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Abstract

This paper presents, extends, and studies a model for repeated, overdispersed time-to-event outcomes,

subject to censoring. Building upon work by Molenberghs, Verbeke, and Demétrio (2007) and

Molenberghs et al. (2010), gamma and normal random effects are included in a Weibull model, to

account for overdispersion and between-subject effects, respectively. Unlike these authors, censoring is

allowed for, and two estimation methods are presented. The partial marginalization approach to full

maximum likelihood of Molenberghs et al. (2010) is contrasted with pseudo-likelihood estimation. A

limited simulation study is conducted to examine the relative merits of these estimation methods. The

modeling framework is employed to analyze data on recurrent asthma attacks in children on the one hand

and on survival in cancer patients on the other.
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1 Introduction

Time-to-event data are prominent in contemporary statistical analysis, not only for univariate
outcomes but also in hierarchical settings. Apart from the need to accommodate such data
hierarchies for repeated survival outcomes, recurrent events, and the like,1 it is possible that
overdispersion2 is present in the data, relative to the standard generalized linear model3,4

assumed, as well as censored observations.
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While each of these features has received attention, it is uncommon to treat all of them
simultaneously. Building upon their earlier work,5 Molenberghset al.6 presented a general
modeling framework for (non-)Gaussian overdispersed and hierarchical outcomes. The time-
to-event case is but one of the applications of their framework. They combine so-called conjugate
random effects for overdispersion with generalized linear mixed model ideas (GLMM7–9) for
between-subject effects. Here, we supplement their method with the possibility to accommodate
censorship.

Whereas Molenberghs et al.5 focused on maximum likelihood, using so-called partial
marginalization, we supplement this inferential option with pairwise likelihood ideas.10 A
simulation study is conducted to study the relative merits of these methods. The methodology is
applied to analyze data on recurrent asthma attacks in children on the one hand and on survival in
cancer patients on the other.

The paper is organized as follows. In Section 2, motivating case studies with a time-to-event
outcome are described, with analyses reported in Section 7. Basic ingredients for our modeling
framework, standard generalized linear models, extensions for overdispersion, and the generalized
linear mixed model are the subject of Section 3. The proposed, combined model is described and
further studied in Section 4. Avenues for parameter estimation and ensuing inferences are explored
in Section 5, with particular emphasis on so-called partial marginalization and pseudo-likelihood
estimation. Some cautionary remarks regarding the existence of the corresponding marginal
distributions’ moments are issues in Section 6. A simulation study is described and results
presented in Section 8.

2 Case studies

2.1 Recurrent asthma attacks in children

These data have been studied in Duchateau and Janssen.1 Asthma is occurring more and more
frequently in very young children (between 6 and 24 months). Therefore, a new application of an
existing antiallergic drug is administered to children who are at higher risk to develop asthma in
order to prevent it. A prevention trial is set up with such children randomized to placebo or drug,
and the asthma events that developed over time are recorded in a diary. Typically, a patient has
more than one asthma event. The different events are thus clustered within a patient and ordered in
time. This ordering can be taken into account in the model. The data are presented in calendar time
format, where the time at risk for a particular event is the time from the end of the previous event
(asthma attack) to the start of the next event (start of the next asthma attack). A particular patient
has different periods at risk during the total observation period which are separated either by an
asthmatic event that lasts one or more days or by a period in which the patient was not under
observation. The start and end of each such risk period is required, together with the status indicator
to denote whether the end of the risk period corresponds to an asthma attack or not. Data for the
first two patients are listed in Table 1.

2.2 Survival in cancer patients

Hand et al.11 presented data on patients with advanced cancer of the stomach, bronchus, colon,
ovary, or breast, who were treated, in addition to standard treatment, with ascorbate. The outcome
of interest, survival time in days, is recorded to address the question as to whether survival times
differ with the organ being affected. Individual-patient data are listed in Table 2. There are no
censored observations in this case.
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3 Background

Our model is based upon the generalized linear model and two of its extensions, the first one to
accommodate overdispersion, and the second one to account for data hierarchies, such as in
longitudinal data. We briefly review these building blocks.

Table 2. Advanced cancer data.

Stomach Bronchus Colon Ovary Breast

124 81 248 1234 1235

42 461 377 89 24

25 20 189 201 1581

45 450 1843 356 1166

412 246 180 2970 40

51 166 537 456 727

1112 63 519 3808

46 64 455 791

103 155 406 1804

876 859 365 3460

146 151 942 719

340 166 776

396 37 372

223 163

138 101

72 20

245 283

Average

286.0 211.6 457.4 884.3 1395.9

Survival time in days per patient and per organ affected.

Table 1. Asthma data for the first two patients.

Patient ID Drug Begin End Status

1 0 0 15 1

1 0 22 90 1

1 0 96 325 1

1 0 329 332 1

1 0 338 369 1

1 0 370 412 1

1 0 418 422 1

1 0 426 474 1

1 0 477 526 1

1 0 530 600 0

2 1 0 180 1

2 1 189 267 1

2 1 273 581 1

2 1 582 600 0

The column labeled ‘‘Status’’ referred to whether (1) or not (0) censoring has occurred.
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A random variable Y follows an exponential family distribution if the density is of the form

f ð yÞ � f ð yj�,�Þ ¼ exp ��1½ y��  ð�Þ� þ cð y,�Þ
� �

ð1Þ

for a specific set of unknown parameters � and �, and for known functions  ð�Þ and cð�, �Þ. Often, �
and � are termed ‘‘natural parameter’’ (or ‘‘canonical parameter’’) and ‘‘dispersion parameter’’,
respectively. It is well known that

EðYÞ ¼ � ¼  0ð�Þ ð2Þ

VarðYÞ ¼ �2 ¼ � 00ð�Þ ð3Þ

implying a mean–variance relationship: �2 ¼ � 00½ 
0�1ð�Þ� ¼ �vð�Þ, with vð�Þ the so-called variance

function. In the exponential case, one assumes

f ð yÞ ¼ ’e�’y ð4Þ

with mean ’�1 and variance ’�2. This extends in the Weibull case to

f ð yÞ ¼ ’�y ��1e�’y
�

EðYÞ ¼ ’�1=��ð��1 þ 1Þ

VarðYÞ ¼ ’�2=� �ð2��1 þ 1Þ � �ð��1 þ 1Þ2
� �

Note that the Weibull model does not belong to the exponential family in a conventional sense,
unless in a somewhat contrived fashion where Y is replaced by Y�. In the mean and variance
expressions for the Weibull, �ð�Þ represents the gamma function.

