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1. INTRODUCTION

A sub-Riemannian manifold consists of a smooth n-dimensional manifold
M, and a smooth distribution D C T'M on M of constant rank n — k, en-
dowed with a smoothly varying positive definite metric tensor g. The length
is defined only for horizontal curves in M, i.e., curves which are everywhere
tangent to D. It was proven in [9] that a horizontal curve which minimizes
length is either a normal extremal or an abnormal extremal, where the two
possibilities are not mutually exclusive. This proof is obtained as an appli-
cation of the Pontryagin maximum principle of Optimal Control Theory; an
alternative proof of this fact obtained by variational methods is given in this
paper (Corollary 5.8).

A normal extremal is defined as a curve in M that is a solution of the sub-
Riemannian Hamiltonian H(p) = 3 g~ (p|p, plp) on TM?*,i.e., acurve that
is the projection on M of an integral line of the Hamiltonian flow H. Such
curves are automatically horizontal. An abnormal extremal can be defined as
a curve which is the projection on M of a non zero characteristic curve in
the annihilator D° C T M™*; a characteristic curve is a curve in D° which is
tangent to the kernel of the restriction to D° of the canonical symplectic form
of TM*.

As in the case of Riemannian geodesics, sufficiently small segments of a
normal extremal is length minimizing (see {9]); however, “most” abnormal
extremals do not have any sort of minimizing property (observe that the defi-
nition of abnormal minimizer does not involve the metric g).

The first example of a length minimizer which is not a normal extremal
was given in [11]. The goal of this paper is to discuss the theory of extremals
by techniques of Calculus of Variations and to give the basic instruments to
develop a variational theory (Morse Theory, Ljusternik—Schnirelman theory)
for sub-Riemannian geodesics. The results of this paper are used in (4], where
the aunthors consider the problem of existence and multiplicity of geodesics
joining a point and a line in a sub-Riemannian manifold (M, D, g), with
codim(D) = 1.

In {2, Theorem 1.17] it is proven that the normal sub-Riemannian ex-
tremals between two fixed points of a sub-Riemannian manifold are critical
points of the sub-Riemannian action functional. The proof is presented in
the context of the Malliavin calculus, employed to study some problems con-
nected with the asymptotics of the semi-group associated with a hypoelliptic
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diffusion. For this purposes, the author’s proof is restricted to the case that the
image of the normal extremal be contained in an open subset of M on which
the distribution D is globally generated by n — k smooth vector fields. In
this paper we reprove the result of [2, Theorem 1.17] under the more general
assumptions that:

o the vector bundle D is not necessarily trivial around the image of the
normal extremizer;

o the endpoints of the normal extremizers are free to move on two sub-
manifolds of M.

As to the first generalization of the extremizing property of the normal ex-
tremizers, it is interesting to observe that in the proof it is employed the La-
grangian multipliers technique that uses time-dependent referentials of D de-
fined in a neighborhood of the graph of any continuous curve in M. The ex-
istence of such referentials is obtained by techniques of calculus with affine
connections, and it is likely that the method of time-dependent referentials
may be applied to other situations where global geometrical results are to be
proven. For instance, in [7] the author proves a Morse Index Theorem for
normal extremizers, but in his proof he implicitly assumes the triviality of
the vector bundle D in a neighborhood of the curve. However, the arguments
presented could be made more precise by a systematic use of time-dependent
referentials.

Another observation that is worth making about the Lagrangian multipli-
ers is that, in the functional setup of the method, the constraint is given by the
kemnel of a suitable submersion (see formula (3)) from the set of H!-curves
in an open subset of M taking values in the Hilbert space of IR*-valued L2-
functions. This submersion is defined using time-dependent referentials of
the annihilator D° of D in the cotangent bundle TMM*, and the surprising
result is that such map fails to be a submersion precisely at the abnormal ex-
tremizers. We therefore obtain a new variational description of the abnormal
extremizers in a sub-Riemannian manifold.

Finally, it is important to emphasize the role of the endmanifolds P and Q
in the development of the theory. An interesting result is that, if either one
of the two is everywhere transversal to D, then the set of horizontal curves
between P and Q does not contain singularities (Proposition 5.4); in partic-
ular, all the sub-Riemannian extremizers between P and Q are normal. This
fact can be used in several circumstances: for instance, in Corollary 5.6 we
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obtain some information about the geometry of sub-Riemannian balls; more-
over, it is possible to obtain also some criteria to establish the smoothness for
abnormal extremizers (see Remark 5.7).

We outline briefly the contents of each section of this article.

In Section 2 we study the local geometry of the space of horizontal curves
joining two fixed points go and ¢, of M by two different techniques. On one
hand, this space can be described as the set of curves -y joining go and ¢
satisfying 6;(7) = 0, where 0, ...,0; is a local time-dependent referential
for the annihilator D° of D. On the other hand, the same space can be ob-
tained as the inverse image of ¢; by the endpoint mapping restricted to the set
of horizontal curves emanating from gg. We show that these two constraints
have the same regular points; such curves are called regular and a suitable
neighborhood of them in the space of horizontal curves joining go and ¢q; has
the structure of an infinite dimensional Hilbert manifold.

In Section 3 we define the normal extremals, also called normal geodesics,
in a sub-Riemannian manifold, using the Hamiltonian setup.

In Section 4 we study the image of the differential of the endpoint map- _
ping; to this aim we introduce an atlas on the space of horizontal curves
starting at qo.

Finally, in Section 5 we prove that a regular curve is a critical point of the
sub-Riemannian action functional if and only if it is a normal geodesic. We
also study the case of curves with endpoints varying in two submanifolds of
M. If we consider the space of horizontal curves joining the submanifolds
P and Q, then, provided that either P or Q is transversal to D, this set is al-
ways a Hilbert manifold. Moreover, the critical points of the sub-Riemannian
action functional in this space are those normal geodesics between P and
Q whose Hamiltonian lift annihilates the tangent spaces of P and Q at its
endpoints.

To conclude the paper, we present two short appendices. In Appendix A
we prove that every horizontal curve can be obtained as the reparameteriza-
tion of an affinely parameterized horizontal curve. In Appendix B we adapt
a proof of local optimality of normal geodesics due to Liu and Sussmann [9,
Appendix C] to prove that sufficiently small portions of normal geodesics are
length minimizers between an initial submanifold and a point.
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2. THE DIFFERENTIABLE STRUCTURE OF THE SPACE OF
HORIZONTAL CURVES

We give a couple of preliminary results needed to the study of the geom-
etry of the set of horizontal paths in a sub-Riemannian manifold. The main
reference for the geometry of infinite dimensional manifolds is [8]; for the
basics of Riemannian geometry we refer to [3].

Recall that a smooth map f : M +— N between Hilbert manifolds is a sub-

mersion at ¢ € M if the differential d f(z) : T, M > Ty, N is surjective; f
is a submersion if it is 2 submersion at every z € M.
Lemma 2.1. Let M, M, and M> be Hilbert manifolds and let f : M
M, g : M — M; be submersions. Let ;y € My, po € M and choose
z € 7Y (p1) N g~ (p2). Then, f|y-1(,) is a submersion at z if and only if
9l 5-1(py) is @ submersion at z.

