vi(h))] =0, 1<j <L ®

The definition of invariant manifold is given for systems of evolution equations. Sometimes, we can rewrite nonevolu-
tion equations in the form of evolution equations. Exemplarily, we consider the equation

by = exp(¢) + exp(—2¢), (9)

by the change of variables
t=n+§ x=in-9 (10)

and introducing new dependent variable ¢ = ¢,, the nonevolution equation (9) is reduced to the evolution system
$=%, Y = —Pux +exp(@) + exp(—29). ()
The invariance condition can be written in the following equivalent form:
Dz(hj)|[F]0 |[H]o =0, 1<j<], (12)

where F is the system (5).
For example, the Kolmogorov-Petrovskii-Piskunov type equation

U = Uy, — 2u° + 2u (13)
admits an invariant manifold of the form
h(X, Uy, Uyy) = Uy + Uy —2U3 +2u =0 (14)

that follows immediately by the direct verification of the criterion (12).
Invariance of manifolds is closely connected with the existence of solutions to overdetermined systems. The following
result holds:

Theorem 2.1 [13]. Assume that the system F with sufficient smooth F' has an invariant manifold H which is solved with
respect to higher derivatives. Then there exists a smooth solution of F at least locally.

Notice that invariant manifolds are generated not only by symmetries of differential equations but also by conservation

laws. Namely, the symmetries and the variational derivatives of the densities of conservation laws satisfy the determining
equations of the form

m
Dihi = ) alfDX(M) + ..alf Rt i=1,..,m, (15)
=1
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where a;k depend on ¢, x, the functions u!, and their derivatives. With this, Equations (15) have to be hold due to the
system (5). It is obvious that if k' satisfy the determining equations (15) then

D[(hi)|[(5)]0 g, =0 1<i<m, (16)
where [H], denotes the equations
ht=..=h"=0. a7
Consider now a system of equations which are nonevolution in general
F"(xo,x,ul,...,ui,...) =0, 1<i<m, x=x,..,x" 18)

Arbitrary m functions hl, .. ,hm depending on x, X, ul,..,um, ug{, ... define the differential operator

H* = Z (h"% + Z D“(hi)i), (19)

i=1 la|>1 d ”éc
where DY = fo(‘)’ DZ(‘)) and
hl=...=h"=0. (20)
Equations (20) are compatible differential constrains of the system (18) if

H*(F) + Bh 15, =0, 2D

where F = (F!,...,F™).
If equations (18) is a system of evolution equations then the conditions (21) takes the form

D/h' + L’(h)|(18) =0, (22)
where
Li(h)|(20) =0. (23)
Itis evident that in this case the equations H describe an invariant manifold. For example, the nonlinear Poisson equation
Uyy + Uy, = aulnu (24)
admits the following invariant manifold (compatible differential constrain)
u, +S(y)u =0, (25)
where S(y) satisfies the equation
Sy, —28S, —aS =0. (26)

In the next section, we apply the concept of compatible differential constrain or invariant manifold to a closure proce-
dure for the dynamics of a far plane turbulent wake.



3 | LOCAL EQUILIBRIUM APPROXIMATION: A DIFFERENTIAL CONSTRAIN
OF THE MODEL

In this section, we consider the local equilibrium approximation, the relationship between the second-order correlations
and the mean-flow gradients which is applied for a closure of the models at the level of the equations for the second-
order correlations. This method for calculating turbulent flow has been pursued in [8-10] by Donaldson, Rodi, Hanjalic,
Launder (see more references in these papers) for different transport modeling. Sometimes, the name of this modeling,
an invariant model [2] that refers to the constrains imposed on the choice of model terms used for closure. It means that
the model term has to exhibit at least the same symmetry properties and dimensionality as the term it replaces.

We consider the dynamics of a far plane turbulent wake [8, 16] and the following simplest mathematical model will be
used in the forthcoming analysis [5-7, 17]:

0% = %(u’v’% 27)
Og—i = %”tlg_; + P —¢, (28)
02—; = %v,zg—; +2(C.,P-Crye), (29)
UO%(M’U’ = %vtS%(u’v’) —Cy, (u’v’)g + C¢2e%, (30)

where Uy, is the remote velocity, U; = Uy — U is the defect of the averaged longitudinal velocity component, the angle
brackets (. ) mean averaging. The coefficients of turbulent viscosity v, , v, and v,, have the form

th ]
1 'u?, 7/[2 = O_—, 7/[3 = CSC/,( th, (31)
€

where e is the turbulence energy, € is the rate of dissipation of turbulence energy into heat. Here
ou,
P={W'v)y— 32
W (32)

describes the generation of turbulence energy. The quantities o, C¢ , C,, Cy, Cg,, Cy,, and C, are empirical constants
wherein Cy, = Cy C,,. Dimensionless variables are introduced by using the body diameter D and the velocity U as scales
of length and velocity.