When the standard exponential-family models constrain the mean–variance relationship,
so-called overdispersion is introduced. Early reviews are provided by Hinde and Demétrio2

provide general treatments of overdispersion. The Poisson case received particular attention by
Breslow12 and Lawless.13 A natural step is to allow the overdispersion parameter � 6¼ 1, so that
(3) produces VarðYÞ ¼ �vð�Þ. A convenient route is through a two-stage approach. Generally, the
two-stage approach is made up of considering a distribution for the outcome, given a random effect
f ð yij�iÞ which, combined with a model for the random effect, f ð�iÞ, produces the marginal model

f ð yiÞ ¼

Z
f ð yij�iÞ f ð�iÞd�i ð5Þ

In our exponential and Weibull cases, it is in line with the data range to assume such a random effect
to follow a gamma distribution, giving rise to the exponential-gamma and Weibull-gamma models.
The model elements are listed in Table 3.

The choice of the gamma distribution can also be motivated through the concept of
conjugacy.14,15 To simplify notation, drop the indices for the purpose of the definition. The
hierarchical and random-effects densities are said to be conjugate if and only if they can be
written in the generic forms

f ð yj�Þ ¼ exp ��1½ yhð�Þ � gð�Þ� þ cð y,�Þ
� �

ð6Þ

f ð�Þ ¼ exp �½ hð�Þ � gð�Þ� þ c�ð�, Þ
� �

ð7Þ
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where gð�Þ and hð�Þ are functions, �, �, and  are parameters, and the additional functions cð y,�Þ
and c�ð�, Þ are so-called normalizing constants. It can then be shown that the marginal model
resulting from (6) and (7) equals

f ð yÞ ¼ exp cð y,�Þ þ c�ð�, Þ � c� ��1 þ �,
��1yþ � 

��1 þ �

� �� 	
ð8Þ

Should the data be hierarchical, with Yij denoting the jth outcome measured for cluster (subject) i,
i ¼ 1, . . . ,N, j ¼ 1, . . . , ni and Yi the ni-dimensional vector of all measurements available for cluster i,
then the scalar �i becomes a vector hi ¼ ð�i1, . . . , �ini Þ

0, with EðhiÞ ¼ li and VarðhiÞ ¼ �i. In line with
the univariate case produces EðYiÞ ¼ li and VarðYiÞ ¼Mi þ�i, where Mi is a diagonal matrix with
the vector li along the diagonal.

Next, it is possible to include normal random effects in the linear predictor of the generalized
linear model, giving rise to the family known as generalized linear mixed model.7–9,16,17 Assume that,
in analogy with (1), conditionally upon q-dimensional random effects bi � Nð0,DÞ, the outcomes Yij

are independent with densities of the form

fið yijjbi, n,�Þ ¼ exp ��1½ yij	ij �  ð	ijÞ� þ cð yij,�Þ
� �

ð9Þ

Table 3. Model elements for the exponential-gamma and Weibull-gamma models.

Element Notation Exponential-gamma Weibull-gamma

Hier. model f ð yj�Þ ’�e�’�y ’��y��1e�’�y
�

RE model f ð�Þ
�
�1e��=�

�
�ð
Þ

�
�1e��=�

�
�ð
Þ

Marginal model f(y)
’
�

ð1þ ’�yÞ
þ1

’�y��1
�

ð1þ ’�y�Þ
þ1

hð�Þ �� ��

gð�Þ � lnð�Þ=’ � lnð�Þ=’

� 1=’ 1=’

� ’ð
� 1Þ ’ð
� 1Þ

 ½�’ð
� 1Þ��1
½�’ð
� 1Þ��1

cð y,�Þ lnð’Þ ln ’�y��1

 �

c�ð�, Þ
� þ ’

’
lnð� Þ � ln �

� þ ’

’

� �
� þ ’

’
lnð� Þ � ln �

� þ ’

’

� �

Mean E(Y) ½’ð
� 1Þ���1 �ð
� ��1Þ�ð��1 þ 1Þ

ð’�Þ1=��ð
Þ

Variance VarðYÞ 
½’2ð
� 1Þ2ð
� 2Þ�2�
�1 1

�ð’�Þ2=��ð
Þ
2�ð
� 2��1Þ�ð2��1Þ
�

�
�ð
� ��1Þ

2�ð��1Þ
2

��ð
Þ
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with

�½ 0ð	ijÞ� ¼ �ð�ijÞ ¼ �½EðYijjbi, nÞ� ¼ x0ijnþ z0ijbi ð10Þ

for a known link function �ð�Þ, with xij and zij p-dimensional and q-dimensional vectors of known
covariate values, with n a p-dimensional vector of unknown fixed regression coefficients, and with �
a scale (overdispersion) parameter. Finally, let f ðbijDÞ be the density of the Nð0,DÞ distribution for
the random effects bi.

This kind of models are a bit less common for survival data, where so-called frailty models,1

rather of the type with conjugate random effects, are more standard. In any case, the next
section presents a framework to combine both types of random effects, with focus on time-
to-event data.