Proof. We need to show that d f(z)|ker(ag(z)) is surjective onto Ty, M, if
and only if dg(z)|ker(as(s)) is Surjective onto Ty(,)M,. This follows from
a general fact: if T : V +— V) and S : V — V, are surjective linear maps
between vector spaces, then T'|k.r(s) is surjective if and only if Ker(7T') +
Ker(S) = V. Clearly, this relation is symmetric in S and T', and we obtain
the thesis. a

We give one more introductory result concerning the existence of time-

dependent local referentials for vector bundles defined in a neighborhood of
a given curve. We need the following definition:
Definition 2.2, Let (M, ) be a Riemannian manifold and x € M. A posi-
tive number r € IR™ is said to be a normal radius for z if exp, : B,(0) —
B, (z) is a diffeomorphism, where exp is the exponential map of (M, 7),
B,(0) is the open ball of radius r around 0 € T, M and B,(z) is the open
ball of radius r around z € M. We say that r is totally normal for z if ris a
normal radius for all y € B,(z).

By a simple argument in Riemannian geometry, it is easy to see that if
K C M is a compact subset, then there exists » > 0 which is totally normal
forall z € K.

Given an vector bundle 7 : £ — M of rank k over a manifold M, a time-
dependent local referential of £ is a family of smooth maps X; : U — ¢,
i=1,...,k, defined on an open subset U C IR x M such that {X; (¢, z)}X_,
is a basis of the fiber & for all (t,z) € U.
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Lemma 2.3. Let M be a finite dimensional manifold, let 7w : £ — M be a
vector bundle over M and let «y : [a,b] — M be a continuous curve. Then,
there exists an open subset U C IR X M containing the graph of v and a
smooth time-dependent local referential of £ defined in U.

Proof. We first consider the case that -y is a smooth curve. Let us choose
an arbitrary connection in £, an arbitrary Riemannian metric § on M and a
smooth extension «y : [a — €, b + €] — M of %, with € > 0. Since the image
of 7 is compact in M, there exists r > 0 which is a normal radius for all
v(t), t € [a — &,b + €]. We define U to be the open set:

U= {(t,x) ERxM:tecla—ebtef, z¢ B,('y(t))}.

Letnow X, ..., X be areferential of £ along +; for instance, this referential
can be chosen by parallel transport along -y relative to the connection on £.
Finally, we obtain a time-dependent local referential for £ in U by setting,
for (¢,z) € U and for i = 1,..., %, X(¢,z) equal to the parallel transport
(relative to the connection of &) of X;(t) along the radial geodesic joining
v(t) and z.

The general case of a continuous curve is easily obtained by a density
argument. For, let 4 : {a, b] — M be continuous and let » > 0 be a totally
normal radius for (t), for all t € [a, b]. Let v; : [a, b] — M be any smooth
curve such that dist(y(t),v1(t)) < r for all ¢, where dist is the distance
induced by the Riemannian metric § on M. Then, if we repeat the above
proof for the curve 7, the open set U thus obtained will contain the graph of
-, and we are done. a

Let us now consider a sub-Riemannian manifold, that is a triple (M, D, g)
where M is a smooth n-dimensional manifold, D is a smooth distribution in
M of codimension k and g is smoothly varying positive inner product on D.

A curve 7 : [a, b] — M is said to be D-horizontal, or simply horizontal,
if it is absolutely continuous and if 4(t) € D for almost all ¢ € [a, b]. As we
did in the proof of Lemma 2.3, we will use sometimes auxiliary structures
on M, which are chosen (in a non canonical way) once for all. We therefore
assume that g is a given Riemannian metric tensor on M such that glp = g,
that D; is a k-dimensijonal distribution in M which is complementary to D
(for instance, D; is the g-orthogonal distribution to D), and we also assume
that V is a linear connection in 7'M which is adapted to the decomposition
D & Dy, ie., the covariant derivative of vector fields in D (resp., in D;)
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belongs to D (resp., to D;). For the construction of these objects, one can
consider an arbitrary Riemannian metric g on M. Then, one defines D; as
the g-orthogonal complement of D and g|p, = g|p,; for the connection V,
it suffices to choose any pair of connections Vo and V; respectively on the
vector bundles D and D; and then one sets V = V @ V;. Observe that the
connection V constructed in this way is not torsion free; we denote by 7 the
torsion of V:

T(X,Y)=VxY - VyX - [X,Y].

Using Lemma 2.3, we describe D locally as the kernel of a time-dependent
IR*-valued 1-form:

Proposition 24. Let v : [a,b] ~— M be a continuous curve. Then, there
exists an open subset U C IR X M containing the graph of y and a smooth
time-dependent IR*-valued 1-form 0 defined in U, with Otz) : TeM — R¥
a surjective linear map and D, = Ker(0(, 5)) for all (t,z) € U.

Proof. Let £ be the subbundle of the cotangent bundle TM?* given by the
annihilator D° of D. Apply Lemma 2.3 to £ and set @ = (01,...,0;), where
{6:}%_, is a time-dependent local referential of £ defined in an open neigh-
borhood of the graph of +. O

Observe that, since D; is complementary to D, for all (¢, z) € U the map
0(,,,) :Dpr— Rk

is an isomorphism.

Let us now consider the following spaces of curves in M.

We denote by L2([a,b], IR™) the Hilbert space of Lebesgue square inte-
grable IR™-valued maps on [a, b] and by H*([a, b], R™) the Sobolev space
of all absolutely continuous maps z : [a,b] — IR™ having derivative in
L?([a,b], R™). Finally, we denote by H([a,b], M) the set of curves z :
[a,b] — M such that for any local chart (U,¢) on M, with ¢ : U C
M +— IR™, and for any closed interval I C z~1(U), the map ¢ o (z|r) is
in HY(I, R™). Itis well known that H ([a, b], M) is an infinite dimensional
smooth manifold modeled on the Hilbert space H([a, b], R™).
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For all pairs of points ¢, q1 € M, we define the following sets of curves
in M:

Hyy (2,8, M) = {z € H'(ja,, M) :2(0) = to};
Hj, g (Ia,8), M) = {z € H'([a, b}, M) : 3(a) = g0, 3(6) = a1 };
@ H(|a,b,D,M) = {x € H([a,b], M) : 2(t) € Dae. on [a, b]};

Hy,([a, 8], D, M) = H'([a,8), D, M) N Hy, ([a, b], M);

Hy, 0, ([2,8], D, M) = H'([a, }], D, M) N Hy, ;. ([a, b], M).

We prove that the sets Hy ([a, b, M), Hy, , (la,8; M), H'([a, b], D, M)
and Hy ([a,b], D, M), are smooth submamfolds of H'([a,b], M) for all
g0, 91 € M. However, in general, the space H, . ([a, b], D, M), consisting
of horizontal curves joining the two fixed points go and ¢, is not a subman-
ifold of H}, . ([a,b]; M), and this fact is precisely the origin of difficulties
when one tnes to develop a variational theory for sub-Riemannian geodesics.

