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Abstract 

We consider the selection of covariables for the covariance adjustment 
of parameter estimators in growth curve models. The procedure consists of 
obtaining the best subset of linear combinations of higher order polynomials 

for minimizing the variance of the adjusted estimator of a particular linear 
combination of the lower order polynomial coefficients. The coefficients of 
the required linear combinations are expressed in terms of the eigenvectors of 
appropriate matrices and the gain in precision due to covariance adjustment 
is measured by the magnitude of the corresponding eigenvalues. The results 
are numerically illustrated with data previously analyzed in the literature. 

Key words: Covariance adjustment, Growth curve model, Selection of 
covariables. 



1 Introduction 

A useful model for the analysis of polynomial growth curves was introduced 
by Potthoff and Roy (1964) and may be described by 

(1.1) 

where Y is a p x N matrix of observed data, the columns of which constitute 

a random sample from a p-variate normal distribution with covariance matrix 

~. -r is a m x g matrix of unknown parameters, X is an p x m within sample 
units design matrix of rank m and A is a g x N across sample units design 

matrix of rank g. 
This model is particularly attractive because it may be adjusted by stan­

dard weighted least squares procedures available in a great number of com­
mercial statistical software packages. This might be one of the reasons why 

it has been the focus of research of many authors in the past three decades 
(see Kshirsagar and Smith (1995), for example). In particular, a great deal 

of attention has been devoted to obtaining more precise estimates of the pa­
rameter matrix ,,. , mainly by using higher order polynomials for covariance 

adjustment as proposed by Rao (1965). 
Essentially, the covariance adjustment procedure is based on the trans­

formation 

(1.2) 

where Q1 and Q2 denote p x m and p x (p - m) matrices, respectively, 

such that Q1X = Im and Q~X = 0. Since from (1.1) and (1.2), we have 
E(Y1) = 'TA and E(Y2) = 0, the m rows of Y 1 generate the estimation 
space and the (p - m) rows of Y 2 generate the error space. 

If the columns of Y1 are correlated with those of Y2 it is possible to 
reduce the variance of the estimators of ,,. by fitting conditional models of 

the form 

(1.3) 

where 
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and 

:Ei; = Q~:EQ;, i,j = 1,2. 

In this context, Rao (1965, 1966) discusses the possibility of using less than 
(p - m) covariables (i.e., rows of Y 2) in the conditional model (1.3). He 
shows that selecting only the rows of Y 2 which are highly correlated with 
those of Y 1 as covariates in (1.3) might lead to more precise estimators of 
the regression parameters -r. Furthermore, he identifies specific structures of 
the within sample units covariance matrix E for which this reduction holds. 

Grizzle and Allen {1969) considered an empirical procedure based on the 
examination of the within sample units sample covariance matrix of the trans­
formed variables to implement such a covariance adjustment procedure. Rao 
(1967), Lee and Geisser (1972), Kenward (1985) and Verbyla (1986) provided 
further insight on covariance adjustment under specific structures for the co­
variance matrix :E. Chinchilli and Carter (1984), Fujikoshi and Rao {1991) 
and Satoh et al. {1997) developed tests for the hypothesis of redundancy of 
a given subset of rows of Y 2 in this context. The main problem with this 
approach is the criterion for choosing how many and which rows of Y 2 to 
include in the covariance adjustment procedure. 

We propose a systematic procedure for this purpose. The idea is to iden­
tify uncorrelated {noncanonical) linear combinations of the rows ofY2-which 
minimize the variance of estimators of linear combinations of the components 
of T. The results are expressed in tenns of eigenvalues and eigenvectors of 
appropriate matrices which may be explicitly obtained. Section 2 is devoted 
to the presentation of the covariance adjustment strategy; first we consider 
the problem of estimating a single linear combination of the parameters and 
then generalize the results to two or more of them. In Section 3 we ill~ 
trate the method with numerical examples from the statistical literature and 
discuss possible extensions. 

2 A strategy for inclusion of covariables from 
the error space 

Under model (1.3), the estimator of -r adjusted by all the (p- m) potential 
covariables is given by 
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f1 = fo - S12SilY2A'(AA't1 

== (x's-1x)-1x's-1YA'{AA')-1 , 

where 

is the ordinary least squares estimator of r, 

S = Y(IN - A'{AA'r1 A)Y' 

and 

Si;= Yi(IN -A'(AA')-1 A)Y,t i,j = 1, 2. 