4 Models combining conjugate and normal random effects

4.1 General model formulation

Combining both the overdispersion and the normal random effects led Molenberghs et al. to the
combined model family

fið yijjbi, n, �ij,�Þ ¼ exp ��1½ yij	ij �  ð	ijÞ� þ cð yij,�Þ
� �

ð11Þ

with notation similar to the one used in (9), but now with conditional mean

EðYijjbi, n, �ijÞ ¼ �
c
ij ¼ �ij�ij ð12Þ

where the random variable �ij � Gijð#ij, �
2
ijÞ, �ij ¼ gðx0ijnþ z0ijbiÞ,#ij is the mean of �ij and �

2
ij is the

corresponding variance. Finally, as before, bi � Nð0,DÞ. Write �ij ¼ x0ijnþ z0ijbi. We now need two
different notations, �ij and 	ij, to refer to the linear predictor and/or the natural parameter. The
reason is that 	ij encompasses the random variables �ij, whereas �ij refers to the ‘‘GLMM part’’ only.

It is convenient, but not strictly necessary, to assume that the two sets of random effects, hi and bi,
are independent of each other. Regarding the components �ij of hi, three useful special cases result
from assuming that (1) they are independent; (2) they are correlated, implying that the collection of
univariate distributions Gijð#ij, �

2
ijÞ needs to be replaced with a multivariate one; and (3) they are

equal to each other, useful in applications with exchangeable outcomes Yij.
Obviously, parameterization (12) allows for random effects �ij capturing overdispersion, and

formulated directly at mean scale, whereas �ij could be considered the GLMM component. The
relationship between mean and natural parameter now is

	ij ¼ hð�c
ijÞ ¼ hð�ij�ijÞ ð13Þ

Details and generic expressions are provided in online Appendix A.
Molenberghs et al.5 set up a framework to describe under what conditions model (11) still allows

for conjugacy. They considered conjugacy, conditional upon the normally-distributed random effect
bi. To this effect, they wrote (suppressing non-essential arguments from the functions)

f ð yj��Þ ¼ exp ��1½ yhð��Þ � gð��Þ� þ cð y,�Þ
� �

ð14Þ
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generalizing (6), and retain (7). Applying the transformation theorem to (7) leads to

f ð�j�, Þ ¼ � ð��j ~�, ~ Þ

Next, we request that the parametric form (7) be maintained

f ð��Þ ¼ exp ��½ �hð��Þ � gð��Þ� þ c��ð��, �Þ
� �

ð15Þ

where the parameters �� and  � follow from ~� and ~ upon absorption of �. Then, the marginal
model, in analogy with (8), equals

f ð yj�Þ ¼ exp cð y,�Þ þ c��ð��, �Þ þ c�� ��1 þ ��,
��1yþ �� �

��1 þ ��

� �� 

ð16Þ

The condition is termed strong conjugacy. Fortunately, the Weibull and exponential cases satisfy
this property, with gamma random effects. Other examples include the normal and Poisson cases,
with normal and gamma random effects, respectively.5

4.2 Weibull- and exponential-type models for time-to-event data

The general Weibull model for repeated measures, with both gamma and normal random effects can
be expressed as

f ð yijhi, biÞ ¼
Yni
j¼1

	��ijy
��1
ij ex

0
ijnþz

0
ijbie�	y

�
ij
�ije

x0
ij
nþz0

ij
bi

ð17Þ

f ðhiÞ ¼
Yni
j¼1

1

�

j
j �ð
j Þ

�

j�1
ij e��ij=�j ð18Þ

f ðbiÞ ¼
1

ð2
Þq=2jDj1=2
e�

1
2 b
0
i D
�1bi ð19Þ

A few observations are in place. First, it is implicit that the gamma random effects are
independent. This need not be the case and, like in the Poisson case, extension via multivariate
gamma distributions is possible. Second, setting �¼ 1 leads to the special case of an exponential
time-to-event distribution. Third, it is evident that the classical gamma frailty model (i.e., no normal
random effects) and the Weibull-based GLMM (i.e., no gamma random effects) follow as special
cases. Fourth, strong conjugacy applies. This is typically considered for the exponential model, but it
holds for the Weibull model too, by observing that the Weibull model is nothing but an exponential
model for the random variable Y�ij. It is equally possible to derive this result by merely re-writing the
factor � ¼ 	�. Fifth, the above expressions are derived for a two-parameter gamma density. It is
customary in a gamma frailty context1 to set 
j�j ¼ 1, for reasons of identifiability. In this case, (18)
is replaced by

f ðhiÞ ¼
Yni
j¼1

1

1

j

� �
j
�ð
j Þ

�

j�1
ij e�
j�ij ð20Þ
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Alternatively, assuming 
j¼ 1 and �j ¼ 1=�j, one could write

f ðhiÞ ¼
Yni
j¼1

�je
��j�ij ð21Þ

implying that the gamma density is reduced to an exponential one, of the form (4) with ’ now taking
the role of �j ¼ 1=�j. Closed-form expressions for the marginal density, means, variances,
covariances, and moments are derived in online Appendix B, where also a number of related
facts are derived.

5 Estimation

A priori, fitting a combined model of the type described in Section 4, proceeds by integrating over
the random effects. The likelihood contribution of subject i is

fið yij#,D,#i,�iÞ ¼

Z Yni
j¼1

fijð yijj#, bi, hiÞ f ðbijDÞ f ðhij#i,�iÞ dbi dhi ð22Þ

Here, # groups all parameters in the conditional model for Yi. From (22) the likelihood derives as

Lð#,D,#i,�Þ ¼
YN
i¼1

Z Yni
j¼1

fijð yijj#, bi, hiÞ f ðbijDÞ f ðhij#i,�iÞdbidhi ð23Þ

The key problem in maximizing (23) is the presence of N integrals over the random effects bi and
hi. We consider so-called partial marginalization, in agreement with Molenberghs et al.5 but, unlike
these authors, also allowing for censorship. We further explore the use of pseudo-likelihood as an
alternative to full maximum likelihood.