In order to see that Hy ([a, b], M) and H} . ([a,b], M) are submanifolds
of H([a, b], M), sunply observe that the map

Eab 17— (v(a),7(b))

is a submersion of H!([a, b}, M) mto M X M.
Then, the sets Hy, ([a, b], M) = £, ({q0} x M) and H}, _. ([a, b], M) =
£; 3 (g0, q1) are smooth submanifolds of H 1([a, b], M).

As to the regularity of H] ([a, b], D, M), we will now show that this set
can be covered by a family of open subset {4, } of H}, ([a, ], M) such that
each intersection H} ([a, ], D, M)NU, is the inverse image of a submersion
of Uy in the Hilbert space L?([a, b], IR*). The regularity of H'([a, b}, D, M)
will follow by a similar argument.

To this aim, let 4o be a fixed curve in H} ([a, 5], M) and let U, C IR x
M be an open set containing the graph of g and that is the domain of the
map 6 of Proposition 2.4. Denote by H_ ([a, 5], M, U,,) the open subset of
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Hy,([a, b, M) consisting of those curves whose graphs is contained in U.,:

(2)
quo([a’ b]a M1U’Yo) =

{7 € HL ([a, 8], M) : (t,7(t)) € Uy, forall t € [a, b]}.

Let © : H, ([a,b], M,Uy) — L?([a,b], R¥) be the smooth map defined
by:

(3) ©(7)(t) = O(x )y (3(2))-

Clearly, Hy ([a, 5], M, U,,) N H}, ([a, ], D, M) = ©71(0).
Proposition 2.5. © is a submersion.

Proof. Clearly © is smooth because 8 is smooth. To compute the differential
of © we use the connection V adapted to the decomposition TM = D &
D introduced above. Let v € Hy ([a,b}, M,U,,) be fixed and let V €
Ty H} ([a,b], M), i.e., V is a vector field of class H! along -y with V(a) = 0.
We write V = Vp + Vp, with Vp(t) € D and Vp, (t) € D, for all t; using
the properties of ¥V we compute easily:
@

de(7)[vI(t) =

[Vv Bl () + e (Vi V) + e (m(V (), 4(1))),

where V-8 is the covariant derivative of 63 ).

Letnow f € L?([a, b], IR) be fixed; for the surjectivity of dO(vy) we want
to solve the equation in V: dB(-y)[V] = f. To this aim, we choose Vp, = 0,
and we get:
(5)
Beren(Vaw Vou) + [VV”l 0] ()

Since Oty : (P1)y) — IR* is an isomorphism, (5) is equivalent to a
first order linear differential equation in Vp,, that admits a unique solution
satisfying Vp, (a) = 0. Observe that since v € H([a, b], M), by (5) we get
that V is also of class H!, and we are done. O

Corollary 2.6. H'([a, b], D, M) and H} ([a, b], D, M) are smooth subman-
ifolds of H' ([a, b], M). O

(7)) + O,y (T (VD (), 7(1))) = [
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We now consider the endpoint mapping end : HJ, ([a, b], M) — M given

by:
end(y) = 7(b)-

It is easy to see that end is a submersion, hence we have the following:
Corollary 2.7. Let v € H] ([a, b], M) be fixed and let H,, ([a, b}, M, U.,),
© be defined as in (2) and (3).

Then, for all v € 671(0) Nend™(q1) = H} ,, ([a,], D, M), the re-
striction ©)| H ([0, M,Uyg)NH}, o ([,1,M) is a submersion if and only if the
restriction end| HY, (0,8, D,M) is a submersion.

Proof. 1t follows immediately from Lemma 2.1 and Proposition 2.5. O

Definition 2.8. A curve v € Hy, . ([a,b], D, M) is said to be regular if the
restriction end| H}, ([a,b1,D,M) is a submersion at «y. If  is not regular, then it
is called an abnormal extremal.

Observe that the notion of abnormal extremality is not related to any sort
of extremality with respect to the length or the action functional, but rather
to lack of regularity in the geometry of the space of horizontal paths. The
smoothness of length minimizing abnormal extremals is an open question.

3. NORMAL GEODESICS

In order to define the normal geodesics in a sub-Riemannian manifold we
introduce a Hamiltonian setup in T M* as follows.

Let us consider the cotangent bundle T M* endowed with its canonical
symplectic form w. Recall that w is defined by w = —d4, ¥ being the canon-
ical 1-form on TM* given by 9,(p) = p(dnp(p)), where 7 : TM* — M
is the projection, p € TM* and p € T,TM*. Let H : TM* > Rbea
smooth function; we call such a function a Hamiltonian in (T M*,w). The
Hamiltonian vector field of H is the smooth vector field on T'”M* denoted
by H and defined by the relation dH (p) = w(H(p),-); the integral curves
of H are called the solutions of the Hamiltonian H. With a slight abuse of
terminology, we will say that a smooth curve « : [a, b] — M is a solution of
the Hamiltonian H if it admits a lift T" : [a, b] — TM* that is a solution of
H.

More in general, one can consider fime-dependent Hamiltonian functions
on TM*, which are smooth maps defined on an open subset U of IR x TM*.
In this case, the Hamiltonian flow H is a time-dependent vector field in T M*,
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and its integral curves in T M* are again called the solutions of the Hamil-
tonian H.

A symplectic chart in TM? is a local chart taking values in R" @ R™*
whose differential at each point is a symplectomorphism from the tangent
space Tp,(TM*) to IR™ @ IR™* endowed with the canonical symplectic struc-
ture. Given a chart g = (qi,...,qn) in M, we get a symplectic chart (g, p)

on TM* where p = (p1,...,pn) is defined by p;(a) = a (3%). We de-

note by {3‘3—._, 3%,_-}, i,7 = 1,...,n, the corresponding local referential for
T(TM?*), and by {dg;,dp;} the local referential of T(T M*)*. We have:

n
-, OH &8 O0H @
w=2 dundp, H= Z(m—qﬁa—qﬂ)-

In the symplectic chart (g, p), a solution I'(t) = (g(t), p(t)) of the Hamilton-
ian H is the solution of the Hamilton equations:

dq oH

dt -~ op’
6)

dp _ OH

dt - Bq

Definition 3.1. A normal geodesic in the sub-Riemannian manifold (M, D,g)
is a curve v : [a,b] — M that admits a lift I : [a, b] — TM* which is a
solution of the sub-Riemannian Hamiltonian H : TM* — IR given by:

¢ H(p) =5 g l(pl'Dvpl'D)a

where g~ ! is the induced inner product in D*. In this case, we say that ' is a
Hamiltonian lift of .

The Hamilton equations for the sub-Riemannian Hamiltonian (7) will be
computed explicitly in Section S (formula (31)). It will be seen that the first
of the two equations means that the solutions in M are horizontal curves and
that T'lp = g(4, -) (see remark 5.3).

