
RT-MAT 2000-10 

Variational Aspects of the Geodesic 
Problem tn sub-RlemOMlan Geometry 

Paolo Piccione and Danlel V. Tausk 

Maio 2000 

Esta e uma publicayao preliminar ("preprint"). 
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PAOW PICCIONE AND DANIEL V. TAUSK 

ABSTRACT. We study the local geometry of the set of horizontal curves 
with endpoints freely varying in two given submanifolds 'P and Q of a 
manifold M endowed with a distribution T> C TM. We give a differ­
ent proof, that holds in a more general context, of a result by Bismut [2, 
Theorem 1.17) stating that the nonnal extrcmizers that arc not abnonnal 
are critical points of the sub-Riemannian action functional. We use the 
Lagrangian multipliers method in a Hilbert manifold setting, which leads 
to a characterization of the abnonnal extrcmiz.ers (critical points of the 
endpoint map) as curves where the linear constraint fails to be regular. 
Finally, we describe a modification of a result by Liu and Sussmann [9] 
that shows the global distance minimizing property of sufficiently small 
portions of normal extremizers between a point and a submanifold 
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1. INTRODUCTION 

A sub-Riemannian manifold consists of a smooth n-dimensional manifold 
M, and a smooth distribution 'D c TM on M of constant rank n - k, en­
dowed with a smoothly varying positive definite metric tensor g. The length 
is defined only for horizontal curves in M, i.e., curves which are everywhere 
tangent to 'D. It was proven in [9] that a horizontal curve which minimizes 
length is either a normal extremal or an abnormal extremal, where the two 
possibilities are not mutually exclusive. This proof is obtained as an appli­
cation of the Pontryagin maximum principl~ of Optimal Control Theory; an 
alternative proof of this fact obtained by variational methods is given in this 
paper (Corollary 5.8). 

A normal extremal is defined as a curve in M that is a solution of the sub­
Riemannian Hamiltonian H (p) = ½ 9-1 (plv, Plv) on TM*, i.e., a curve that 

is the projection on M of an integral line of the Hamiltonian flow H. Such 
curves are automatically horizontal. An abnormal extremal can be defined as 
a curve which is the projection on M of a non zero characteristic curve in 
the annihilator 1Y' C TM*; a characteristic curve is a curve in 1Y' which is 
tangent to the kernel of the restriction to 1Y' of the canonical symplectic form 
of TM*. 

As in the case of Riemannian geodesics, sufficiently small segments of a 
normal extremal is length minimizing (see [9]); however, "most" abnormal 
extremals do not have any sort of minimizing property (observe that the defi­
nition of abnormal minimizer does not involve the metric g). 

The first example of a length minimizer which is not a normal extremal 
was given in [11 ]. The goal of this paper is to discuss the theory of extremals 
by techniques of Calculus of Variations and to give the basic instruments to 
develop a variational theory (Morse Theory, Ljustemik-Schnirelman theory) 
for sub-Riemannian geodesics. The results of this paper are used in [ 4], where 
the authors consider the problem of existence and multiplicity of geodesics 
joining a point and a line in a sub-Riemannian manifold (M, V,g), with 
codim(V) = 1. 

In [2, Theorem 1.17] it is proven that the normal sub-Riemannian ex­
tremals between two fixed points of a sub-Riemannian manifold are critical 
points of the sub-Riemannian action functional. The proof is presented in 
the context of the Malliavin calculus, employed to study some problems con­
nected with the asymptotics of the semi-group associated with a hypoelliptic 
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diffusion. For this purposes, the author's proof is restricted to the case that the 
image of the normal extremal be contained in an open subset of M on which 
the distribution 1) is globally generated by n - k smooth vector fields. In 
this paper we reprove the result of [2, Theorem 1.17] under the more general 
assumptions that: 

• the vector bundle 1) is not necessarily trivial around the image of the 
normal extremizer; 

• the endpoints of the normal extremizers are free to move on two sub-
manifolds of M. 

As to the first generalization of the extremizing property of the normal ex­
tremizers, it is interesting to observe that in the proof it is employed the La­
grangian multipliers technique that uses time-dependent referentials of V de­
fined in a neighborhood of the graph of any continuous curve in M. The ex­
istence of such referentials is obtained by techniques of calculus with affine 
connections, and it is likely that the method of time-dependent referentials 
may be applied to other situations where global geometrical results are to be 
proven. For instance, in [7] the author proves a Morse Index Theorem for 
normal extremizers, but in his proof he implicitly assumes the triviality of 
the vector bundle 1) in a neighborhood of the curve. However, the arguments 
presented could be made more precise by a systematic use of time-dependent · 
referentials. 

Another observation that is worth making about the Lagrangian multipli­
ers is that, in the functional setup of the method, the constraint is given by the 
kernel of a suitable submersion (see formula (3)) from the set of H 1-curves 
in an open subset of M taking values in the Hilbert space of JRk-valued L2-

functions. This submersion is defined using time-dependent referentials of 
the annihilator V" of 1) in the cotangent bundle TM*, and the surprising 
result is that such map fails to be a submersion precisely at the abnormal ex­
tremizers. We therefore obtain a new variational description of the abnormal 
extremizers in a sub-Riemannian manifold. 

Finally, it is important to emphasize the role of the endmanifolds 'P and Q 
in the development of the theory. An interesting result is that, if either one 
of the two is everywhere transversal to 'D, then the set of horizontal curves 
between 'P and Q does not contain singularities (Proposition 5.4); in partic­
ular, all the sub-Riemannian extremizers between 'P and Q are normal. This 
fact can be used in several circumstances: for instance, in Corollary 5.6 we 
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obtain some infonnation about the geometry of sub-Riemannian balls; more­
over, it is possible to obtain also some criteria to establish the smoothness for 
abnonnal extremizers (see Remark 5. 7). 

We outline briefly the contents of each section of this article. 
In Section 2 we study the local geometry of the space of horizontal curves 

joining two fixed points qo and q1 of M by two different techniques. On one 
hand, this space can be described as the set of curves 'Y joining qo and q1 
satisfying 8i(i') = 0, where 81, ... , Ok is a local time-dependent referential 
for the annihilator 'D" of V. On the other hand, the same space can be ob­
tained as the inverse image of q1 by the endpoint mapping restricted to the set 
of horizontal curves emanating from qo. We show that these two constraints 
have the same regular points; such curves are called regular and a suitable 
neighborhood of them in the space of horizontal curves joining Qo and q1 has 
the structure of an infinite dimensional Hilbert manifold. 

In Section 3 we define the normal extremals, also called normal geodesics, 
in a sub-Riemannian manifold, using the Hamiltonian setup. 

In Section 4 "°e study the image of the differential of the endpoint map­
ping; to this aim we introduce an atlas on the space of horizontal curves 
starting at qo. 

Finally, in Section 5 we prove that a regular curve is a critical point of the 
sub-Riemannian action functional if and only if it is a normal geodesic. We 
also study the case of curves with endpoints varying in two submanifolds of 
M. H we consider the space of horizontal curves joining the submanifolds 
P and Q, then, provided that either 'P or Q is transversal to V, this set is al­
ways a Hilbert manifold. Moreover, the critical points of the sub-Riemannian 
action functional in this space are those normal geodesics between 'P and 
Q whose Hamiltonian lift annihilates the tangent spaces of 'P and Q at its 
endpoints. 

To conclude the paper, we present two short appendices. In Appendix A 
we prove that every horizontal curve can be obtained as the reparameteriza­
tion of an affinely parameterized horizontal curve. In Appendix B we adapt 
a proof of local optimality of normal geodesics due to Liu and Sussmann [9, 
Appendix C] to prove that sufficiently small portions of normal geodesics are 
length minimizers between an initial submanifold and a point. 
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2. THE DIFFERENTIABLE STRUCTURE OF THE SPACE OF 
HORIZONTAL CURVES 

We give a couple of preliminary results needed to the study of the geom­
etry of the set of horizontal paths in a sub-Riemannian manifold. The main 
reference for the geometry of infinite dimensional manifolds is [8]; for the 
basics of Riemannian geometry we refer to [3]. 