5.1 Partial marginalization

While closed-form expressions, as derived in online Appendix B, can be used to implement maximum
likelihood estimation, with numerical accuracy governed by the number of terms included in the
Taylor series, one can also proceed by what Molenberghs et al.5 termed partial marginalization.
By this we refer to integrating the conditional density over the gamma random effects only, leaving
the normal random effects untouched. The corresponding probability in the Weibull case is

f ð yijjbiÞ ¼
	�ije

�ij�y��1ij 
j�j

ð1þ 	�ije�ij�jy
�
ijÞ

jþ1

ð24Þ

Now, in the survival case it is evidently very likely that censoring occurs. Focusing on right-
censored data, it is then necessary to integrate the marginal density over the survival time within the
interval ½0,Ci�. The corresponding cumulative distribution is given in (B.9).

In the spirit of (24), the partial marginalization of a censored component takes the form

f ðCijjbiÞ ¼

Z þ1
Cij

f ð yijjbiÞdyij ¼
1

ð1þ 	�ije�ijC�ijÞ

j

ð25Þ

The concept of partial integration always applies whenever strong conjugacy holds. Indeed, an
expression of the form (16) corresponds to integrating over the conjugate random effect �, while
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leaving the normally distributed random effect embedded in the predictor, � in this notation. Recall
that, while expressions of the type (16) appear to be for the univariate case, they extend without
problem to the longitudinal setting as well.

5.2 Pseudo-likelihood

Pseudo-likelihood,10,18 as generalized estimating equations19 are useful when the computational
burden of full likelihood becomes burdensome and/or when robustness against misspecification of
higher order moments is desirable. This is especially the case when the joint marginal distribution is
available but cumbersome to manipulate and evaluate. Essentially then, the joint distribution is
replaced with a product of factors of marginal and/or conditional distributions of lower dimensions.
Because such a product does not necessarily re-compose the original joint distribution, sandwich-
estimator ideas are then used to provide not only valid point estimates, but also precision estimates
and inferences derived therefrom.

Let us define pseudo-likelihood in general and formally, after which we turn to the special case of
pairwise likelihood. Also the term composite likelihood is encountered in this context. Using Arnold
and Strauss,20 we introduce pseudo-likelihood, the principal idea of which is to replace a numerically
challenging joint density by a simpler function assembled from suitable factors.

Define S to be the set of all 2n � 1 vectors of length n, consisting solely of zeros and ones, with
each vector having at least one non-zero entry. Denote by y

ðsÞ
i the subvector of yi corresponding to

the components of s that are non-zero. The associated joint density is fsð y
ðsÞ
i ; nÞ. To define a pseudo-

likelihood function, one chooses a set � ¼ f�sjs 2 Sg of real numbers, with at least one non-zero
component. The log of the pseudo-likelihood is then defined as

p‘ ¼
XN
i¼1

X
s2S

�s ln fsð y
ðsÞ
i ; nÞ ð26Þ

Adequate regularity conditions have to be invoked to ensure that (26) can be maximized by
solving the pseudo-likelihood (score) equations, the latter obtained by differentiating the
logarithmic pseudo-likelihood and by equating its derivative to zero. More detail can be found in
online Appendix C, where the regularity conditions are given. In particular, when the components in
(26) result from a combination of marginal and conditional distributions of the original distribution,
then a valid pseudo-likelihood function results. More specifically, the classical log-likelihood
function is found by setting �s¼ 1 if s is the vector consisting solely of ones, and 0 otherwise.
More details can be found in Varin,21 Lindsay,22 and Joe and Lee.23 Note that Joe and Lee23 use
weighting for reasons of efficiency in pairwise likelihood, similar in spirit to Geys et al.,24 but
differently from its use here, which focuses on bias correction when data are incomplete. Another
important reference is Cox and Reid.25

Let �0 be the true parameter. Under suitable regularity conditions (see Refs. 18, 20, and 26), it can
be shown10 that maximizing the function (26) produces a consistent and asymptotically normal
estimator en0 so that

ffiffiffiffi
N
p
ðen0 � n0Þ converges in distribution to Np½0, I0ðn0Þ

�1I1ðn0ÞI0ðn0Þ
�1
� with

I0ðhÞ and I1ðhÞ defined by their elements

I0,k1k2 ðhÞ ¼ �
X
s2S

�sEh

@2 ln fsð y
ðsÞjhÞ

@�k1@�k2

� �

I2,k1k2 ðhÞ ¼
X
s,t2S

�s�tEh

@ ln fsð y
ðsÞjhÞ

@�k1

@ ln ftð y
ðtÞjhÞ

@�k2

� �
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As stated earlier, models for non-Gaussian data can become prohibitive when subjected to full
maximum likelihood inference, especially with large within-unit replication. le Cessie and van
Houwelingen27 and Geys et al.24 replace the true contribution of a vector of correlated binary
data to the full likelihood, written as f ð yi1, . . . , yiniÞ, by the product of all pairwise contributions
f ð yij, yikÞ (1 � j5 k � ni), to obtain a pseudo-likelihood function. Also the term composite likelihood
is encountered in this context. Renard et al.28 refer to this particular instance of pseudo-likelihood as
pairwise likelihood. Grouping the outcomes for subject i into a vector Yi, the contribution of the ith
cluster to the log pseudo-likelihood then specializes to

p‘i ¼
X
j5k

lnf ð yij, yikÞ ð27Þ

if it contains more than one observation. Otherwise p‘i ¼ f ð yi1Þ. Extension to three-way and higher
order pseudo-likelihood is straightforward. All of these are special cases of (26).