We remark that a normal geodesic need not be regular in the sense of Def-
inition 2.8, hence there are geodesics that are at the same time normal and
abnormal. Observe also that, in general, a normal geodesic -y may admit
more than one Hamiltonian lift I'. This phenomenon occurs precisely when
~ is at the same time a normal geodesic and an abnormal extremizer.
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4. ABNORMAL EXTREMALS AND THE ENDPOINT MAPPING

In this section we give necessary and sufficient conditions for a curve to
be an abnormal extremal in terms of the symplectic structure of the cotan-
gent bundle TM*. We describe a coordinate system in the Hilbert manifold
H_ ([a, b], M) which is compatible with the submanifold H, ([a, b], D, M).
This will provide an explicit description of the space T.,H,}O([a, b], D, M)
which will allow us to compute the image of the differential of the restriction
of the endpoint mapping to H}, ([a, b}, D, M).

Let M be a manifold endowed with a distribution D, with dim(M) = n
and codim(PD) = k. The sub-Riemannian metric will be irrelevant in the the-
ory of this section. Let U C IR x M be an open set and let X3,..., X, bea
time-dependent referential of 7'M defined in U. We say that such referential
is adapted to the distribution D if X3, ..., X,,_x form a referential for D.

It follows easily from Lemma 2.3 that, given a continuous curve 7 : [a, b] —
M, there exists an open set U C IR x M containing the graph of «y and a
referential of T M defined in U which is adapted to D. Namely, one chooses
a vector subbundle D, C T'M such that TM = D @ D; and then apply
Lemma 2.3 to both D and D;.

Given a time-dependent referential of TM defined in an open set U C
IR x M, we are going to associate to it a map

B : H'([a,b], M,U) — L*([a, b}, R™),

where H'([a, b], M, U) denotes the open set in H([a, b], M) consisting of
curves whose graph is contained in U. We define B by:

®) B(v) = h,
where h = (hy,...,h;) is given by
)] '7(t) == Zh{(t)X.’(t,’Y(t)),

=1
for almost all ¢ € [a, b]. The map B is smooth. It’s differential is computed
in the following:
Lemma 4.1. Let v € HY([a, b], M, U) and v be an H* vector field along ~.
Set h = B(7), 2 = dB,(v). We define a time-dependent vector field in U by

(10) X(t,z) = zn: hi(t)Xi(t,z), (t,z) €U

i=1
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and a vector field w along ~ by
an w(t) =Y z(t) Xi(t,7(t))-
i=1

Given a chart (qu, - .., qn) defined in an open set V.C M, denote by o(t),
X(t,q) and w(t) the representation in coordinates of v, X and w respec-
tively. Then, the following relation holds:

a2) 0 = Zr (1) + 300),

forallt € [a,b] such that 4(t) € V.

Proof. Simply consider a variation of -y with variational vector field v and
differentiate relation (9) with respect to the variation parameter, using the
local chart. O

Corollary 4.2. The restriction of the map B to the set
Hy (la,b), M,U) = H), ({a, b)), M) N H'([a, b], M, U)
is a local chart, taking values in an open subset of L*([a, b], R™).

Proof. For v € H} ([a,b], M) the tangent space T., H} (la, b}, M) consists
of those H! vector fields v along v such that v(a) = 0. For a fixed z €
L%({a, b), IR™), formula (12) is a first order linear differential equation for
1; Lemma 4.1 and standard results of existence and uniqueness of solutions
of linear differential equations imply that the differential of B at any v €
H; ([a, b], M, U) maps the tangent space T, Hy ([a, b], M) isomorphically
onto L%([a, b}, R™). It follows from the inverse function theorem that B is
a local diffeomorphism in H} ([a, b}, M, U). Finally, by standard results on
uniqueness of solutions of differential equations, we see that the restriction
othoH;o([a, b, M, U) is injective. O

If the referential X, . .., X, defining B is adapted to D, then a curve <y in
H,}o([a, b}, M, U) is horizontal if and only if B(y) = h satisfies h,_r41 =
ceo=hy=0.

This means that B is a submanifold chart for Hy ([a, b], D, M). This ob-
servation will provide a good description of the space T, H} ([a, b], D, M).

Let v € H) (la,], M,U) and set h = B(y). Define a time-dependent
vector field X in U as in (10). By Lemma 4.1, the kernel Ker dB, is the



NORMAL EXTREMIZERS IN SUB-RIEMANNIAN MANIFOLDS 14

vector subspace of 1o, H!([a, b], M) consisting of those v whose representa-
tion in coordinates ¥ satisfy the homogeneous part of the linear differential
equation (12), namely:

a3) 390 = 5o 1 0)500).

By the uniqueness of the solution of a Cauchy problem, it follows that, for all
t € [a, b], the evaluation map

KerdB, 3 v~ v(t) € T,y M

is an isomorphism. Therefore, for every t € [a,b] we can define a linear
isomorphism P; : Ty (;yM — T, (n M by:

(19) ®;(v(a)) =v(t), ve€ KerdB,.

Using the maps ®; we can give a coordinate free description of the differ-
ential of B, based on the “method of variation of constants” for solving non
homogeneous linear differential equations.

Lemma 4.3. Let v € H, ([a,b], M,U) and v € T,H} ([a,b], M). Set
h = B(v) and z = dB,(v). Define the objects X, w and ®; as in (10), (11)
and (14) respectively. Then, the following equality holds:

t
15) v(t) =&, / ®;1w(s)ds.

Proof. The right side of (15) vanishes at ¢ = a, therefore, to conclude the
proof, one only has to show that its representation in local coordinates sat-
isfies the differential equation (12). This follows by direct computation, ob-
serving that the representation in local coordinates of the maps ®; is a solu-
tion of the homogeneous linear differential equation (13). a

Corollary 4.4. Suppose that the referential X, . .., X,, defining B is adapted
to D. Let v be an horizontal curve in H} ([a,b], M,U). Then, the tangent
space T.,H‘}D([a, b, D, M) consists of all vector fields v of the form (15),
where w runs over all L? horizontal vector fields along ~.

Proof. Follows directly from Lemma 4.3, observing that B is a submanifold
chart for H, ([a, b], D, M), as remarked earlier. ]
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We now relate the differential of the endpoint map with the symplectic
structure of TM*. We denote by D C TM* the annihilator of D. The
restriction w|po of the canonical symplectic form of TM* to D° is in general
no longer nondegenerate and its kernel Ker(w|pe)(p) at a point p € D° may
be non zero. We say that an absolutely continuous curve 7 : [a, b] — D°is a
characteristic curve for D if

1(t) € Ker(w|pe)(n(t)),

for almost all ¢ € [a, b}.

We take a closer look at the kernel of w]p.. Let Y be a horizontal vector
field in an open subset of M. We associate to it a Hamiltonian function Hy
defined by

Hy(p) = p(Y(2)),

where z = w(p). We can now compute the w-orthogonal complement of
T,D° in T,TM*. Recall that Hy denotes the corresponding Hamiltonian
vector field in TM*.