Recall that a smooth map f : M 1--+ N between Hilbert manifolds is a sub­
mersion at x E M if the differential d/ ( x) : TxM 1--+ Tf(x)N is surjective; f 
is a submersion if it is a submersion at every x E M. 
Lemma 2.1. Let M, M1 and M2 be Hilbert manifolds and let f : M i--+ 

M1, g : M 1--+ M2 be submersions. Let Pl E M1, P2 E M2 and choose 
x E J-1(p1) n g-1{pi). Then, /l9 -1CP2) is a submersion at x if and only if 
ol,-1(p1) is a submersion at x. 

Proof. We need to show that df(x)IKer(dg(x)) is surjective onto T1(x)M1 if 
and only if dg(x)IKer(d/(x)) is surjective onto Tg(x)M2. This follows from 
a general fact: if T : V 1--+ Vi and S : V 1--+ V2 are surjective linear maps 
between vector spaces, then T!Ker(S) is surjective if and only if Ker(T) + 
Ker(S) = V. Clearly, this relation is symmetric in Sand T, and we obtain 
the thesis. D 

We give one more introductory result concerning the existence of time­
dependent local referentials for vector bundles defined in a neighborhood of 
a given curve. We need the following definition: 

Definition 2.2. Let (M,g) be a Riemannian manifold and x EM. A posi­
tive number r E JR+ is said to be a normal radius for x if expx : Br(O) 1--+ 

Br(x) is a diffeomorphism, where exp is the exponential map of (M,g), 
Br(O) is the open ball of radius r around O E TxM and Br(x) is the open 
ball of radius r around x E M. We say that r is totally normal for x if r is a 
normal radius for ally E Br(x). 

By a simple mgument in Riemannian geometry, it is easy to see that if 
K c M is a compact subset, then there exists r > 0 which is totally normal 
forallx EK. 

Given an vector bundle 1r : { 1--+ M of rank k over a manifold M, a time­
dependent local referential of { is a family of smooth maps Xi : U 1--+ {, 

i = 1, ... , k, defined on an open subset U ~ JR x M such that {Xi(t, x)}f=l 
is a basis of the fiber ez for all (t, x) E U. 
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Lemma 2.3. ut M be a finite dimensional manifold, let 1r : { 1-+ M be a 
vector bundle over M and let 'Y : (a, b] 1-+ M be a continuous curve. Then, 
there exists an open subset U ~ JR x M containing the graph of 'Y and a 
smooth time-dependent local referential of { defined in U. 

Proof. We first consider the case that 'Y is a smooth curve. Let us choose 
an arbitrary connection in{, an arbitrary Riemannian metric g on M and a 
smooth extension 'Y : (a - e, b + e] 1-+ M of 'Y, withe > 0. Since the image 
of 'Y is compact in M, there exists r > 0 which is a normal radius for all 
-y(t). t E [a - e, b + e}. We define U to be the open set 

U = { (t,x) E JR x M: t E]a - e, b + e(, x E Br('Y(t)) }· 

Let now X 1, .•. 1 X k be 8 referential of { along -y; for instance, this referential 
can be chosen by parallel transport along 'Y relative to the connection on e. 
Finally, we obtain a time-dependent local referential for { in U by setting, 
for (t,x) E U and for i = 1, •.. , k, Xi(t,x) equal to the parallel transport 
(relative to the connection of{) of X,(t) along the radial geodesic joining 
-y(t) and x. -

The general case of a continuous curve is easily obtained by a density 
argument. For, let 'Y : [a, b] 1-+ M be continuous and let r > 0 be a totally 
normal radius for -y(t), for all t E [a, b}. Let -y1 : [a, b) 1-+ M be any smooth 
curve such that dist('y(t),71(t)) < r for all t, where dist is the distance 
induced by the Riemannian metric g on M. Then, if we repeat the above 
proof for the curve 'YI, the open set U thus obtained will contain the graph of 
'Y, and we are done. □ 

Let us now consider a sub-Riemannian manifold, that is a triple (M, 'D, g) 
where M is a smooth n-dimensional manifold, 'D is a smooth distribution in 
M of codimension k and g is smoothly varying positive inner product on 'D. 

A curve 'Y : [a, b) 1-+ M is said to be 'D-horizontal, or simply horizontal, 
if it is absolutely continuous and if i'(t) E 'D for almost all t E [a, b]. As we 
did in the proof of Lemma 2.3, we will use sometimes auxiliary structures 
on M. which are chosen (in a non canonical way) once for all. We therefore 
assume that g is a given Riemannian metric tensor on M such that Yl1> = g, 
that 'D1 is a k-dimensional distribution in M which is complementary to 'D 
(for instance, 'D1 is the g-orthogonal distribution to 'D), and we also assume 
that V is a linear connection in TM which is adapted to the decomposition 
'DEB 'D1, i.e., the covariant derivative of vector fields in 'D (resp., in V1) 
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belongs to 'D (resp., to 'D1). For the construction of these objects, one can 
consider an arbitrary Riemannian metric g on M. Then, one defines V1 as 
the g-orthogonal complement of V and g}D1 = YlDi; for the connection 'v, 
it suffices to choose any pair of connections 'v o and 'v 1 respectively on the 
vector bundles 'D and 'D1 and then one sets V = VO EB V 1• Observe that the 
connection V constructed in this way is not torsion free; we denote by T the 
torsion of V: 

T(X, Y) = VxY - "vyX - [X, Y}. 

Using Lemma 2.3, we describe V locally as the kernel of a time-dependent 
E-valued 1-form: 

Proposition 2A. Let 1 ; [a, b] ._ M be a continuous curve. Then, there 
exists an open subset U ~ JR x M containing the graph of 'Y and a smooth 
time-dependent JRk-valued 1-form (} defined in U, with (J(t,%) : T%M - JRk 
a surjective linear map and V% = Ker( Bet,%)) for all ( t, x) E U. 

Proof Let { be the subbundle of the cotangent bundle TM* given by the 
annihilator 'D° of V. Apply Lemma 2.3 to { and set 9 = (61, ... , 0k), where 
{ 6i}r=l is a time-dependent local referential of { defined in an open neigh­
borhood of the graph of 'Y· □ 

Observe that, since 'D1 is complementary to 'D, for all (t, x) E Uthe map 

is an isomorphism. 
Let us now consider the following spaces of curves in M. 
We denote by L2([a, b], JR!") the Hilbert space of Lebesgue square inte­

grable JRm-valued maps on [a,b] and by H 1([a,b),JR!") the Sobolev space 
of all absolutely continuous maps x : [a, b] i-+, JR!" having derivative in 
L2([a, b], IR!"). Finally, we denote by H 1([a, b], M) the set of curves x : 
[a, b] i-+ M such that for any local chart (U, <p) on M. with (/, : U C 
M 1-+ Dr, and for any closed interval I C x-1(U), the map</> o (xlr) is 
in H 1(J, JR!"). It is well known that H 1([a, b], M) is an infinite dimensional 
smooth manifold modeled on the Hilbert space H 1([a, b), JRn). 
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For all pairs of points qo, Ql E M, we define the following sets of curves 
inM: 

H:0([a,b],M) = { x E H 1([a,b],M): x(a) = qo }; 

H~,q1((a,b],M) = {x E H1([a,b],M): x(a) = qo, x(b) = q1 }; 

(l) H 1([a, b], V, M) = { x E H 1([a, b), M) : x(t) EV a.e. on [a, b) }; 

H:0 ([a, b), V, M) = H 1([a, b], V, M) n Hio ([a, b], M); 

H:0,qi ([a, b], V, M) = H1([a, b], V, M) n H!,,q1 ([a, b], M). 