6 Marginal distributions and moments

In online Appendix B, along the lines of Molenberghs et al.5 and Molenberghs and Verbeke,29 the
marginal density and moments are derived. Molenberghs and Verbeke29 showed that only a finite
number of moments is finite. This holds not only for the combined model, but as soon as gamma
random effects are combined with Weibull outcomes, i.e., it also applies to the conventional Weibull-
gamma model. Because it is possible that even the second and first moments may be infinite, it is wise
to check the number of finite moments. Given the moment expression

EðYk
ijÞ ¼


jBð
j � k=�, k=�þ 1Þ

	k=��k=�j

exp �
k

�
x0ijnþ

k2

2�2
z0ijDzij

� �
ð28Þ

with Bð�, �Þ the beta function, it follows that the order k � 
j� for the corresponding moment to be
finite.

7 Analysis of case studies

7.1 Recurrent asthma attacks in children

We will analyze the times-to-event, introduced in Section 2.1. We consider an exponential
model, i.e., a model of the form (17) with �¼ 1, and further a predictor of the form
�ij ¼ �0 þ bi þ �1Ti, where Ti is an indicator for treatment and bi � Nð0, d Þ. Results from fitting
all four models (with/without normal random effect; with/without gamma random effect) can be
found in Table 4.

A formal assessment of the treatment effect from all four models is given in Table 5. The
treatment effect �1 is stably identifiable in all four models. As can be seen from Table 5, the
treatment effects are similar in strength, but including both random effects reduces the evidence,
relative to the exponential model. Needless to say that too parsimonious an association structure
might lead to liberal test behavior.

Moreover, still considering the combined model, we can also proceed by means of pseudo-
likelihood. This is combined with proper inclusion of the censored observations. The model
fitting was performed using a SAS macro (available from the authors) in conjunction with the
SAS procedure NLMIXED. The result of this analysis can be found in Table 6. Note that the
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Table 4. Asthma study: full likelihood.

Effect Parameter

Exponential Exponential-gamma

Estimate (s.e.) Estimate (s.e.)

Intercept �0 �3.3709 (0.0772) �3.9782 (15.354)

Treatment effect �1 �0.0726 (0.0475) �0.0755 (0.0605)

Shape parameter 	 0.8140 (0.0149) 1.0490 (16.106)

Std. dev random effect
ffiffiffi
d
p

— —

Gamma parameter � — 3.3192 (0.3885)

–2log-likelihood 18,693 18,715

Effect Parameter Exponential-normal Combined

Estimate (s.e.) Estimate (s.e.)

Intercept �0 �3.8095 (0.1028) �3.9923 (20.337)

Treatment effect �1 �0.0825 (0.0731) �0.0887 (0.0842)

Shape parameter 	 0.8882 (0.0180) 0.8130 (16.535)

Std. dev random effect
ffiffiffi
d
p

0.4097 (0.0386) 0.4720 (0.0416)

Gamma parameter � — 6.8414 (1.7146)

–2log-likelihood 18,611 18,629

Parameter estimates and standard errors for the regression coefficients in (1) the exponential model, (2) the exponential-gamma

model, (3) the exponential-normal model, and (4) the combined model. Estimation was done by maximum likelihood using numerical

integration over the normal random effect, if present.

Table 6. Asthma data: combined model fitted with maximum likelihood and pseudo-likelihood, with and without

censoring (model-based s.e.; empirically corrected s.e.).

Effect Parameter

Full likelihood Pseudo-likelihood

Estimate (s.e.) Estimate (s.e.)

Without censoring

Intercept �0 �3.9923 (20.337) �3.4862 (6.2316; 0.0856)

Treatment effect �1 �0.0887 (0.0842) �0.1060 (0.0203; 0.0953)

Shape parameter 	 0.8130 (16.534) 0.8272 (5.1551; 0.0049)

Gamma parameter � 6.8414 (1.7146) 6.7758 (0.6648; 1.1875)

SD random effect
ffiffiffi
d
p

0.4720 (0.0416) 0.3958 (0.0202; 0.0383)

With censoring

Intercept �0 �4.0195 (28.663) �3.6233 (0.4998; 0.09381)

Treatment effect �1 �0.1115 (0.0996) �0.1269 (0.0221; 0.10571)

Shape parameter 	 0.7882 (22.592) 0.9189 (0.4590; 0.00003)

Gamma parameter � 3.5633 (0.6281) 4.5882 (0.3627; 0.71248)

SD random effect
ffiffiffi
d
p

0.5620 (0.0506) 0.4443 (0.0211; 0.03906)

Table 5. Asthma study: Wald test results for the assessment of treatment effect.

Model Z-value p-value

Exponential �1.5283 0.1264

Exponential-gamma �1.1293 0.2588

Exponential-normal �1.2480 0.2120

Combined �1.0534 0.2921
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combined model was conveniently fitted by pseudo-likelihood (specifically pairwise likelihood)
based on all the pairs of outcomes within a subject.

It seems that in the result of the combined model (Table 6), there is overdispersion, regardless of
whether censoring is taken into account and irrespective of the estimation method, when full
likelihood is employed. Note, however, that the standard errors in this case are far from plausible
and may point to difficulties with convergence in this case. The pseudo-likelihood methodology does
not seem to suffer from this problem. As a result, overdispersion now disappears, given that the
standard error values are more trustworthy.