Lemmad.5. Letp € TM® and set = = m(p). The w-orthogonal complement
of T, D° in T,TM* is mapped isomorphically by d=np, onto D,. Moreover, if
Y is a horizontal vector field defined in an open neighborhood of x in M,
then H y (p) is the only vector in the w-orthogonal complement of T,D° which
is mapped by dryp into Y (z).

Proof. The function Hy vanishes on D° and therefore w(ﬁy, ) = dHy
vanishes on T,D°. The conclusion follows by observing that, since w is non-
degenerate, the w-orthogonal complement of T, D° in T, T M* has dimension
n — k = dim(D,). (]

Corollary 4.6. The projection of a characteristic curve of D is automati-
cally horizontal. Moreover, let vy : [a,b] — M be a horizontal curve, let
X1,..., X, be a time-dependent referential of TM adapted to D, defined
in an open subset U C IR x M containing the graph of . Define a time-
dependent vector field X in U as in (10). Let 7 : [a, b] — D° be a curve with
m o1 = 4. Then ) is a characteristic curve of D if and only if 11 is an integral
curve of H X.

Proof. For p € D°, the kernel of the restriction of w to T, D? is equal to the
intersection of T, D° with the w-orthogonal complement of T,D° in T, T M*.
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By Lemma 4.5, it follows that the kernel of w|p. projects by d into D, and
therefore the projection of a characteristic is always horizontal.

For the second part of the statement, observe that for ¢ € [a,b], X(¢,-)
is a horizontal vector field in an open neighborhood of «(t) whose value at
7(t) is §(t). Therefore 1(t) is w-orthogonal to T, (,yD° if and only if 7(t) =

Hx(n(t))- : O

Corollary 4.7. Let~ : [a,b] — M be a horizontal curve and let X1, . .., X,
be a time-dependent referential of TM adapted to D, defined in an open
subset U C IR x M containing the graph of y. Let X be defined as in (10).
A curve 1) : [a,b] — D° with 7 o 1) = « is a characteristic of D if and only
if its representation 7(t) € IR™" in any coordinate chart of M satisfies the
JSollowing first order homogeneous linear differential equation:

d . dX 4]
(16) '&Z"(t) = ~a—q(t’ 7(t)) n(t)v
where X is the representation in coordinates of X.

Proof. Simply use Corollary 4.6 and write the Hamilton equations of Hx in
coordinates. a

Differential equation (16) is called the adjoint system of (13). It is easily
seen that 7] is a solution of (16) if and only if 7(¢)5(t) is constant for every
solution ¥ of (13). From this observation we get:

Lemma 4.8. Let y : [a,b] — M be a horizontal curve and suppose that
the referential X\, ..., Xy, defining ®, in (14) is adapted to D. Then a curve
7 : [a,8] — D° with w o § = v is a characteristic for D if and only if
n(t) = (27)~*(n(a)) for every t € [a,].

Proof. By Corollary 4.7 and the observation above we get that 7 is a char-
acteristic if and only if n(t)v(t) is constant for every v € KerdB,. The
conclusion follows. O

We can finally prove the main theorem of the section.
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Theorem 4.9. The annihilator of the image of the differential of the restric-
tion of the endpoint mapping to H,}o([a, b, D, M) is given by:
o
- Tm(d(endly o,0,00) () =
{n(b) : ) is a characteristic for Dandmon = fy}

Proof. By Lemma 4.4, we have:
(18)
Im (d(end] sy o ,0,00)(7)) =

b
{ & / & w(s) ds : wis a L? horizontal vector field along 7} .
a

By Lemma 4.8, if 7 is a characteristic with 7 o n = + then 77(b) annihilates
the right hand side of (18). Namely:

(19) ~
2 (s | "7 h(e) ds) = (@) n(a) (2 [ () a)

= (a) ( f " 07 w(s) ds) -/ " (@) w(s) ds
= [(@) n(@u(s) ds= [ n(spuls)ds =0

We have to prove that if ng € T’,(;) M* annihilates the righthand side of (18)
then there exists a characteristic 7 with 7 o n = «y and 7(b) = 9.

Define 7 by n(t) = (®§)~1(®} (o)) for all t € [a, b]. By Lemma 4.8, we
only have to prove that ([a, b]) C D°. Computing as in (19), we see that,
since 1y annihilates the righthand side of (18), then:

b
[ nteruts)as =o,
for any horizontal L? vector field w along . The conclusion follows. O

Corollary 4.10. The image of the differential of the restriction of the endpoint
mapping to H,}o([a, b), D, M) contains D).
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Proof. By Theorem 4.9, the annihilator of the image of the differential of the
restriction of the endpoint mapping to Hy, ([a, b, D, M) is contained in the
annihilator of D, 3. The conclusion follows. O

The next corollary, which is obtained easily from (17), gives a characteri-
zation of singular curves in terms of characteristics:

Corollary 4.11. An H curve v : [a,b] — M is singular if and only if it is
the projection of a non zero characteristic of D. 0

Observe that by Lemma 4.8 a characteristic either never vanishes or is
identically zero.

5. THE NORMAL GEODESICS AS CRITICAL POINTS
OF THE ACTION FUNCTIONAL

In this section we prove that the normal geodesics in (M, D, g) correspond
to the critical points of the sub-Riemannian action functional defined in the
space of horizontal curves joining two subsets of M. To this aim, we need to
introduce a Lagrangian formalism that will be be related to the Hamiltonian
setup described in Section 3 via the Legendre transform.

We consider the sub-Riemannian action functional E;g defined in the space
H([a, b], D, M):

1t .
(20) Exr(y) = 3 [ 9(h) dt.

The problem of minimizing the action functional E,p is essentially equivalent
to the problem of minimizing length (see Lemma 5.5 and Corollary A.3).

By Corollary 2.7, given go,q1 € M, the set H} . ([a, b], D, M) has the
structure of a smooth manifold around the regular curves. It is easy to prove
that Egg is smooth in any open subset of Hy .. ([a, b], D, M) which has the
structure of a smooth manifold; such an open set will be called a regular sub-
setof HY . ([a,b], D, M). We will say thata curve y € H} . (8,8, D,M)
is a critical point of Eip if it lies in a regular subset of H} _ (a, b}, D, M)
and if it is a critical point of the restriction of Egg to this regular subset. The
purpose of this section is to prove that the normal geodesics coincide with the
critical points of the Egg in H}, .. ([a, 8], D, M).

To this goal, we will consider an extension E of E,g to the smooth man-
ifold H([a, b], M) defined in terms of the Riemannian extension g of the
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sub-Riemannian metric g that was introduced in Section 2:

b
Em =g [ st dt, e (a8, 00

Lety € qoql([a, b, D, M) be a regular curve and let & be the map de-
fined in a neighborhood of the graph of ~ given in Proposition 2.4. By the
method of Lagrange multipliers, we know that + is a critical point of Egg if
and only if there exists A € L2([a, ], R™) such that -y is a critical point in

H} . ([a,b], M) of the action functional:

b
@1 Ea(v) = E() / A(E) - 0oy (3(8)) .