(2.1) 

Rao {1967) and Grizzle and Allen (1969) show that f-1 is unbiased and that 
its unconditional covariance matrix is 

V ( ~ ) (AA')-1 N - g - 1 ,r, 
ar r1 = ® N _ 

9 
_ (p _ m) _ 1 -""112· (2.2) 

From (2.2) we conclude that the utility of covariance adjustment is essen­
tially affected by a balance between the loss in precision due to the removal 
of variables from the error space (reflected in the term (N - g - 1)/(N -
g - (p - m) - 1)) and the gain due to their inclusion as covariables in the 
estimation space (which shows up in the term I:112). · 

Grizzle and Allen (1969) consider all subsets of the columns of Y 2 as 

potential covariables; their choice falls on the subset for which the generalized 
variance of the regression parameters is minimized. Since, in general, the 
potential candidates are correlated, the procedure might not be efficient; 
error space degrees of freedom might be wasted without the corresponding 
gain in precision because redundant information might be transferred from 
the error to the estimation space. To avoid this problem, we propose to use 
uncorrelated linear combinations of the rows of Y 2 as the potential candidates 
for covariables. 

In this direction first let b 1 , ... , bk, 0 ~ k ~ p - m denote (p - m)­
dimensional vectors satisfying 

{2.3) 
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Also let B denote a matrix with ht, k = 0, ... p - m as its columns. 
Let C',,. U, where C and U are fixed constant matrices, denote the linear 

combinations of interest, e.g., features of the growth curves under investiga­
tion that may be expressed in terms of linear combinations of the elements 
of-r. 

Suppose firstly that the interest centres on the estimation of a single linear 
combination, i.e., with C == c, am x 1 vector and U = u, a g x 1 vector. 
Under the conditional reduction of model (1.1) to model (1.3) obtained by 
using the columns of B'Y 2 as the set of covariables, the adjusted estimator 
of c'-ru is 

(2.4) 

where 

The unconditional variance of c'f'8 u is 

{ 

u 1{AA')-1u c''.E c N-g-l if B __J_ 0 
B N-11-k-l T 

Var(c'-reu) = 
u'(AA')-1u c'E11c if B = 0 

(2.5) 

where 

Ee= Eu - E12B(B'E22Br1B'E21-

Note that when B is a null matrix, the procedure generates the ordinary least 
squares estimator (in such a case, k = 0). Note that the conditional model 
{1.3} is invariant under any choice of the basis generating the conditioning 
space, i.e., the conditional distribution of Y 11B'Y2 is invariant relative to 
the choice of the B matrix, for all B of rank (p- m). · 

We now wish to choose the number of covariables, 1 :5 k :5 p - m and 
the B matrix, B 'I- 0 in such a way that (2.5) is minimized. For fixed k, this 
corresponds to obtaining B such that 

(2.6) 

is maximum; note that the procedure does not depend on u. Keeping the 
restrictions (2.3) in mind, and using standard results in Matrix Algebra,(2.6) 
reduces to 
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• L c'E12h,(b~E22b,)-1b~E21c = 
i=l 

Note that the matrix E21cc'E12 is symmetric, positive semidefinite with rank 
1 and that the matrix E22 is positive definite. Then, recalling that c is fixed, 
and using well known results in Matrix Algebra (see Johnson and Wichern 
(1992), for example) it follows that the maximum of {2.6) is attained with 
k = 1 and b1 = Pt, where p1 is the eigenvector associated with the single 
nonzero root of the determinantal equation 

(2.8) 

In fact, the solution is given by A = c'E12E221 E 21 c and the corresponding 
eigenvector by p1 = o:E2i E 21 c for any nonzero real constant o:. Under the 
restrictions (2.3), it follows that o: = (c'E12E221E21c)-1l2. Since this mini­
mizes (2.5) for B 'I- 0, we must compare the result with that obtained with 
no covariance adjustment, i.e., for B = 0. 

For practical applications, the parameters E,; must be replaced by ap­
propriate estimates which implies that we must rely on approximate results. 

Thus, the required linear combination of the error space variables will be 
given by 

b1 = (c'S12SilS21c)-112sxts21C. (2.9) 

Without loss of generality, suppose now that C = Im and U = lg, i.e., 
that we are interested in estimating the original parameters. As opposed 
to the previous case, where the interest was centred on the minimization of 
the variance of the estimator of a single contrast, here, several criteria are 
available. Among them, a sensible alternative is to choose B to minimize the 
trace of the covariance matrix of .,. s, i.e., 