To further address this issue, it might make sense to set the shape parameter equal to one.
Re-fitted results for all four models in this way are reported in Table 7. We now find that the
standard errors are plausible throughout and that there is no disparity in the overdispersion
results. In addition, we performed Wald test for the assessment of treatment effect in the
combined model under several different conditions (full likelihood versus pseudo-likelihood; with/
without censoring), based on the analyses reported in Table 7. The test results are presented in Table
8. The treatment effect �1 is still stably identifiable in all four combined models. It can be seen from
Table 8 that the treatment-effect strengths are still similar to the one in combined model treatment
effect assessment in Table 5.

Two remarks are in place. First, convergence is reached faster with pseudo-likelihood as opposed
to full likelihood. A related finding was reported in Geys et al.26 where excessive computational
requirements could be avoided when using pseudo-likelihood. Second, we noticed that pseudo-
likelihood is more robust against the choice of starting values. This is intuitively plausible,

Table 7. Asthma data: combined model fitted with maximum likelihood and pseudo-likelihood,

with and without censoring (model-based s.e.; empirically corrected s.e.).

Effect Parameter

Full likelihood Pseudo-likelihood

Estimate (s.e.) Estimate (s.e.)

Without censoring

Intercept �0 �4.1993 (0.0713) �3.6758 (0.0176; 0.0869)

Treatment effect �1 �0.0887 (0.0842) �0.1060 (0.0203; 0.0953)

Gamma parameter � 6.8410 (1.7144) 6.7754 (0.6648; 1.1874)

SD random effect
ffiffiffi
d
p

0.4721 (0.0416) 0.3958 (0.0202; 0.0383)

With censoring

Intercept �0 �4.2575 (0.0833) �3.7072 (0.0160; 0.0875)

Treatment effect �1 �0.1116 (0.0996) �0.1267 (0.0218; 0.1122)

Gamma parameter � 3.5634 (0.6282) 4.5833 (0.1747; 0.1895)

SD random effect
ffiffiffi
d
p

0.5620 (0.0506) 0.4446 (0.0177; 0.0424)

Table 8. Asthma study: Wald test for treatment effect’s assessment in combined model.

Model Z-value p-value

Without censoring full likelihood �1.0534 0.1461

Without censoring pseudo-likelihood �1.1123 0.1330

With censoring full likelihood �1.1205 0.1312

With censoring pseudo-likelihood �1.1292 0.1294
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because from a computational standpoint, our pseudo-likelihood behaves as when analyzing
bivariate data. The higher the order of the likelihood, the more vulnerable to numerical instabilities.

In conclusion, given that full likelihood nicely converged for the combined models, given that it is
best to account for censoring, and given that the shape parameter is redundant, we can consider the
bottom left analysis in Table 7 as the final one.

7.2 Survival in cancer patients

Let us fit to the data introduced in Section 2.2, the generalized log-logistic model

f ð yÞ ¼
’�y��1

þ1

ð
þ ’y�Þ
þ1

generalized logistic model

f ð yÞ ¼
�’e�y

ð1þ ’�e�yÞ1=�þ1

and generalized Cauchy model

f ð yÞ ¼
1



�
��j yj��1

�2 þ j yj2�

In the former two cases, we set

�i ¼ exp½�1IðTi ¼ 1Þ þ �2IðTi ¼ 2Þ

þ �3IðTi ¼ 3Þ þ �4IðTi ¼ 4Þ þ �5IðTi ¼ 5Þ�

where i is the patient index and cancer type Ti ¼ 1, . . . , 5 for stomach, bronchus, colon, ovarian, and
breast cancer, respectively. For the generalized Cauchy model, predictor function ’ is set equal to �
instead. Parameter estimates are presented in Table 9. Model fitting is performed using the SAS
procedure NLMIXED. The code can be obtained from the authors, upon request.

Table 9. Parameter estimates (standard errors) for generalized log-logistic, generalized logistic, and generalized

Cauchy models, respectively, fitted to the survival data in cancer patients.

Effect Parameter Gen. log-logistic Gen. logistic Gen. Cauchy

Stomach �1 �96.789 (75.740) �96.792 (75.612) 11.095 (1.353)

Bronchus �2 �90.607 (70.403) �90.610 (70.284) 11.311 (1.339)

Colon �3 �90.607 (70.403) �90.606 (70.282) 12.426 (1.450)

Ovary �4 �133.02 (105.80) �133.02 (105.62) 12.699 (1.553)

Breast �5 �95.396 (84.817) �95.399 (74.690) 13.664 (1.614)

Weibull parameter � 29.220 (23.571) 29.221 (23.532)

Gamma parameter 
 0.014 (0.0116) 0.014 (0.0116)

Shape parameter � 7.063 (0.802)

No. of finite moments k 0 all 7
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A few remarks are worth making. First, the parameters of the log-logistic and generalized logistic
are similar, given that the two families are in one-to-one relationship through the logarithmic
transformation on the one hand, and the fact that in the second case the data are, of course, log-
transformed, on the other. Second, the previous observation notwithstanding, while
�
 ¼ 0:41785 1, thence no finite moments exist, in the generalized logistic case all moments are
finite! Third, in the generalized Cauchy case, there are seven finite moments, implying, of course,
that there is a finite mean and a finite variance.

The key scientific question is directed toward the difference in survival across cancer types. The
null hypothesis H0 : �1 ¼ �2 ¼ �3 ¼ �4 ¼ �5 can be tested by means of an approximate F4,64 test
statistic. For the generalized log-logistic and generalized logistic distributions, we obtain F¼ 0.36
(p¼ 0.8344), while for the generalized Cauchy, we obtain F¼ 5.04 (p¼ 0.0013). The difference is
enormous and arguably, can be ascribed to the lack of finite moments in the latter case.

Thus, our analysis illustrates the occurrence, in real life, of distributions without finite moments,
with all moments finite, and with a finite number of finite moments. The first one is the more acute
one, and it is precisely this one that corresponds to the Weibull-Gamma frailty model, providing an
example where the usual regularity conditions are called into question.