We prove that the sets 11!,([a,b),M). H!,,q
1
([a,b);M), H1([a,b),V,M) 

and H!, ([a, b], V, M), are smooth submanifolds of H 1 ((a, b], M) for all 
qo, q1 E M. However, in general, the space H:C,,q

1 
([a, b], V, M), consisting 

of horizontal curves joining the two fixed points q0 and q1• is rwt a subman­
ifold of HJ

0
,qi ([a, b); M), and this fact is precisely the origin of difficulties 

when one tries to develop a variational theory for sul>-Riemannian geodesics. 
In order to see that H:0 ( [a, b], M) and H:0,111 (la, b], M) are submanifolds 

of H 1([a, b], M), simply observe that the map 

Ea,b: -y 1-t (-y(a),-y(b)) 

is a submersion of H 1 ([a, b), M) into M x M. 
Then, the sets HJa([a, b],M) = e;,l({qo} x M) and HJa,qi ([a, b],M) = 

e;,l(qo, q1) are smooth submanifolds of H 1([a, b], M). 

As to the regularity of H!, ([a, b], V, M), we will now show that this set 
can be covered by a family of open subset {Ua} of HJa ([a, b], M) such that 
each intersection HJo ([a, b], V, M) nU0 is the inverse image of a submersion 
ofUa in the Hilbert space L2([a, b], F). The regularity of H 1([a, b], V, M) 
will follow by a similar argumenL 

To this aim, let -Yo be a fixed curve in HJa ([a, b], M) and let U"IO c JR x 
M be an open set containing the graph of -y0 and that is the domain of the 
map O of Proposition 2.4. Denote by HJa ([a, b}, M, U'YO) the open subset of 
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n:0 ([a, b], M) consisting of those curves whose graphs is contained in U
10

: 

(2) 

H~([a,b],M,U10 ) = 
{"YE H!i([a, b), M): (t, "Y(t)) E U70 , for all t E [a, b) }· 

Let 0 : HJ0 ([a, b), M, U;o) 1-+ L2([a, b), IR!') be the smooth map defined 
by: 

(3) 0("Y)(t) = (J(t,y(t))("Y(t)). 

Clearly, H!i([a, b], M, U10 ) n HJ
0
([a, b], 'D, M) = e-1(0). 

Proposition 2.S. 0 is a submersion. 

Proof. Clearly 0 is smooth because e is smooth. To compute the differential 
of 0 we use the connection V adapted to the decomposition TM = 'D EB 
'D1 introduced above. Let "Y E HJa([a,b],M, U10 ) be fixed and let V E 

T1 HJa([a, bJ, M), i.e., Vis a vector field of ~lass H1 along "Y with V(a) = 0. 
We write V = Vi>+ Vi,1 with Vi,(t) E 'D and Vi,1 (t) E 'D1 for all t; using 
the properties of V we compute easily: 

(4) 
d0("Y)[V](t) = 

[Vv6lct,y{t)) (,y(t)) + e{t,-y{t))(V i'{t) V) + e(t,-y(t)) ( r(V(t), ,y(t))), 

where Vv6 is the covariant derivative of Oct,)· 
Let now/ E L2([a, b], JRI:) be fixed; for the surjectivity of d0("Y) we want 

to solve the equation in V: d0("Y)[V) = f. To this aim, we choose V'Do = 0, 
and we get: 
(5) 

(J(t,;(t)}(V i'(t) Vi,l) + [ Vvi,1 6] (t,7(t)) (,y(t)) + e(t,7{t))( r(Vi,1 (t), ,y(t))) = f. 

Since e(t,;(t)) : (V1),(t) 1-+ JR1: is an isomorphism, (5) is equivalent to a 
first order linear differential equation in Vi,1 , that admits a unique solution 
satisfying Vi,1 (a) = 0. Observe that since "YE H1([a, b], M), by (5) we get 
that V is also of class H 1, and we are done. 0 

Corollary2.6. H 1([a, bJ, V, M) and HJa([a,bJ, V,M) aresmoothsubman­
ifolds of H 1([a, b],M). □ 
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We now consider the endpoint mapping end: H:0 ((a, b), M) 1-+ M given 
by: 

end(,) = ,(b). 
It is easy to see that end is a submersion, hence we have the following: 

Corollary 2.7. I.et,o E H:
0
([a,bJ,M) be fixed and let H~([a, b),M, U70), 

0 be defined as in (2) and (3). 
Then, for all, E e-1(0) n end-1{q1) = H!i,q

1 
([a, b), V, M), tm re­

striction 0lnii([a,b),M,U"YO)nHJo,,
1 

([a,b),M) is a submersion if and only if tm 
restriction endlni,([a,b),V,.M) is a submersion. 

Proot It follows immediately from Lemma 2.1 and Proposition 2.5. □ 

Definidon 2.8. A curve I E HJo,qi ( [a, b], 'D, M) is said to be regular if the 
restriction endlnJo((a,b],V,.M) is a submersion at -y. If 'Y is not regular, then it 
is called an abnormal extremal. 

Observe that the notion of abnormal extremality is not related to any sort 
of ex~mality with respect to the length or the action functional, but rather 
to lack of regularity in the geometry of the space of horizontal paths. Toe 
smoothness of length minimizing abnormal extremals is an open question. 

3. NORMAL GEODESICS 

In order to define the normal geodesics in a sub-Riemannian manifold we 
introduce a Hamiltonian setup in TM* as follows. 

Let us consider the cotangent bundle TM* endowed with its canonical 
symplectic form w. Recall that w is defined by w = -dt7, ,9 being the canon­
ical 1-fonn on TM* given by '9p(P) = p(d1rp(p)), where 1r: TM* 1-+ M 
is the projection. p E TM* and p E TpT M*. Let H : TM* t--+ JR be a 
smooth function; we call such a function a Hamiltonian in (T M*,w). The 
Hamiltonian vector field of H is the smooth vector field on TM* denoted 
by iJ and defined by the relation dH(p) = w(il(p), •); the integral curves 
of ii are called the solutions of the Hamiltonian H. With a slight abuse of 
terminology, we will say that a smooth curve , : [a, b) 1-+ M is a solution of 
the Hamiltonian H if it admits a lift r : [a, b] 1-+ TM* that is a solution of 
H. 

More in general, one can consider time-dependent Hamiltonian functions 
on TM*, which are smooth maps defined on an open subset U of JR x TM*. 
In this case, the Hamiltonian flow ii is a time-dependent vector field in TM*, 
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and its integral curves in TM* are again called the solutions of the Hamil­
tonian H. 

A symplectic chart in TM* is a local chart talcing values in JR" EB JR"* 
whose differential at each point is a symplectomorphism from the tangent 
space Tp(T M*) to JR!l EB JR!l* endowed with the canonical symplectic struc-
ture. Given a chart q = (q1, ... , qn) in M, we get a symplectic chart (q,p) 

on TM* wherep = (p1, ... ,Pn) isdefinedbyPi(o:) = a(,£;). Wede-

note by { J!;;, 7#;; }, i,j = 1, ... , n, the corresponding local referential for 

T(T M*), and by { dqi, dp;} the local referential of T(T M•r. We have: 

w= tdqiAdpi, H= t (aH ~ - BH ~) 
i=l i=l {}pi 8qi 8qi &pi . 

In the symplectic chart (q,p), a solution r(t) = (q(t), p(t)) of the Hamilton­
ian H is the solution of the Hamilton equations: 

I 
~; = :, 

(6) 
dp 8H 
dt=-oq' 

Definition 3.1. A normal geodesic in the sub-Riemannian manifold '1\,1, 'D ,g) 
is a curve 'Y : [a, b) 1--+ M that admits a lift r : [a, b] 1-+ TM* which is a 
solution of the sub-Riemannian Hamiltonian H : TM* 1--+ JR given by: 

(7) H(p) = ½ g-1(plv,Plv), 

where g-1 is the induced inner product in 'D*. In this case, we say that r is a 
Hamiltonian lift of 'Y· 

The Hamilton equations for the sub-Riemannian Hamiltonian (7) will be 
computed explicitly in Section 5 (formula (31)). It will be seen that the first 
of the two equations means that the solutions in M are horizontal curves and 
that I'lv = g(i', ·) (see remark 5.3). 