The LEA means that there is no time evolution or spatial diffusion of the second-order correlations (see [2]). With this,
applying this concept to the model (27)-(30), we get the following representation for the tangential Reynolds stress (u/v’),
see [5-7, 9, 10, 17]:

e? dU oU
W'y = C“?a_yl = C#era—yl, (33)
where 7 = e/e. This relationship between the second-order correlation (u'v’) and the mean-flow gradient forms a first-
order closure. As it was noted in [2], this will be a valid approximation, provided (a) any changes in the mean flow are
very slow compared with the characteristic time of the turbulence and (b) spatial variations in the turbulence are small
over the scale length of turbulent motion. A particular region where both conditions are satisfied is in the constant flux
region of the boundary layer.

The relatively simple model presented here does suitable results over turbulent wakes. More general models for free
turbulent flows together with their invariant modeling can be found in [2, 5-7, 9, 10].

We believe that the verification of the LEA in general can be done by mathematical calculations based on the method
of differential constrains. We demonstrate it for the model prediction (33). As the basic result that uses this mathematical
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tool, we prove that the set

ouU
M= <e, 7,U, (u'v') © H(e,t,Up, (W'v'")) = W'v') — CMera—y1 = 0) (34)

is invariant under the flow generated by system (27)—(30). More exactly, the following result provides the criterion of the
invariance of M.

Theorem 3.1. Let (e, 7, Uy, (u'v")) be a sufficiently smooth solution of system (27)-(30). Let 6. = Ce, = 1 and suppose that
Cy, — Cy,Cy = Cy(C¢, — 1). Then the set M is an invariant manifold of system (27)-(30) at T = tj, = Uo_l(C€2 —1D(x + x)
if and only if the Poisson bracket {e, U} = 0.

First, we consider the equation for 7

or 10t ede (103 de P e d Jde 1
dx e€dx e2dx O <€ c3yth dy ¢ 1 €2dy 29y P C€2€)>
10 de 10 ot P 1 0C ode 1
({22~ 2,9€¢ 1O ot  »*_,_ L1 0O Tm_,O¢ 1
=U, <€ ayC“T eay + z 6yC“Te€5y + z 1 T3y . Teay €C€1P+C€2>. (35)
This equation has a solution of the form
7(x,y) = 7, = Uy ' (Ce, — D(x + x0) (36)

for o, = 1 (this value is recommended in [17]) and C, = 1 (the recommended value equals 1.4). In order to prove that M
is an invariant manifold of system (27)-(30), we have to very that the invariance condition (16) holds, that is,

D(H)laay, lian-coyt, = ©- (37)
The direct calculations of the left hand side of equation (37) give for ¢ = 7;,(x) the follows

aUl de 5U1 de aUl
Dx(H) = —EW(T],!XU()C# + C¢1C — C¢2) - ThUOC’“(aW - EW . (38)

Using the relationships between the constants

C¢2 — C¢1 CM = CM(C€2 -1), (39)
we have
de 0U de oU
Dx(H) = ThU()C’u <aa—yl - Ea_xl) = ThU()Clu{e, Ul}, (40)

where {, } denotes the Poisson bracket. Therefore, the invariance condition (37) holds for 7 = 7}, if the Poisson bracket
{e, U;} = 0. The example of flow with vanishing Poisson bracket is a flow with equal rates of the generation and dissipation
of turbulence energy, that is, P = €. In the next section, we present the results of the numerical validation of vanishing the
Poisson bracket {e, U;}. Numerical experiments are carried out for a far turbulent wake, that is, for the LEA model (27)-
(29), (33) or Model 1 and the classical model (27)-(30) or Model 2.

Remark 3.2. Using the constants Cy4, = 2.8, C,, = 0.09 and C,, = 1.95 recommended in [10], we find that the right-hand
side of the relation Cy, — C¢ C,, = C,(C,, — 1) equals 0.085. Therefore Cy, differs only slightly from Cy C,, = 0.252 that
is close to the value Cy4, = Cy C, recommended in [10], [17].