{ 

( "t""~ .1..) N-1-1 trE i/ B 4 0 
£..J=l NJ N-1-/c-l B T 

trVar(Ts) = 
(E}=i ;i )tr Eu i/ B = o 

(2.10) 
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where N; denotes the sample size associated to the jth treatment (j = 
1, ... g}. For fixed k, this corresponds to obtaining B that maximizes 

trE12B(B'E22Bt1B'E21 = tr(B'E22B}-1B'E:nE12B 

= t b:~21E12h,. (2.ll} 
i=l b,E22bi 

Since the rank of E 21E12 is min(m,p - m), there are only min(m,p - m} 
nonnull eigenvalues 0;, (i = 1, ... , min(m,p - m}), satisfying (Ji > 02 > 
... > Omin(mJ1-m)· Then, the maximum of (2.11) is attained when b1 = 
Pt, .•. , b,, = PAI, P1, •.• ,PAI being the first k eigenvectors of the matrix 
E21E12 in the metric of E22, i.e., associated with the determinantal equation 

(2.12) 

Repeating the procedure for k = 1, ... , min(m,p - m) and comparing the 
results to that corresponding to k = 0 we may choose the set of linear 
combinations that minimize trVar(f8 ). 

A similar approach was employed in a different context by Rao (1964); 
he maximizes an expression like (2.11} to obtain the principal components of 
instrumental variables. 

3 · Examples 

To compare the procedure proposed in Section 2 with other variable selection 
strategies for covariance adjustment, we consider two datasets previously 
analyzed in the literature. 

We first focus on the data presented in Grizzle and Allen (1969), con­
cerning ramus bone heights (in mm) for 20 boys at 8, 8.5, 9 and 9.5 years of 
age. A plot of the average profiles suggests that a straight line should fit the 
data. Thus, model (1.1) may be specified by letting A= 120, T = (T0,r1)' 
and the within sample units design matrix expressed in terms of orthogonal 
polynomials, i.e., 

( 

1/4 -3/20) 
_ 1/4 -1/20 

X- 1/4 1/20 . 
1/4 3/20 

6 

(3.1) 



Under this parametrization, the transformation (1.2) may be carried out by 
taltlng Q1 = X and 

Q2 = ( =l~! :!m). 
1/4 1/20 . 

Here the terms in the estimation space (spanned byitthe rows of Y 1) are 
transformed by the values of orthogonal polynomials of orders 0 and 1 (m = 
2) and those in the error space (spanned by the rows of Y 2) correspond to 
the quadratic and cubic orthogonal polynomials (p- m = 2). The sample 
correlations between the rows of Y 1 (labeled Intercept and Linear) and Y 2 
(labeled Quadratic and Cubic) are given by 

Quadratic 
Cubic 

Intercept 
-0.0828 
-0.0629 

Linear 
0.1517 
-0.5912 

and suggest that some gain may be attained by covariance adjustment. Let 
us first consider the problem of estimating the slope T1. For comparison pur­
poses, we present the results obtained under different alternatives: no ad­
justment, adjustments based on the quadratic and cubic terms separately 
or simultaneously and adjustment based on linear combinations of them ob­
tained via the strategy outlined in Section 2. The results are summarized 
in Table 3.1. The entries denoted c'Sec and Constant correspond to an 
estimate of c'I:ec and to N - g - 1/ N - g - k - 1, respectively, in the ex­
pression for the variance of f1 given in (2.5) with u = 1 and c = (0, 1)'. 
Additionally, we also illustrate that the introduction of the second linear 
combination obtained under the same conditions mentioned above does not 
contribute to the covariance adjustment process, since it does not change the 
term c'Sec but increases the term N - g - 1/ N - g - k - l. 

The estimated variance of the covariance adjusted estimator of the pa­
rameter r1 is smaller when a single covariable, given by b~ Y 2 with b1 = 
(-0.036, 0.177)' is used. As indicated in Section 2, b1 is given by (2.9) and 
corresponds to the eigenvector associated to the single nonull eigenvalue of 
S21 cc'S12S22

1 . The reduction in the term c'Sec relatively to the nonadjusted 
estimator is given by the corresponding eigenvalue ~ = 0.576. Clearly, the 
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Table 3.1: Covariance adjusted estimation of the mmus bone growth slope • 

Covariable(s) f1 20Var{f1 ) c'Ssc Constant 
None 0.467 0.085 1.613 0.053 
Quadratic 0.471 0.093 1.576 0.059 
Cubic 0.463 0.062 1.049 0.059 
Quadratic and Cubic 0.465 0.069 1.037 0.066 
-0.036 Quad+ 0.H7 Cubic 0.465 0.061 1.037 0.059 
-0.036 Quad+ 0.117 Cubic 

and 
0.241 Quad + 0.031 Cubic 0.465 0.069 1.037 0.066 

introduction of the second linear combination of the variables in the error 
space (b;Y:i wiih b:;i = (0.241,0.031)') does not contribute to further reduce 
the variance of the estimator. Other authors, like Rao (1965, 1966), Grizzle 
and Allen (1969) or Fujikoshi and Rao (1991), working with the same data, 
choose the cubic term as the covariable to reduce the variance under inves­
tigation. To a certain extent, this concurs with the optimal solution, which 
places more weight on this term than on the quadratic one. 