We remark that a normal geodesic need not be regular in the sense of Def­
inition 2.8, hence there are geodesics that are at the same time nonnal and 
abnormal. Observe also that, in general, a normal geodesic 'Y may admit 
more than one Hamiltonian lift r. This phenomenon occurs precisely when 
'Y is at the same time a normal geodesic and an abnormal extremizer. 
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4. ABNORMAL EXTREMALS AND THE ENDPOINT MAPPING 

In this section we give necessary and sufficient conditions for a curve to 
be an abnormal extrema] in terms of the symplectic structure of the cotan­
gent bundle TM*. We describe a coordinate system in the Hilbert manifold 
H:O([a, b],M) which is compatible with the submanifoldH:O([a, b), V,M). 
This will provide an explicit description of the space T-yH~ ([a, b], V, M) 
which will allow us to compute the image of the differential of the restriction 
of the endpoint mapping to H:O([a,b), V,M). 

Let M be a manifold endowed with a distribution V, with dim(M) = n 
and codim(V) = k. The sub-Riemannian metric will be irrelevant in the the­
ory of this section. Let U c JR x M be an open set and let X 1, ••. , Xn be a 
time-dependent referential of TM defined in U. We say that such referential 
is adapted to the distribution V if X1, ... , Xn-k form a referential for V. 
It follows easily from Lemma 2.3 that, given a continuous curve -y : [a, b] H 

M, there exists an open set U C JR x M containing the graph of '1 and a 
referential of TM defined in U which is adapted to V. Namely, one chooses 
a vector subbundle 1'1 C TM such that TM = V EB V 1 and then apply 
Lemma 2.3 to both 1) and 1'1. 

Given a time-dependent referential of TM defined in an open set U c 
JR x M, we are going to associate to it a map 

B: H 1([a, b), M, U) ....- L2([a, b], JRn), 

where H 1([a, b], M, U) denotes the open set in H 1([a, bJ, M) consisting of 
curves whose graph is contained in U. We define B by: 

(8) B('Y} = h, 

where h = (h1, ••• , hn) is given by 
n 

(9) i'(t) = L ~(t)Xi(t, -y(t)), 
i=l 

for almost all t E [a, b). The map 8 is smooth. It's differential is computed 
in the following: 

Lemma 4.1. Let -y E H 1 ( [a, b], M, U) and v be an H 1 vector field along -y. 
Seth = B( 'Y ), z = dB..,( v ). We define a time-dependent vector field in U by 

n 

(10) X(t, x) = L ~(t)Xi(t, x), (t, x) EU 
i=l 
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and a vector field w along 'Y by 
n 

(11) w(t) = L Zi(t)Xi(t, -y(t)). 
i=l 

~iven a chart (qi, ... , Qn) defined in an open set V C M, denote by ii(t), 
X(t, q) and w(t) the representation in coordinates of v, X and w respec­
tively. Then, the following relation holds: 

(12) :t v(t) = ~! (t, 7(t))v(t) + w(t), 

forallt E [a,b] suchthat-y(t) EV. 

Proof. Simply consider a variation of 'Y with variational vector field v and 
differentiate relation (9) with respect to the variation parameter, using the 
local chart. □ 

Corollary 4.2. The restriction of the map 8 to the set 

H!i([a, b],M, U) = H!,(fa, b],M) n H 1([a, b], M,U) 

is a local chart, taking values in an open subset of L2([a, b), JR!l). 

Proof. For 'Y E H!, ([a, b], M) the tangent space T..,HJo ([a, b], M) consists 
of those H 1 vector fields v along 'Y such that v(a) = 0. For a fixed z E 
L2({a, b], JRn), formula (12) is a first order linear differential equation for 
ii; Lemma 4.1 and standard results of existence and uniqueness of solutions 
of linear differential equations imply that the di:ff erential of 8 at any 'Y E 
H!,([a,b],M,U) maps the tangent space T..,H!,([a,b],M) isomorphically 
onto L2([a, b], JR"). It follows from the inverse function theorem that 8 is 
a local di:ffeomorphism in H!,([a, b], M, U). Finally, by standard results on 
uniqueness of solutions of differential equations, we see that the restriction 
of 8 to H!,([a, b], M, U) is injective. D 

If the referential X 1, .•• , Xn defining 8 is adapted to V, then a curve 'Y in 
HJo([a, b],M,U) is horizontal if and only if 8(-y) = h satisfies hn-k+l = 
... = hn = 0. 

This means that 8 is a submanifold chart for H!, ([a, b], V, M). This ob­
servation will provide a good description of the space T7 H~([a, b], V, M). 

Let 'YE H!,([a,bJ,M,U) and set h = B('Y)- Define a time-dependent 
vector field X in U as in (10). By Lemma 4.1, the kernel Kerd87 is the 
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vector subspace of T7 H 1([a, bJ, M) consisting of those v whose representa­
tion in coordinates v satisfy the homogeneous part of the linear differential 
equation (12), namely: 

(13) :t v(t) = ~; (t, -r(t))v(t). 

By the uniqueness of the solution of a Cauchy problem, it follows that, for all 
t E [a, b], the evaluation map 

KerdB7 3 v 1-+ v(t) E T,y(t)M 

is an isomorphism. Therefore, for every t E (a, b] we can define a linear 
isomorphism 4>t: T-y(a)M 1-+ T-y(t)M by: 

(14) ~t(v(a)) = v(t), v E KerdB-y. 

Using the maps ~t we can give a coordinate free description of the differ­
ential of 8, based on the ''method of variation of constants" for solving non 
homogeneous linear differential equations. · 

Lemma 4.3. Let "'f E H.!,([a,b),M,U) and v E T-yH.!,([a,b],M). Set 
h = 8(-y) and z = d87 (v). Define the objects X, wand~, as in (10), (11) 
and (14) respectively. Then. the following equality lwlds: 

(15) v(t) = ~t 1t ~;1w(s)ds. 

Proot The right side of (15) vanishes at t = a, therefore, to conclude the 
proof, one only bas to show that its representation in local coordinates sat­
isfies the differential equation (12). This follows by direct computation, ob­
serving that the representation in local coordinates of the maps ~, is a solu­
tion of the homogeneous linear differential equation (13). D 

Corollary 4.4. Suppose that the referential X 1, ••• , Xn defining Bis adapted 
to 'D. Let 'Y be an lwrizontal curve in H!, ([a, b], M, U). Then. the tangent 
space T7 H!,([a,b],'D,M) consists of all vector fields v ofthefonn (15), 
where w runs over all L2 lwrizontal vector fields along "Y· 

Proot Follows directly from Lemma 4.3, observing that B is a submanifold 
chart for Hr!, ([a, bJ, 'D, M), as remarked earlier. D 
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We now relate the differential of the endpoint map with the symplectic 
structure of TM*. We denote by TY' c TM* the annihilator of V. The 
restriction wl'D" of the canonical symplectic form ofT M* to V 0 is in general 
no longer nondegenerate and its kernel Ker(wll>" )(p) at a point p E 1Y' may 
be non zero. We say that an absolutely continuous curve 1/ : [a, b) 1-+ 1Y' is a 
characteristic curve for V if 

17(t) E Ker(wl'D" )(11(t)), 

for almost all t E [a, b]. 
We take a closer look at the kernel of wl!)O• Let Y be a horizontal vector 

field in an open subset of M. We associate to it a Hamiltonian function Hy 
defined by 

Hy(p) = p(Y(x)), 

where x = 1r(p). We can now _compute thew-orthogonal complement of 
Tp1Y' in TpT M*. Recall that Hy denotes the corresponding Hamiltonian 
vector field in TM*. 