TABLE 1 Variation of §" as a function of the distance from the body

x/D mesh#1, &, mesh#2, 6,
700 0.427 -10~* 0.421-107*
800 0.359 -10~* 0.353-107*
900 0.305-107* 0.300-10~*
1000 0.256 - 10~ 0.252-10~*
1500 0.174-10~* 0.171-10~*
a) 0.04 — b) N
) J
- 1.6x10* 4
= _
=) “Qo ]
| 2 B
0.02 — 7
| 8.0x10° —
0 T T T T T T A 0.0 T T T T T —A——A
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FIGURE 1 Left panel (a): The deviation of the longitudinal velocity component U, . Right panel (b): The turbulence energy e

4 | RESULTS OF NUMERICAL EXPERIMENTS

We have carried out a series of numerical experiments. To perform such numerics, initial conditions are specified at
Xo/D = 625 which are in agreement with experimental data of the dynamics of a plane turbulent wake behind a round
cylinder [8], [16]. The initial distribution of the tangential stress (u’v’) is specified by the formula (33). A finite-difference
algorithm, its test and realization, and the results of its application to the problems of free turbulence were given in [18].
The calculations are based on the model (27)-(29), (33) (Model 1) and show that the finite-difference counterpart of the
Poisson bracket is close to zero for all mesh parameters. The calculations are performed with double accuracy. Table 1
presents the quantity

h ,h\n h ,hyn
max |(U1xey)j — (Ulyex)j

" = (41)

max; (| Ve[, [VAU, )

which is considered as a function of the distance from the body and, at x = x", characterizes the finite-difference counter-
part of the Poisson bracket. Here (Uf‘x) s (U{’y) js (efc’) js (e;‘) js (VhUy) ;j and (Vhe) ; are finite-difference approximations of
the first derivatives and gradients at the points (x”,yj) cx=x"=n-h,y= yj,j =12,..,n,— 1 Column I shows the
distance from the body x/D, and columns II, III present §” in the uniform meshes 1 — 2 with the parameters h, = 0.25,
h, = 0.05and h, = 0.125, h,, = 0.0125, respectively.

Figures 1 and 2 demonstrate the results of calculations which are carried out for Models 1 and 2. The data of defect of
the longitudinal velocity component U; and the turbulence energy e are presented on Figure 1, respectively, the rate of
energy dissipation ¢ together with the tangential Reynolds stresses (u'v’) are plotted on Figure 2. The calculations based
on Model 1 are shown by solid lines. The solid lines with triangles correspond to the data of numerical experiments based
on Model 2. The distance from the body x/D equals 650. The quantitieso. = 1,C,, =1,C,, = 1.95,C, = 0.09, Cy, = 2.8,
Cg, = 0.252, and C; = 0.1 are empirical constants.

It should be observed that the data wake parameters calculated for Models 1 and 2 are close to each other. This is in the
complete agreement with the assertion of Theorem 3.1. Notice that for the recommended values C,, = 1.44 and o, = 1.3
in [9] the numerical experiments also demonstrate turbulence data coinciding obtained for Models 1 and 2.
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FIGURE 2 Left panel (c): The rate of energy dissipation e. Right panel (d): The tangential Reynolds stresses (1/v’)

Thus, Theorem 3.1 and numerical experiments conducted show that the LEA is applicable for determining the tangen-
tial Reynolds stresses (u'v’) in the problem of dynamics of a far planar turbulent wake behind a body.

5 | CONCLUSIONS

The problem of the dynamics of a planar far turbulent wake has been studied numerically. Namely, the calculations
have been performed by using the hierarchy of mathematical models [2, 5-7, 9, 10, 17, 18] which also include the third-
order model.

The main aim of the paper is justification of the local equilibrium approximation applied for the tangential Reynolds
stresses (u’v’) by using Model 1. The main result is that a representation of (u’v’) in the form (33) presents the differential
constrain of the system (27)-(30). Theorem 3.1 gives also the criterion of compatibility of the overdetermined system (27)-
(30), (33) and this is vanishing the Poisson bracket {e, U; }. Numerical experiments demonstrate that {e, U;} = 0 within the
limits of numerical accuracy. Then, we showed that the numerical solutions of Models 1 and 2 are very close to each other
under the conditions of Theorem 3.1. Finally, we notice that (33) coincides with the well-known Boussinesq—Kolmogorov-
Prandtl relationship, see [9].
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