In conclusion, we evidently discard the generalized log-logistic analysis for the lack of finite mean
and variance. The generalized Cauchy model has a finite mean and finite variance and provides a
parsimonious description, unlike the generalized logistic model, in spite of its full series of finite
moments. Hence, the generalized Cauchy is our preferred choice to summarize the structure in the
data.

8 Simulation study

In this simulation study, we aim to evaluate the performance of the combined model, Weibull model
with gamma frailties and normal random effects, under full likelihood and pseudo-likelihood. The
design of the simulation study was carried out under different settings, to investigate the impact of
sample size, censoring percentage, and method of estimation.

Table 10. Results of the simulation study, with 10% censored observation.

Subjects

Method Full likelihood Pseudo-likelihood

�0 �1 �
ffiffiffi
d
p

�0 �1 �
ffiffiffi
d
p

Parmeter 2 0.1 0.2 0.5 2 0.1 0.2 0.5

50 Estimate 2.5692 �0.0477 1.0003 0.9056 2.0832 �0.0401 1.1245 1.9200

Mean (s.e.) 0.2937 0.3843 0.2391 0.2351 0.2671 0.3134 0.2400 0.1774

Bias 0.5692 �0.1477 0.8003 0.4056 0.0832 �0.1401 0.9245 1.4200

Relative bias 0.2846 �1.4770 4.0015 0.8112 0.0416 �1.4011 4.6226 2.8400

100 Estimate 2.4243 �0.0182 0.8328 0.8955 2.0037 �0.0076 0.9596 1.8588

Mean (s.e.) 0.2027 0.2653 0.1078 0.1555 0.1936 0.2224 0.1225 0.1256

Bias 0.4243 �0.1182 0.6328 0.3955 0.0037 �0.1076 0.7596 1.3588

Relative bias 0.2121 �1.1824 3.1639 0.7909 0.0018 �1.0766 3.7982 2.7175

200 Estimate 2.0476 0.0031 0.8878 0.7459 1.7850 0.0015 1.0493 1.6035

Mean (s.e.) 0.1281 0.1666 0.0697 0.0984 0.1299 0.1499 0.0593 0.0861

Bias 0.0476 �0.0968 0.6878 0.2459 �0.2150 �0.0985 0.8493 1.1035

Relative bias 0.0238 �0.9686 3.4389 0.4918 �0.1075 �0.9851 4.2467 2.2070
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We used two sets of true parameters, similar in spirit to the ones in Table 7, without and with
censoring (full likelihood). The true parameters are not exactly equal to these in Table 7, to avoid
convergence issues during the simulation runs. Starting values were chosen so as to reach good
convergence properties: �0¼ 2, �1¼ 0.1, �¼ 0.2, and

ffiffiffi
d
p
¼ 0:5. Sample sizes considered were:

50, 100, and 200 subjects. In addition, we generated the number of observations within a subject
from a normal Nð� ¼ 12, �2 ¼ 4Þ. A censoring covariate is generated from a Bernoulli ð
Þ
with 
¼ 0.9, 0.75, and 0.5, corresponding to 10%, 25%, and 50% of the observations within a

Table 11. Results of the simulation study, with 25% censored observation.

Subjects

Method Full likelihood Pseudo-likelihood

�0 �1 �
ffiffiffi
d
p

�0 �1 �
ffiffiffi
d
p

Parameter 2 0.1 0.2 0.5 2 0.1 0.2 0.5

50 Estimate 1.8312 0.0019 0.5892 0.7786 1.4798 �0.0052 0.6810 1.7775

Mean (s.e.) 0.2734 0.3534 0.0831 0.2332 0.2663 0.3113 0.0991 0.1828

Bias �0.1688 �0.0981 0.3892 0.2786 �0.5202 �0.1052 0.4810 1.2775

Relative bias �0.0844 �0.9808 1.9461 0.5571 �0.2601 �1.0518 2.4050 2.5550

100 Estimate 1.6196 0.0180 0.6484 0.7068 1.3118 0.0167 0.7434 1.6544

Mean (s.e.) 0.1809 0.2337 0.0687 0.1693 0.1825 0.2109 0.0811 0.1241

Bias �0.3804 �0.0820 0.4484 0.2068 �0.6882 �0.0832 0.5434 1.1544

Relative bias �0.1902 �0.8200 2.2419 0.4135 �0.3441 �0.8325 2.7168 2.3088

200 Estimate 1.3714 0.0046 0.7475 0.6265 1.1153 0.0019 0.8631 1.4733

Mean (s.e.) 0.1176 0.1510 0.0608 0.1062 0.1214 0.1392 0.0718 0.0797

Bias �0.6286 �0.0954 0.5475 0.1265 �0.8847 �0.0981 0.6631 0.9733

Relative bias �0.3143 �0.9542 2.7374 0.2530 �0.4424 �0.9813 3.3157 1.9467

Table 12. Results of the simulation study, with 50% censored observation.