We will see in the proof of Proposition 5.2 below that the Lagrange multiplier
A associated to a critical point of Egp is indeed a smooth map.

E, is the action functional of the time-dependent Lagrangian £ defined
on an open subset of T'M, given by:

1
@) Lalt9) = 590,9) — AB) O (), v € TmM.

The Lagrangian £, is L! in the variable ¢, moreover, for (almost) all ¢ €
[a, b], the map v +— L) (2, v) is smooth. Therefore the critical points of E) are
curves satisfying the Euler-Lagrange equations; in a chart ¢ = (q1,...,4n),
the equations are:
9Ly d 3Ly _

dq dt 9
We recall that if £ : U C IR x T M is a time-dependent Lagrangian defined

on an open subset of IR x T'M, the fiber derivative of L is the map FL :
U — IR x T M?* given by:

FL(t,v) = (£, d(Llun, ., #m) (),

where # : TM — M is the projection. For t € IR, we denote by U;
the open subset of 7'M consisting of those v’s such that (t,v) € U. The
Lagrangian L is said to be regular if, for each ¢, the map v — FL(t,v) is
a local diffeomorphism; £ is said to be hyper-regular if v — FL(t,v) is a
diffeomorphism between U; and an open subset of TM?*. Associated to a

(23)
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hyper-regular Lagrangian £ in U C IR x T M one has a Hamiltonian H
defined on the open subset FL(U) by the formula:

H (FL(t,v)) = FL(t,v)v — L(t,v), (t,v)€U.

This procedure is called the Legendre transform (see [1, Chapter 3]). If £
is a hyper-regular Lagrangian and H is the associated Hamiltonian, then the
solutions of the Euler-Lagrange equations (23) of £ correspond, via FL, to
the solutions of the Hamilton equations of H, i.e., a smooth curve v : [a, b] —
M is a solution of (23) if and only if I' = FL o (v, %) is a solution of the
Hamiltonian H.

Let us show now the this formalism applies to the case of the Lagrangian
L) of (22):
Lemma 5.1. The Lagrangian L) is hyper-regular.
Proof. From (22), the fiber derivative F.C) is easily computed as:
(24) FLx(t,v) =g(v,") — A(2) - o(t,m) € TyM™.
Foreach t € [a, b], the map FLy(¢,-) : T(n M +— T, M* is clearly a diffeo-
morphism, whose inverse is given by:
25) TnM*3p =G 1 (p+ A®) - O.m)) € T M.

O

We are finally ready to prove the following:

Proposition 5.2. Let vy be a regular curve in H;, . ([a,b], D, M). Then, v is

a critical point of Egr if and only if it is a normal sub-Riemannian geodesic
in(M,D,g).

Proof. A critical point of ER is a curve satisfying the Euler-Lagrange equa-
tions (23) associated to the Lagrangian £, of (22). By Lemma 5.1, £, is
hyper-regular, hence the solutions of (23) correspond, via FL, to the so-
lutions of the associated Hamiltonian H), computed as follows. First, for
v € T,, M we have:

FLA(t,v) v — Ly(t,v) =

= 14 1
=3(v,v) = A1) - Om) (v) = 53(v, ) + At) - Oe,m (v) = 5 (v, v).
Then, using (25), we compute:

1__
(26) Hy(t,q,p) = 3 Yo+ M) - 6g), + A(E) - B0
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For the proof of the Proposition, we need to show that if + is an absolutely
continuous curve in M, then  is horizontal and it is a solution for the Hamil-
ton equations associated to the Hamiltonian H) for some X if and only if it
is a solution of the Hamilton equations associated to the sub-Riemannian
Hamiltonian H of formula (7).

The Hamilton equations of H), are computed as follows:

dg __
Fri Yo+ A(t) - 0.q);

@) )
=700 “"",p+ X®) - 0.)-

From the horizontality of %%, using the first equation of (27) we get:

(P +A@) - 9(:,4)) lp, =0,

and since |p, is an isomorphism, we get an explicit expression for the La-
grange multiplier A:

-1
(28) A(t) = —p(t) o [9(t,q)|p,]

Observe that, by a standard boot-strap argument, from (28) it follows easily
that A is smooth.

We now write the Hamilton equations of the sub-Riemannian Hamiltonian
and of H) using a suitable time-dependent referential X,, ..., X, of TM.
The choice of the referential is done as follows. Let 8,,...,0; be a time-
dependent referential of the annihilator D° = (D)" which is orthonormal
with respect to 1. For the orthogonality, it suffices to consider any refer-
ential of D° and then to orthonormalize it by the method of Gram-Schmidt.
Then, let X,_x41,...,Xn be the referential of D+ obtained by dualizing
0,...,0. Finally, let X,..., X, be any orthonormal referential of D,
time-dependent or not.

In the referential Xi,..., X,, fori =1,...,n — k we have:

~1798 k 160:
@ [feal,] [# X.] =y [-é;’(t,q) X.-]  Xnkts-

i=1
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We can rewrite (27) as:
(30)

n—k

ZP(Xt) Xi+ Z (p(Xt) + Mi—nsk) Xi,
J i=1 i=n—k+1

dp ey ax
== ZP(X:)P dq Z 2 (0(Xs) + Aiensk) P

\ i=1 i=n—k+1

where A = (Ay,...,Ax). On the other hand, the Hamilton equations for H

are written as:

( n—k

ZP(Xt) Xi,

i=1

K —'ijk ( ,)p(‘”")

Now, if « is horizontal and it sansﬁes (30) for some A it follows that the
second sum of the first equation in (30) is zero, and therefore  satisfies also
(31). Conversely, if « satisfies (31), then + is horizontal, and defining A by
(28), it is easily seen that +y is a solution of (27). 0

Remark 5.3. 1t follows easily from (31) that if v is a normal geodesic and I'
is a Hamiltonian lift of v, then I'|p = g(%, -).

We now consider the case of sub-Riemannian geodesics with endpoints
varying in two submanifolds of M.
Proposition 54. Let (M, D, g) be a sub-Riemannian manifold, let P, Q C
M be smooth submanifolds of M and assume that Q is transversal 1o D, i.e.,
T,Q + Dy = TyM forall g € Q. Then, the set

Hp,o([a,8], D, M) = {z € H'([2,8, D, M) : 2(a) € P, 2(t) € @}

is a smooth submanifold of H' ([a, b), M). Moreover, the critical points of the
sub-Riemannian action functional Egg in H} o(la, b, D, M) are precisely
the normal geodesics v joining P and Q that admit a lifs T : [a, b] — TM*
satisfying the boundary conditions:

(32) I'(a) € T, aP° and T(b) € I\ Q°.

31) {
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Proof. The fact that Hp, 4([a, b], D, M) is a smooth manifold follows easily
from the transversality of Q and Corollary 4.10.

The proof of the second part of the statement is analogous to the proof of
Proposition 5.2, keeping in mind that the critical points of the action func-
tional associated to a hyper-regular Lagrangian in the space of curves joining
P and Q are the solutions of the Hamilton equations whose Hamiltonian lift
vanishes on the tangent spaces of P and Q. ]

Obviously, the role of P and Q in Proposition 5.4 can be interchanged,
and the same conclusion holds in the case that P is transversal to D.