Lemma4.5. Letp E TM* and setx = 1r(p). The w-orthogonal complement 
o/Tp'D° in TpT M* is mapped isomorphically by d11"p onto 'D,,,. Moreover, if 
Y is a horizontal vector field defined in an open neighborhood of x in M, 
then Hy (p) is the only vector in thew-orthogonal complement ofTpV° which 
is mapped by d1rp into Y(x). 

Proof The function Hy vanishes on 1Y' and therefore w(Hy, •) = dHy 
vanishes on Tp1Y', The conclusion follows by observing that, since w is non­
degenerate, thew-orthogonal complement of Tp1Y' in TpT M* has dimension 
n - k = dim{Z>z). D 

Corollary 4.6. The projection of a characteristic curve of V is automati­
cally horizontal Moreover, let -y : [a, b) 1-+ M be a horizontal curve, let 
X1, ... , Xn be a time-dependent referential of TM adapted to V, defined 
in an open subset U C JR x M containing the graph of-y. Define a time­
dependent vector fiekl X in U as in (10). Let 1/ : [a, b] 1-+ TY' be a curve with 
1r o 1/ = -y. Then 1/ is a characteristic curve ofV if and only if 11 is an integral 
curve of Hx. 
Proof For p E 1Y', the kernel of the restriction of w to Tp 1Y' is equal to the 
intersection of Tp1Y' with thew-orthogonal complement of Tp1Y' in TpT M*. 
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By Lemma 4.5, it follows that the kernel of wlz,o projects by d7r into 'D, and 
therefore the projection of a characteristic is always horizontal. 

For the second part of the statement, observe that fort E [a, b], X(t, ·) 
is a horizontal vector field in an open neighborhood of -y(t) whose value at 
-y(t) is -y(t). Therefore 77(t) is w-orthogonal to T,,(t)'D° if and only if 77(t) = 
Hx(11(t)). □ 

Corollary 4.7. Let-y : [a,b) 1-+ M be a horizontal curve and let X1, ... ,Xn 
be a time-dependent referential of TM adapted to 'D. defined in an open 
subset UC JR x M containing the graph of-y. Let X be defined as in (10). 
A curve 1/ : [a, b) 1-+ 'D" with 11" of/ = 'Y is a characteristic of'D if and only 
if its representation ij( t) E mn• in arry coordinate chart of M satisfies the 
following first order homogeneous linear differential equation: 

(16) :t ij(t) = - ~! (t, -y(t))*ij(t), 

where X is the representation in coordinates of X. 

Proof. Simply use Corollary 4.6 and write the Hamilton equations of Hx in 
coordinates. □ 

, Differential equation (16) is called the adjoint system of (13). It is easily 
seen that fj is a solution of (16) if and only if 71(t)v(t) is constant for every 
solution ii of (13). From this observation we get: 

Lemma 4.8. Let -y : [a, b] 1-+ M be a horizontal curve and suppose that 
the referential X1, ... , Xn defining ~tin (14) is adapted to 'D. Then a curve 
f/ : [a, b] 1-+ 'D° with 11" o 1J = 'Y is a characteristic for 'D if and only if 
11(t) = (~i}-1(11(a))foreveryt E [a,b). 

Proof. By Corollary 4. 7 and the observation above we get that 1/ is a char­
acteristic if and only if 11(t)v(t) is constant for every v E Ker dB,.. The 
conclusion follows. □ 

We can finally prove the main theorem of the section. 

.. 
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Theorem 4.9. The annihilator of the image of the differential of the restric­
tion of the endpoint mapping to H:0([a, b], V, M) is given by: 

(17) 
Im( d(endlH:o<la,b],'D,M))h') r = 

{ 11( b) : 1/ is a characteristic for V and ,r o 1/ = 'Y} 
Proof. By Lemma 4.4, we have: 

(18) 

1m( d(endln:O([a,b],'P,M))(-y)) = 

{ <)b 1b <);1w(s) ds: w is a L2 horizontal vector field along 'Y}. 

By Lemma 4.8, if 77 is a characteristic with 1r o 1/ = 'Y then 11(b) annihilates 
the right hand side of (18). Namely: 

(19) 

71(b)(~b 1b ~_;- 1w(s)ds) = (~:)-1(77(0)) ( ~b 1b ~_;- 1w(s)ds) 

= 77(a) (1b ~;1w(s) ds) = 1b 11(a)~;1w(s) ds 

= 1b(<);)-111(a)w(s) ds = 1b 11(s)w(s) ds = 0. 

We have to prove that if 770 E T-y(b)M* annihilates the righthand side of (18) 
then there exists a characteristic 1/ with 1r o 1/ = 'Y and 11(b) = 770. 

Define 1/ by 17(t) = (<);)-1(4>:(770)) for all t E [a, b]. By Lemma 4.8, we 
only have to prove that 11([a, bl) c V". Computing as in (19), we see that, 
since 770 annihilates the righthand side of (18), then: 

1b 17(s)w(s)ds = 0, 

for any horizontal L2 vector field w along 'Y· The conclusion follows. D 

Corollary 4.10. The image of the differential of the restriction of the endpoint 
mapping to HJa ([a, b], V, M) contains V-y(b)· 
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Proof. By Theorem 4.9, the annihilator of the image of the differential of the 
restriction of the endpoint mapping to HJ«, ( [a, b], V, M) is contained in the 
annihilator of 'D-r(b)· The conclusion follows. D 

The next corollary, which is obtained easily from (17), gives a characteri­
zation of singular curves in terms of characteristics: 

Corollary 4.11. An H 1 curve 'Y : [a, b] 1-+ M is singular if and only if it is 
the projection of a non zero characteristic of V. □ 

Observe that by Lemma 4.8 a characteristic either never vanishes or is 
identically zero. 

5. THE NORMAL GEODESICS AS CRITICAL POINTS 
OF THE ACTION FUNCTIONAL 

In this section we prove that the normal geodesics in (M, 'D, g) correspond 
to the critical points of the sub-Riemannian action functional defined in the 
space of horizontal curves joining two subsets of M. To this aim, we need to 
introduce a Lagrangian formalism that will be be related to the Hamiltonian 
setup described in Section 3 via the Legendre transform. 
We consider the sub-Riemannian action functional EsR defined in the space 

H 1([a,b], 'D,M): 

(20) 

The problem of minimizing the action functional EsR is essentially equivalent 
to the problem of minimizing length (see Lemma S.S and Corollary A.3). 

By Corollary 2.7, given qo, q1 E M, the set H:C,,q
1 
((a, b], 'D,M) bas the 

structure of a smooth manifold around the regular curves. It is easy to prove 
that EsR is smooth in any open subset of HJo,qi ([a, b], 'D, M) which has the 
structure of a smooth manifold; such an open set will be called a regular sub­
set of n:i,,q1 {[a, b}, 'D, M). We will say that a curve 'Y E HJo,qi ([a, bJ, 'D, M) 
is a critical point of EsR if it lies in a regular subset of H!,,qi ([a, b], 'D, M) 
and if it is a critical point of the restriction of EsR. to this regular subset. The 
purpose of this section is to prove that the normal geodesics coincide with the 
critical points of the EsR in HJo,q1 ([a, b], 'D, M). 

To this goal, we will consider an extension E of EsR to the smooth man­
ifold H 1([a, b],M) defined in terms of the Riemannian extension g of the 
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sub-Riemannian metric g that was introduced in Section 2: 

11b E('y) = 2 a g(i', -y) dt, 'Y E H1{[a, b], M). 