Subjects

Method Full likelihood Pseudo-likelihood

�0 �1 �
ffiffiffi
d
p

�0 �1 �
ffiffiffi
d
p

Parameter 2 0.1 0.2 0.5 2 0.1 0.2 0.5

50 Estimate 0.8348 0.0108 0.4746 0.6567 0.4517 0.0217 0.5651 1.3166

Mean (s.e.) 0.2722 0.3467 0.0914 0.2620 0.2734 0.3231 0.1295 0.2030

Bias �1.1651 �0.0892 0.2746 0.1567 �1.5483 �0.0783 0.3651 0.8166

Relative bias �0.5826 �0.8920 1.3732 0.3135 �0.7742 �0.7832 1.8255 1.6333

100 Estimate 0.7614 �0.0066 0.5663 0.6307 0.4220 �0.0107 0.6472 1.2124

Mean (s.e.) 0.1856 0.2352 0.1116 0.1825 0.1883 0.2246 0.1379 0.1428

Bias �1.2386 �0.1066 0.3663 0.1307 �1.5780 �0.1107 0.4472 0.7124

Relative bias �0.6193 �1.0662 1.8314 0.2614 �0.7890 �1.1071 2.2359 1.4248

200 Estimate 0.7312 0.0092 0.5395 0.6356 0.3961 0.0057 0.6167 1.0012

Mean (s.e.) 0.1300 0.1647 0.0624 0.1283 0.1306 0.1555 0.0742 0.0991

Bias �1.2688 �0.0908 0.3395 0.1356 �1.6039 �0.0942 0.4167 0.5012

Relative bias �0.6344 �0.9076 1.6977 0.2712 �0.8019 �0.9425 2.0834 1.0025
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(a) (b)

(d)(c)

(e) (f)

Figure 1. Mahalanobis distance for different sample sizes and censored observation percentages. (a) 50 subjects,

(b) 100 subjects, (c) 200 subjects, (d) 10 percent censoring, (e) 25 percent censoring and (f) 50 percent censoring.
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subject are censored. This amounts to nine distinct settings, for each of which 500 datasets were
generated.

Simulation results are reported in Tables 10, 11, and 12. Each one represents one of the three
censoring proportions. The average of the parameter estimates, average of the estimated standard
errors of the estimates (mean s.e.), bias, and relative bias are included. The relative bias ranges from
�1.47 to 4.62. The proportion of non-converging analysis was relatively small, ranging from 0 to 43
among 500 simulation runs; we found that this proportion increases with censoring.

Furthermore, as a measure of consistency, Mahalanobis distance is used. Precisely, the relative
distance between the vector of estimates and the vector of true parameters is computed, for each
simulation setting. Some authors use the Euclidian distance as a measure of consistency, including
Litière.30 The Mahalanobis distance has the advance of taking the variance-covariance structure
into account. Let n0 ¼ ð�0,�1, �,

ffiffiffi
d
p
Þ
T represents the vector of the true parameters andbn0 ¼ ðb�0,b�1,b�, cffiffiffidp ÞT the corresponding vector of estimates, then the Mahalanobis distance is

defined by

DMðbn0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbn0 � n0Þ

TS�1ðbn0 � n0Þ

q
where DMðbn0Þ denotes Mahalanobis distance and S is the covariance matrix. Based on our
simulations, consistency is reached over different sample sizes as well as varying censoring
proportions. The set of estimators said to be consistent if the Mahalanobis distance is minimal.
Figure 1 displays the evolution of relative distance over increasing proportions of censoring, for a
given sample size (panels a, b, and c) and over increasing sample size, for a given censoring
proportion (panels d, e, and f). It can be seen in from all panels that pseudo-likelihood
estimation method has reduced consistency relative to full likelihood estimation. It can also be
observed that, for a given censoring percentage, the relative distances clearly increase with sample
size. These occurred for both estimation methods. While with increasing proportion of censored
observations, within the same sample size, the relative distance seems to be stable when using
pseudo-likelihood estimation method. However, with full likelihood estimation, the relative
distance increases as the censoring percentage increases. In other words, there will be loss of
some consistency of estimates of the combined model, with increasing censoring percentage,
under full likelihood estimation. This result stems from the fact that the pseudo-likelihood
method has increased bias in a number of settings, which contributes to the Mahalanobis
distance. A similar result was observed by van Duijn et al.31

9 Concluding remarks

Building upon work by Molenberghs et al.,5 we have studied the combination of normal and non-
normal random effects in the time-to-event case. We gave particular attention to Weibull models for
repeated time-to-event outcomes, with gamma and normal random effects, the so-called combined
model. Unlike in the original paper, we allow for right censoring. Furthermore, in line with
Molenberghs and Verbeke,29 we made remarks about the lack of finite moments in the Weibull-
gamma model, and hence also in the Weibull-gamma-normal model. On the other hand, the
Weibull-gamma-normal model enjoys the so-called strong conjugacy property, which is taken to
be a version of the well-known conjugacy that is compatible with the additional introduction of
normal random effects. This is advantageous when deriving closed-form expressions for the
marginal distribution and its corresponding moments.
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Whereas Molenberghs et al.5 confined attention to maximum likelihood estimation, we introduce
a pairwise-likelihood version of pseudo-likelihood. Both estimation methods are compared, based
on data analysis and simulations. A subtle picture emerges. In a number of cases, maximum
likelihood estimation is more efficient in terms of computation time. The statistical loss of
efficiency of pseudo-likelihood is relatively small, although the consistency behavior for the
maximum-likelihood case is better. That said, pseudo-likelihood has a tremendous advantage in
terms of computational stability. Indeed, as illustrated in the data analysis, there are situations
where maximum likelihood estimation produces unreliable results due to divergence, no matter
what starting values are chosen and other stabilizing measures are taken.

The gamma and normal random effects play distinct roles. In our model formulation, the gamma
random effects capture overdispersion, while the normal random effects allow for within-subject
association across repeated measures. The model can be extended further and/or adapted to specific
cases. For example, when the gamma random effects would be allowed to be correlated from one
occasion to the other, then a form of serial (or temporal) association would result. Furthermore, it is
possible to generalize the current, two-level formulation, to higher level hierarchies, should this be
required.

Computations have been implemented in the SAS procedure NLMIXED, supplemented with
user-defined macros. All datasets, software code, and outputs can be found in a WinZip archive on
the website www.ibiostat.be/software. Relevant SAS code is also available in online Appendix D.
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