As a consequence of Proposition 5.4 we get some information on the ge-
ometry of sub-Riemannian balls. Given a horizontal curve v : [a,b] = M,
we define £(v) to be its length:

b . 1
t(n) = / 9(%,7)7 dt.
a
For qp, 1 € M, we set
dist(go, q1) = inf{l('y) : v is a horizontal curve joining go and ql} € [0, +o0],

where such number is infinite if go and ¢; cannot be joined by any horizontal
curve. A horizontal curve v : [a,b] — M is said to be length minimizing
between two subsets P and Q of M if y(a) € P, v(b) € Q and

£(v) = inf dist(go, q1)-

@o€P

Q€Q
A horizontal curve v is said to be affinely parameterized if g(<, ) is almost
everywhere constant. Every horizontal curve is the reparameterization of an
affinely parameterized horizontal curve (see Corollary A.3). Since the sub-
Riemannian Hamiltonian is constant on its integral curves, it follows that ev-
ery normal geodesic is affinely parameterized. Moreover, using the Hamilton
equations (31), it is easy to see that an affine reparameterization of a normal
geodesic is again a normal geodesic.

We relate the problem of minimization of the length and of the action func-

tional by the following:
Lemma 5.5. Let «y : [a, b] — M be an horizontal curve joining the subman-
ifolds P and Q. Then, v is a minimum of EgR in H},,Q([a, b, D, M) if and
only if 7y is affinely parameterized and +y is a length minimizer between P and
Q.
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Proof. By Cauchy-Schwartz inequality we have:
£(7)* < 2(b- a)Er()?,

where the equality holds if and only if « is affinely parameterized. If v
is affinely parameterized and it minimizes length, then, for any curve p in
Hp, 5([a, b], D, M), we have:

£)? £(p)?
= < < .
Hence, - is a minimum of Egg.
Conversely, suppose that «y is a minimum of Egr. There exists an affinely
parameterized horizontal curve u : [a, b] — M such that + is a reparameteri-
zation of i (see Corollary A.3). We have:

2 2
Fin(1) < Ban) = 5o = 570 < B ),

hence the above inequalities are indeed equalities, and - is affinely parame-
ized :

Now, assume by contradiction that p : [a, ] — M connects P and Q and
satisfies £(p) < £(v). By Corollary A.3, we can assume that p is affinely
parameterized, hence Egg(p) < Egr (7). This is a contradiction, and we are
done. a

For go € M and r € IR, the open ball B,(qp) is defined by:

B, (g0) = {fh : dist(go, q1) < r}.

Corollary 5.6. Suppose that there exists an affinely parameterized length
minimizer 7y : [a,b] — M between qo and q; which is not a normal ex-
tremal; set r = dist(qo, q1). Then, any submanifold Q through q, which is
transversal to D at g has non empty intersection with the open ball B, (qo).

Proof. By contradiction, suppose that we can find a submanifold Q through
¢1 which is transversal to D at ¢; and disjoint from the open ball B,(qo). It
follows that - is a length minimizer between the point go and the submanifold
@, hence, by Lemma 5.5, « is a minimum point for the action functional in
Ht}o,Q( [a, b], D, M). By possibly considering a small portion of Q around g;,
we can assume that Q is everywhere transversal to D. From Proposition 5.4
it follows then that + is a normal geodesic, which is a contradiction. O
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Remark 5.7. Proposition 5.4 can also be used to establish the smoothness of
abnormal extremizers, which is in general an open question. Observe indeed
that its statement can be rephrased as follows. Let «: [a,b] — M be an
affinely parameterized length-minimizer connecting go and g in M; set r =
dist(qo, g1). If there exists a manifold Q transverse to D passing through ¢;
which does not intercept the open ball B(go; r) then + is a normal extremal
and consequently it is smooth.

As a corollary of Proposition 5.2, we also obtain an alternative proof of a
result of [9] that gives necessary conditions for length minimizing:

Corollary 5.8. An affinely parameterized length minimizer is either an ab-
normal minimizer or a normal geodesic.

Proof. It follows immediately from Definition 2.8, Proposition 5.2 and the
fact that affinely parameterized length minimizers are minima of the sub-
Riemannian action functional. O

The solutions of°sub-Riemannian geodesic problem with variable end-
points in the case that the end-manifold is one-dimensional has a physical in-
terpretation in the context of General Relativity (see [5, 6]). Such geodesics
can be interpreted as the solution of a general relativistic brachistochrone
problem in a stationary Lorentzian manifold.

APPENDIX A. AFFINE PARAMETERIZATION OF HORIZONTAL CURVES

In this appendix we show that every horizontal curve in a sub-Riemannian
manifold can be obtained as the reparameterization of an affinely parameter-
ized horizontal curve.

Given two absolutely continuous curves v : [a,b] — M and i : [¢,d] —
M, we say that v is a reparameterization of u if there exists an absolutely
continuous, nondecreasing and surjective map ¢ : [a,b] — [c, d] such that
7 = poo. It can be proven that in this case 4 = (10 o) & almost everywhere.

Proposition A.1. Let (M, g) be a Riemannian manifold, ~ : [a,b] — M an
absolutely continuous curve. Then, there exists a unique pair of absolutely
continuous maps y : [0, L] — M and o : [a, b] = [0, L], with o nondecreas-
ing and surjective, such that g(i1(t), 4(t)) = 1 almost everywhere on [0, L]
andy = poo.
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Proof. Suppose that the pair p, o satisfying the thesis is found; then we obtain
easily

t 1
33) o(t) = 1lag) = / (39} at.

Since o is surjective, this proves the uniqueness of the pair.

As to the existence, set L = £(-y) and define o as in (33). Obviously, o is
absolutely continuous, nondecreasing and surjective.

Suppose that o(s) = o(t) for some s,t € [a,b], with s < t. Then,
£(7|[s,7) = 0, and therefore y(s) = (). It follows that there exists a func-
tion i : [0, L] — M with p o ¢ = . The curve p is Lipschitz continuous,
hence absolutely continuous; for, if s,t € [0, L], let s1,¢1 € [a, b] be such
that o(s;1) = s and o(¢;) = ¢. Then,

dist(u(s), u(t)) = dist(v(s1),7(t1)) <
< (Visr,ta)) = lo(s1) —o(tr)l = |s — ¢|.

We are left with the proof that §(, 2) = 1 almost everywhere. To see this,
lett € [0, L] be chosen and let ¢; € [a, b] be such that ¢ = o(t;). Then, we
have:

t
BTN
(349 /0 g, )2 dr = £(plio,g) = £(V|[aey)) = o(t1) = 1t.
The conclusion follows by differentiating (34) with respect to ¢. g

Lemma A.2. Let M be a smooth manifold and D C TM be a smooth
distribution. Let p : [a,b] — M be an absolutely continuous curve; if p
admits a reparameterization which is horizontal, then p is horizontal.