Let -y E H~,q1 ([a, b], 'D, M) be a regular curve and let (} be the map de­
fined in a neighborhood of the graph of 'Y given in Proposition 2.4. By the 
method of Lagrange multipliers, we know that 'Y is a critical point of EsR if 
and only if there exists ,\ E L2([a, b], JR") such that 'Y is a critical point in 
HJo,q1 ( [a, b], M) of the action functional: 

(21) E>.('Y) = E(-y) - Lb ,\(t) · 8(t,y(t))Ci'(t)) dt. 

We will see in the proof of Proposition 5.2 below that the Lagrange multiplier 
,\ associated to a critical point of EsR is indeed a smooth map. 

E>. is the action functional of the time-dependent Lagrangian£>. defined 
on an open subset of T "1,, given by: 

(22) 

The Lagrangian£>. is £ 1 in the variable t, moreover, for (almost) all t E 
[a, b], the map v 1-+ £>.(t, v) is smooth. Therefore the critical points of E>. are 
curves satisfying the Euler-Lagrange equations; in a chart q = (q1, ... , qn), 
the equations are: 

(23) 

We recall that if£ : U c JR x TM is a time-dependent Lagrangian defined 
on an open subset of JR x TM, the fiber derivative of £ is the map F £ : 
U 1-+ JR x TM* given by: 

F£(t, v) = (t, d(.C lunT,.cv>M)(v)), 

where 1r : TM 1---+ M is the projection. For t E JR, we denote by Ut 
the open subset of TM consisting of those v's such that (t, v) E U. The 
Lagrangian .C is said to be regular if, for each t, the map v 1--+ F £( t, v) is 
a local diffeomorphism; £ is said to be hyper-regular if v 1-+ F£(t, v) is a 
diffeomorphism between Ut and an open subset of TM*. Associated to a 



NORMAL BXTREMIZE.RS IN SUB-RIEMANNIAN MANIFOLDS 20 

hyper-regular Lagrangian £ in U c JR x TM one has a Hamiltonian H 
defined on the open subset F£(U) by the formula: 

H (FC.(t, v)) = FL(t, v)v -C.(t, v), (t, v) e U. 

This procedure is called the Legendre transform (see [1, Chapter 31). If£ 
is a hyper-regular Lagrangian and H is the associated Hamiltonian, then the 
solutions of the Euler-Lagrange equations (23) of £ correspond, via F £, to 
the solutions of the Hamilton equations of H, i.e., a smooth curve -y : (a, b] t-+ 

M is a solution of (23) if and only if r = F £ o ('y, i') is a solution of the 
Hamiltonian H. 

Let us show now the this formalism applies to the case of the Lagrangian 
£>,. of (22): 

Lemma 5.1. The Lagrangian C. >,. is hyper-regular. 

Proof. From (22), the fiber derivative Fr.>,. is easily computed as: 

(24) F.C>,.(t, v) = g(v, ·) - A(t) · O(t,m) E TmM*. 

For each t E {a,b], the map F£>,.(t, ·) : TmM t-+ TmM• is clearly a diffeQ­
morphism, whose inverse is given by: 

(25) TmM• 3 pt-+ g 1 (p + ..X(t) · 8(t,m)) E TmM. 

□ 
We are finally ready to prove the following: 

Proposition 5.2. Let -y be a regular curve in H~,'ll ([a, b], V, M). Then, -y is 
a critical point of EsR if and only if it is a normal sub-Riemannian geodesic 
in (M,V,g). 

Proof. A critical point of EsR is a curve satisfying the Euler-Lagrange equa­
tions (23) associated to the Lagrangian £>. of (22). By Lemma 5.1, £-,. is 
hyper-regular, hence the solutions of (23) correspond, via F£-,. to the so­
lutions of the associated Hamiltonian H>., computed as follows. First, for 
v E TmM we have: 

F£>,.(t, v) v - £>.,(t, v) = 

= g(v, v) - A(t) • 8(t,m)(v) - ½ g(v, v) + A(t) · 8(t,m)(v) = ½ g(v, v). 

Then, using (25), we compute: 

(26) H:A(t, q,p) = ½ g 1 (p + A(t) • 8(t,q), p + ..X(t) • 8(t,q)). 
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For the proof of the Proposition, we need to show that if 'Y is an absolutely 
continuous curve in M, then "Y is horizontal and it is a solution for the Hamil­
ton equations associated to the Hamiltonian H:>.. for some A if and only if it 
is a solution of the Hamilton equations associated to the sub-Riemannian 
Hamiltonian H of formula (7). 

The Hamilton equations of H->.. are computed as follows: 

dq 1 
dt = g (p + A(t) · O(t,q)); 

(27) 
dp --1 ( {)(}(t,q) ) 
dt = -g A(t) · --a;-,P+ A(t) · Oct,q) • 

From the horizontality oft, using the first equation of (27) we get: 

and since Olv1 is an isomorphism, we get an explicit expression for the La­
grange multiplier A: 

(28) 

Observe that, by a standard boot-strap argument, from (28) it follows easily 
that A is smooth. 

We now write the Hamilton equations of the sub-Riemannian Hamiltonian 
and of H :>.. using a suitable time-dependent referential X 1, •.• , Xn of TM. 
The choice of the referential is done as follows. Let 81, ••• , Ok be a time­
dependent referential of the annihilator 1Y' = ( v1.) * which is orthonormal 
with respect to g 1. For the orthogonality, it suffices to consider any refer­
ential of 'D° and then to orthonormalize it by the method of Gram-Schmidt 
Then, let Xn-k+l, .•. , Xn be the referential of v.1 obtained by dualizing 
81, ... , Ok. Finally, let Xi, ... , Xn-k be any orthonormal referential of V, 
time-dependent or not 

In the referential Xi, ... , Xn, for i = 1, ... , n - k we have: 

(29) 
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We can rewrite (27) as: 
(30) 

d n-k n 

d: = LP(Xi) Xi+ L (p(X,) + Ai-n+A:) xi, 
i=-1 i=n-k+l 

dp n-k (8X·) n (8Xi) 
dt = - LP(Xi)P T - L 2(p(Xi) + Ai-n+A:) P a , 

i=-1 q i=n-k+l q 

where,\ = (.\1 , .•• , .\1c). On the other hand. the Hamilton equations for H 
are written as: 

d n-k 
..J. = ~p(X·)X· 
dt L.,, 1 

" 
i=-1 

(31) 

dp n-k (fJX·) - = - Lp(Xi)P - • · 
dt i=-l _ 8q 

Now. if 'Y is horizontal and it satisfies (30) for some ,\ it follows that the 
second sum of the first equation in (30) is uro. and therefore 'Y satisfies also 
(31). Conversely, if 'Y satisfies (31), then 'Y is horizontal, and defining,\ by 
(28), it is easily seen that 'Y is a solution of (27). D 

Remark 5.3. · It follows easily from (31) that if 'Y is a normal geodesic and r 
is a Hamiltonian lift of 'Y, then riv= g(,y, ·). 

We now consider the case of sub-Riemannian geodesics with endpoints 
varying in two submanifolds of M. 
Proposition SA. Let (M, V, g) be a sub-Riemannian manifold. let P, Q C 
M be smooth submanifolds of M and assume that Q is transversal to V, i.e., 
TqQ + 'Dq = TqMforall q E Q. Then, the set 

H¾,,Q([a,b],V,M) = {x E H 1([a,b),V,M): x(a) E 'P, x(b) E Q} 
is a smooth submanifold of H 1 ( [a, b], M). Moreover, the critical points of the 
sub-Riemannian action functional EsR in H~,Q([a,b], V,M) are precisely 
the normal geodesics 'Y joining 'P and Q that admit a lift r : [a, b] i-+ TM* 
satisfying the boundary conditions: 

(32) r(a) E T..,(a)P", and r(b) E T7 (b)'2°• 
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Proof The fact that Hi,Q([a, b], V, M) is a smooth manifold follows easily 
from the transversality of Q and Corollary 4.10. 

The proof of the second part of the statement is analogous to the proof of 
Proposition 5.2, keeping in mind that the critical points of the action func­
tional associated to a hyper-regular Lagrangian in the space of curves joining 
'P and Q are the solutions of the Hamilton equations whose Hamiltonian lift 
vanishes on the tangent spaces of 'P and Q. D 

Obviously, the role of 'P and Q in Proposition 5.4 can be interchanged, 
and the same conclusion holds in the case that 'P is transversal to V. 

As a consequence of Proposition 5.4 we get some information on the ge­
ometry of sub-Riemannian balls. Given a horizontal curve 'Y : [a, b) 1-+ M, 
we define i('y) to be its length: 

l('Y) = 1b g(-y,,y)½ dt. 

For qo, q1 E M, we set 

dist(qo, qi)= inf {t('Y) : 'Y is a horizontal curve joining qo and q1} E [O, +oo], 

where such number is infinite if qo and q1 cannot be joined by any horizontal 
curve. A horizontal curve 1 : [a, b) 1--+ M is said to be length minimizing 
between two subsets 'P and Q of M if -y(a) E 'P, -y(b) E Q and 

l('Y) = inf dist(qo, qi). 
qoE'P 
'llEQ 

A horizontal curve I is said to be affinely parameterized if g( i', i') is almost 
everywhere constant Every horizontal curve is the reparameterization of an 
affinely parameterized horizontal curve (see Corollary A.3). Since the sub­
Riemannian Hamiltonian is constant on its integral curves, it follows that ev­
ery normal geodesic is affinely parameterized. Moreover, using the Hamilton 
equations (31 ). it is easy to see that an affine reparameterization of a normal 
geodesic is again a normal geodesic. 

We relate the problem of minimization of the length and of the action func­
tional by the following: 
Lemma S.S. ut 'Y : [a, b] 1-+ M be an horizontal curve joining the subman­
ifolds 'P and Q. Then. 'Y is a minimum of EaR in H¾,,Q([a, b), V, M) if and 
only if 'Y is affinely pa~terized and 'Y is a length minimizer between 'P and 
Q. 
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Proof. By Cauchy-Schwartz inequality we have: 

l(-y)2 5 2(b- a)EsR(,)2
, 

where the equality holds if and only if 'Y is affinely parameteriz.ed. If 'Y 
is affinely parameterized and it minimizes length. then. for any curve µ in 
H-t,,Q([a, b], 'D, M), we have: 

l('Y)2 l(µ)2 
EsR('Y) = 2(b- a) $ 2(b- a) ~ E.R.(µ). 

Hence, 'Y is a minimum of EsR• 
Conversely, suppose that 'Y is a minimum of EsR. There exists an affinely 

parameterized horizontal curve µ : [a, b] 1-+ M such that 7 is a reparameteri-
1.ation ofµ (see Corollary A.3). We have: 

t(µ)2 l('Y)2 
EsR(,) 5 EsR(µ) = 2 (b- a) = 2 (b- a) 5 EsR(i), 

hence the above inequalities are indeed equalities, and ; is affinely parame-
terized. . 

Now, assume by contradiction that p : [a, b] 1-+ M connects -P and Q and 
satisfies l(p) < l{7). By Corollary A.3, we can assume that pis affinely 
parameterized, hence EsR(P) < E 8R{'Y). This is a contradiction, and we are 
~~ D 

For qo E M and r E JR+, the open ball Br ( qo) is defined by: 

Br(qo) = { q1: dist(qo,q1) < r }· 

Corollary S.6. Suppose that there exists an affinely parameterized length 
minimizer 'Y : [a, b) H M between qo and q1 which is not a nonnal ex­
tremal; set r = dist(qo, q1). Then, any submanifold Q through q1 which is 
transversal to 'D at q1 has non empty intersection with the open ball Br(q0 ). 

Proof. By contradiction, suppose that we can find a submanifold Q through 
q1 which is transversal to 'D at q1 and disjoint from the open ball Br(Qo). It 
follows that-, is a length minimizer between the point qo and the submanifold 
Q, hence, by Lemma 5.5, ; is a minimum point for the action functional in 
HJo,Q([a, b], 'D, M). By possibly considering a small portion of Q around qi. 
we can assume that Q is everywhere transversal to 'D. From Proposition 5.4 
it follows then that 7 is a normal geodesic, which is a contradiction. D 
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Remark 5.7. Proposition 5.4 can also be used to establish the smoothness of 
abnormal extremizers, which is in general an open question. Observe indeed 
that its statement can be rephrased as follows. Let 'Y: [a, b) ---+ M be an 
affinely parameterized length-minimizer connecting qo and q1 in M; set r = 
dist{qo, qi). If there exists a manifold Q transverse to 'D passing through q1 
which does not intercept the open ball B(q0 ; r) then 'Y is a normal extremal 
and consequently it is smooth. 

As a corollary of Proposition 5.2. we also obtain an alternative proof of a 
result of [9) that gives necessary conditions for length minimizing: 

Corollary 5.8. An affinely parameterized length minimizer is either an ab­
normal minimizer or a normal geodesic. 

Proof. It follows immediately from Definition 2.8, Proposition 5.2 and the 
fact that affinely parameterized length minimizers are minima of the sub­
Riemannian action functional. □ 

The solutions of·sub-Riemannian geodesic problem with variable end­
points in the case that the end-manifold is one-dimensional has a physical in­
terpretation in the context of General Relativity (see [5, 61). Such geodesics 
can be interpreted as the solution of a general relativistic brachistochrone 
problem in a stationary Lorentzian manifold. 

APPENDIX A AFFINE PARAMETERIZATION OF HORIZONTAL CURVES 

In this appendix we show that every horizontal curve in a sub-Riemannian 
manifold can be obtained as the reparameterization of an affinely parameter­
ized horizontal curve. 

Given two absolutely continuous curves "Y : [a, b] ...... M and µ : [c, cl] 1-+ 

M, we say that 'Y is a reparameterization of µ if there exists an absolutely 
continuous, nondecreasing and surjective map u : [a, b] 1-+ [c, d] such that 
'Y = µ o u. It can be proven that in this case i = (µ o u) u almost everywhere. 

Proposition A.1. Let (M,g) be a Riemannian manifold, 'Y : [a, b] 1-+ Man 
absolutely continuous curve. Then, there exists a unique pa.ir of absolutely 
continuous mapsµ : [O, L] 1--+ Mand u : [a, b] 1-+ [O, L], with u nondecreas­
ing and surjective, such that g(µ( t), µ( t)) = 1 almost everywhere on [O, L) 
and'Y = µou. 
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Proof. Suppose that the pairµ, u satisfying the thesis is found; then we obtain 
easily 

(33) 1t 1 

u(t) = l(-yl(0 ,t]) = " g(i',-Y)~ dt. 

Since u is surjective, this proves the uniqueness of the pair. 
As to the existence, set L = l(-y) and define u as in (33). Obviously, u is 

absolutely continuous, nondecreasing and surjective. 
Suppose that u(s) = u(t) for some s, t E [a, b], with s < t. Then, 

lhl(a,t]) = 0, and therefore ,(s) = -y(t). It follows that there exists a func­
tionµ: (0, L] i-+ M withµ o u = -y. 1be curveµ is Lipschitz continuous, 
hence absolutely continuous; for, ifs, t E (0, L], let s1, ti E [a, b] be such 
that u(s1) =sand u{t1) = t. Then, 

dist(µ(s), µ(t)) = dist(-y{s1),'Y(t1)) ~ 
=:; l(-yl(a1,,1]) = lu(s1) - u(t1)I = Is - tj. 

We are left with the proof that g(Ji., µ) = 1 almost everywhere. To see this, 
let t E [O, L] be chosen and let t1 E [a, b] be such that t = u(t1), Then, we 
have: 

(34) Lt g(µ, µ)½ dr = l(µl[o,t}) = l(-yl[a,ti]) = u(t1) = t. 
The conclusion follows by differentiating (34) with respect to t. □ 

Lemma A.2. ut M be a smooth manifold and V c TM be a smooth 
distribution. Ut µ : [a, b] ....,. M be an absolutely continuous curve; ifµ 
admits a reparametemation which is horizontal, then µ is horizontal. 