Proof. Let o : [c,d] — [a, b] an absolutely continuous nondecreasing surjec-
tive map with v = u o o horizontal. Define:

X = {t € [c,d] : the equality 4() = x(0(8))3 (t) fails to hold},

Y = {te fe.d] : 6(2) = 0}.

Clearly, i is horizontal outside (X UY); to conclude the proof it suffices to
show that (X U Y)) has null measure. To see this, observe that X has null
measure and therefore o(X') has null measure. Moreover, since & = 0in Y,
itis not difficult to show that o(Y') has null measure, and we are done. O
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Corollary A.3. Let (M, D, g) be a sub-Riemannian manifold and v a hori-
zontal curve in M. Then, v is the reparameterization of a unique horizontal
curve p : [0, L) v M such that g(j1, 1) = 1 almost everywhere.

Proof. Let g be any Riemannian extension of g and apply Proposition A.1.
The curve ; thus obtained is horizontal by Lemma A.2. O

APPENDIX B. LOCAL MINIMALITY OF NORMAL GEODESICS

The aim of this section is to prove that a sufficiently small segment of a
sub-Riemannian normal geodesic is a distance minimizer between an initial
submanifold and a point. We will simply adapt the proof of local optimality
presented in [9, Appendix C].

Proposition B.1. Let (M, D, g) be a sub-Riemannian manifold, P C M a
submanifold and v : [a, b} — M a normal geodesic with v(a) € P and such
that there exisis a Hamiltonian lifi T : [a, b] — TM* of y withT(a)|r,,,p =
0. Then, for € > 0 small enough, 7|(4,q+¢) is a length minimizer between P
and y(a + €).

Proof. We can assume without loss of generality that g(},7) = 1. Let S C
M be a codimension 1 submanifold containing a neighborhood of y(a) in P
and such that I'(a)|r,,.,,s = 0. The existence of such a submanifold is easily
proved using a coordinate system in M adapted to P around «y(a). Observe
that, by Remark 5.3, we have g~ (I'(a)|p, I'(a)|p) = 1.

Let A : § — TM?* be a 1-form in M along S such that A\(z)|r.s = 0,

97 1(Mz)|lp, Mz)lp) = 1forall z € S and such that A(y(a)) = I'(a). Let
U C S be a sufficiently small open subset containing y(a) and let € > 0 be
sufficiently small. Consider the map ® :]a—¢,a+¢ [xU — T M* such that
t — ®(t, z) is a solution of the sub-Riemannian Hamiltonian H defined in
(7)and ®(a,z) = M(z) forallz € U. Let F = wo®, where 7 : TM* —» M
is the projection.
By Remark 5.3, I'(a)(¥(a)) = 1, which implies that T, )M = T()S ®
(IR4(a)). It follows easily that the differential of F' at (a, y(a)) is an isomor-
phism, and by the Inverse Function Theorem, by possibly passing to smaller
€ and U, F is a diffeomorphism between ] a—e¢, a+& [x U and an open neigh-
borhood V' of y(a) in M. By possibly taking a smaller V, we can assume
that VNP CS.
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We define a vector field X, a 1-form A and a smooth map T on V by
setting:

(Ft,a) =t, X(F(tz))= %F(t, z), AF(t,z)) = 8(t,3),

forall (t,z) €]a—e,a+¢c[xU. Since H o P does not depend on , it follows
easily that

(35) g7 (Alp, Alp) = 1.

We prove next that A = dr. To this aim, let ¥x denote the flow of X,
defined on an open subset of IR x V; for s € IR we set ¥4 = Px(s,-).
Clearly, t — F(t,z) is an integral curve of X, and therefore we have 7 o
V% = 8+ 7, hence d7 is invariant by the flow of X, i.e.,

(T%)*(dr) =dr.

We show that ) is also invariant by the flow of X; the equality A = dr will
follow from the fact that these two 1-forms coincide on S. For the invariance
of ), we argue as follows: let z € U, vy € T M and v(t) = d¥%*(z)[vo);
it suffices to prove that A(F(¢, z))(v(t)) is constant in £.

In local coordinates ¢ = (q1, .. .,¢n), v satisfies the following linear dif-
ferential equation:

dv _
dt —

For t €] — ¢,¢] fixed, let X;,...,X,— be an orthonormal frame for D
around F'(t, z); by Remark 5.3 we have ®(t, z)|p = g(X(F(t, z)), -), from
which it follows:

1i).4
(36) "a'—q* (‘U).

n—-k

€] X =Y MX:) X

i=1
From (35) it follows that 3, A(X;)2 = 1, and differentiating this expression
we obtain:

n-k

d
(38) g A(X:) 5o (A(X3) = 0.
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From (37) and (38), it follows:

(39) (6X> EA(X))\ (BX')

Using the second Hamilton equation in (31), we finally get:

(40) SAFE2) = -2 (%’q‘ )

Using (36) and (40) it is easily seen that A(F(t, z))v(t) is constant in ¢, and
A is invariant by the flow of X.
The equality A = dr is thus proven, and by (35) we obtain:

41 gt (drlp,drip) =1.

Let now p : [a,a + €] — V be a horizontal curve with u(a) € P and
p(a +€) = y(a + €). Using (41), the length of  is estimated as follows:

a-te a-+& .
L) = / il dt > / ar(i(t)) dt = r(u(a +€)) — (u(a)) =

=E= L(7|[a,a+e])-

This implies that 4|4 04¢) is @ length minimizer between P and v(a + ¢)
among all the horizontal curves with image in V. The conclusion of the
proof will follow from the next Lemma, by possibly considering a smaller
E. O

Lemma B.2. Let (M, D, g) be a sub-Riemannian manifold and let V C M
be an open subset. Given x € U there exists r > 0 such that every horizontal
curve i : |a, bj — M with p(a) = z and L(p) < r satisfies p([a,b]) C V.

Proof. We compare the sub-Riemannian metric g with the Euclidean metric
relative to an arbitrary coordinate system around z. Let ¢ : W — W bea
coordinate system in M withz € W, W C V and W is an open neighbor-
hood of 0 in IR™. Let B C W be the inverse image through ¢ of a closed
ball of radius s, Blp(z);s] ¢ W. Form € W and v € T,n M, denote by
|[vlle the Euclidean norm of the vector d¢)(m)[v]. The set of vectors v € D
that are tangent to the points of B with ||v|. = 1 form a compact subset of



NORMAL EXTREMIZERS IN SUB-RIEMANNIAN MANIFOLDS 30

T M, in which the continuous function v + g(v, v)% = ||v]| attains a posi-
tive minimum k. Observe that for all v € D tangent to some point of B, it is
llvll > & - Jlv]le.

Take r = ks > 0. If u : [a, b] — M is a horizontal curve with u(a) = z
and u([a, b]) £ V, then there exists ¢ € ]a, b[ with u([a,c] C B and v(c) €
OB. Therefore,

L(p) > L(plja,g) 2 kLe(p 0 plig,g) = ks =,

where L, denotes the Euclidean length of a curve. This concludes the proof.
a
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