Proof. Let u : [c, d) ....,. [a, b] an absolutely continuous nondecreasing surjec­
tive map with -y = µ o u horizontal. Define: 

X = { t E [c, d}: the equality -t(t) == µ(u(t))u(t) fails to bold}, 

Y = {t e (c,d]: a(t) = o}. 
Clearly,µ is horizontal outside u(X UY); to conclude the proof it suffices to 
show that u(X UY) has null measure. To see this, observe that X has null 
measure and therefore u(X) has null measure. Moreover, since u = 0 in Y, 
it is not difficult to show that u(Y) has null measure, and we are done. D 
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Corollary A.3. Let (M, V, g) be a sub-Riemannian manifold and "Ya hori­
zontal curve in M. Then, 1 is the reparameterization of a unique horizontal 
curve µ : [O, L] 1-+ M such that g(µ, µ) = 1 almost everywhere. 

Proof. Let g be any Riemannian extension of g and apply Proposition A. I. 
The curve µ thus obtained is horizontal by Lemma A.2. D 

APPENDIX B. LOCAL MINIMALITY OF NORMAL GEODESICS 

The aim of this section is to prove that a sufficiently small segment of a 
sub-Riemannian normal geodesic is a distance minimizer between an initial 
submanifold and a point. We will simply adapt the proof of local optimality 
presented in [9, Appendix CJ. 

Proposition B.1. Let (M, V, g) be a sub-Riemannian manifold, 'P C Ma 
submanifold and 'Y : [a, b] 1-+ M a normal geodesic with ,(a) E 'P and such 
that there exists a Hamiltonian lift r: [a, b] I-+ TM* of..., with r(a)IT-,(a)P = 
0. Then, fore > 0 small enough, "Yl[a,a+E) is a length minimizer between 'P 
and,(a+e). 

Proof. We can assume without loss of generality that g( i, 'Y) = 1. Let S C 
M be a codimension 1 submanifold containing a neighborhood of 'Y( a) in 'P 
and such that r(a)IT-,(a)s = 0. The existence of such a submanifold is easily 
proved using a coordinate system in M adapted to 'P around ,(a). Observe 
that. by Remark 5.3, we have 9-1 (r(a)lv, r(a)lv) = 1. 

Let.\ : S 1-+ TM* be a 1-fonn in M along S such that .\(x)IT,.S = 0, 
g-1 (.X(x)lv, .X{x)lv) = 1 for all x ES and such that .X{'Y(a)) = r(a). Let 
U C S be a sufficiently small open subset containing 'Y( a) and let E > 0 be 
sufficiently small. Consider the map c) : ] a - E, a+ E [ x U 1-+ TM* such that 
t 1-+ cJ( t, x) is a solution of the sub-Riemannian Hamiltonian H defined in 
(7) and cJ(a, x) = .\(x) for all x E U. Let F = 1rocJ, where ,r : TM• 1-+ M 
is the projection. 
By Remark 5.3, r(a)(7(a)) = 1, which implies that T-y(a)M = T-y(a)S EB 
(JR-y(a)). It follows easily that the differential of Fat (a, -y(a)) is an isomor­
phism, and by the Inverse Function Theorem, by possibly passing to smaller 
E and U, Fis a diffeomorphism between ] a-E, a +E [ x U and an open neigh­
borhood V of-y(a) in M. By possibly taking a smaller V, we can assume 
that V n'P c S. 
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We define a vector field X, a 1-fonn A and a smooth map T on V by 
setting: 

d 
-r(F(t,x)) = t, X(F(t,x)) = dt F(t,x), .\(F(t,x)) = ~(t,x), 

for all (t,x) E]a-e,a+e [xU. SinceH o~does not depend on t, it follows 
easily that 

(35) 

We prove next that ,\ = dr. To this aim, let '11 x denote the flow of X, 
defined on an open subset of JR X V; for 8 E JR we set '11x = '11x(s, ·). 
Clearly, t 1--+- F(t, x) is an integral curve of X, and therefore we have -r o 
lli'x = 8 + T, hence dr is invariant by the flow of X, i.e., 

(w~)*(dT) = dr. 

y,le show that ,\ is also invariant by the flow of X; the equality A = dr will 
follow from the fact that these two 1-forms coincide on S. For the invariance 
of..\, we argue as follows: let x E U, vo E TzM and v(t) = d-.J1~0 (x)[vo); 
it suffices to prove that ..\(F(t, x))(v(t)) is constant int. 

In local coordinates q = (q1, ... , qn), v satisfies the following linear dif­
ferential equation: 

(36) dv = lJX (v). 
dt oq 

For t E] - t", e[ fixed, let X 1, ••• , Xn-k be an orthonormal frame for 'D 
around F(t, x); by Remark 5.3 we have ~(t, x)l1> = g(X(F(t, x)), •), from 
which it follows: 

n-A: 
(37) X = L ,\(Xi) Xi, 

i=l 

From (35) it follows that Ei .\(Xi)2 = 1, and differentiating this expression 
we obtain: 

(38) 
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From (37) and (38), it follows: 

(39) (ax) n-k (ax-) 
,\ 8q = tr..\(Xi),\ aq' . 

Using the second Hamilton equation in (31), we finally get: 

(40) 

Using (36) and (40) it is easily seen that ,\(F(t, x))v(t) is constant int, and 
,\ is invariant by the flow of X. 

The equality ,\ = dr is thus proven, and by (35) we obtain: 

(41) g-1 (drlv,d-rlv) = 1. 

Let now µ : [a, a + c] 1-+ V be a horizontal curve with µ(a) E 'P and 
µ(a+ c) = -y(a + c). Using (41), the length ofµ is estimated as follows: 

L(µ) = 1a-t;E IIJill dt ~ 1a+E dr(µ(t)) dt = r(µ(a + c)) - r(µ(a)) = 

= c = L{-y /[a,a+E))-

This implies that -rha,a+E) is a length minimizer between 'P and -y(a + c) 
among all the horizontal curves with image in V. The conclusion of the 
proof will follow from the next Lemma, by possibly considering a smaller 
~ D 

Lemma B.2. Let (M, 'D,g) be a sub-Riemannian manifold and let V c M 
be an open subset. Given x E U there exists r > 0 such that every horizontal 
curveµ: [a, b] 1-+ M with µ(a) = x and L(µ) < r satisfies µ([a, b]) C V. 

Proof. We compare the sub-Riemannian metric g with the Euclidean _2!letric 
relative to an arbitrary coordinate system around x. ~t cp : W 1-+ W be a 
coordinate system in M with x E W, W c V and Wis an open neighbor­
hood of O in JRn. Let B c W be the inverse image through cp of a closed 
ball of radius s, B[cp(x}; s] C W. Form E Wand v E TmM, denote by 
llvlle the Euclidean norm of the vector d<f>(m)[v]. The set of vectors v E 'D 
that are tangent to the points of B with llvl le = 1 fonn a compact subset of 
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TM, in which the continuous function v 1-+ g(v, v)½ = llvl] attains a posi­
tive minimum k. Observe that for all v E 'D tangent to some point of B, it is 
llvll ;?: k · llvlle• 

Take r = ks > 0. H µ : (a, b] 1-+ M is a horizontal curve with µ(a) = x 
and µ([a, b]) <t. V, then there exists c E ]a, b [ with µ([a, c] C Band -y(c) E 
8B. Therefore. 

L(µ) ;?: L(µ l[a,c)} ;?: kLe('P o µl[a,c}) ;?: ks= r, 
where Le denotes the Euclidean length of a curve. This concludes the proof. 

D 
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