Now suppose that the interest lies both in the intercept To and the slope T1 
and that the objective is to minimize the trace of the covariance matrix of the 
corresponding vector of estimators. Following the same strategy considered 
above, we present the results in Table 3.2. Here, the entries denoted trSs and 
Const correspond to an estimate of trI:8 and to N - g - 1/N - g - k -1, 
respectively, in the expression for the trace of the covariance matrix of fa 
given in (2.10). 

In this case, under a minimum trace criterion, covariance adjustment 
procedures do not contribute to obtain better estimates of the parameters, 
since the decrease in the term trSa obtained by including either one or 
two linear combinations of the error space variates as covariables does not 
compensate the corresponding increase in the constant term. The decrease 
corresponding to the introduction of the first linear combination is equal to 
the first nonnull eigenvalue of S21S12S~, i.e., 1.598 and that corresponding 
to the introduction of both linear combinations is equal to the sum of both 
nonnull eigenvalues, i.e., 1.914 = 1.598 + 0.416. 

The selected covariables in the second case differ from that considered 
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Table 3.2: C011ariance adjusted estimation of the ramus bone growth intercept 
t1nd slope 

Covariable( s) fo f1 20trVar(fa) trSa Const 
None 50.075 0.467 6.350 120.644 0.053 
Quadratic. 50.055 0.471 7.047 119.792 0.059 
Cubic 50.072 0.463 7.036 119.610 0.059 
Quadratic and Cubic 50.050 0.465 7.851 118.631 0.066 
0.169 Quad + 0.096 Cub 50.053 0.458 7.003 119.047 0.059 
0.169 Quad + 0.096 Cub 

and 
0.177 Quad - 0.074 Cub 50.050 0.465 7.851 118.631 0.066 

in the first case because the estimation of an additional parameter is a.1so 
considered. Also note that either the model including the quadratic and 
cubic terms or the model including both linear combinations generate the 
same estimates and the same estimated variances of the parameters because 
of the invariance property mentioned in Section 2. 

For the second example, we consider the data on coronary sinus potassium 
measured in dogs a.1so presented in Grizzle and Allen (1969). The design 
involved four groups of dogs observed at seven different occasions. Here, a 
third degree polynomial (m = 4) was adopted as an adequate description of 
the mean response for each group. Therefore, the candidate covariables a.re 
linear combinations of the (p - m = 3) vectors that span the error space, 
i.e., those associated to the polynomials of degrees 4, 5 and 6. The results 
for the selection of the best covariable to minimize the estima~ variance of 
a linear combination of the parameters designed to compare the coefficients 
of the quadratic terms corresponding to groups 1 and 4 a.re summarized 
in Table 3.3 displayed under the same format as Tables 3.1 and 3.2. The 
linear combination of interest is actually a contrast defined as cf 1"U with 
c = (0,0, 1, 0)' and u = (1,0,0, -1)'. 

In Table 3.4, we present similar results for the case where interest is 
focused on the entire vector of 16 parameters and we choose to minimize the 
trace of the corresponding estimated covariance matrix. We neither present 
estimates of the individual parameters nor of their estimated variances, since 
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Table 3.3: Covariance adjusted estimation of the difference between the 
quadratic coefficients of the first and fourth group for the coronary sinu., 
potassium curoe 

Covariable( s) Estimated c'Sac Const 
contrast variance 

None -0.0127 0.0030 0.0973 0.03¼3 
4th degree (D4) -0.0390 0.0015 0.0448 0.0333 
5th degree (D5) -0.0134 0.0032 0.0970 0.0333 
6th degree (D6) -0.0112 0.0032 0.0967 0.0333 
4th and 5th degree -0.0388 0.0016 0.0448 0.0356 
4th and 6th degree -0.0381 0.0016 0.0447 0.0356 
5th and 6th degree -0.0118 0.0034 0.0965 0.0356 
4th, 5th and 6th degree -0.0379 0.0017 0.0447 0.0382 
- 0.0454 D4 - 0.0016 D5 - 0.0017 D6 -0.0379 0.0015 0.0447 0.0333 
- 0.0454 D4 - 0.0016 D5 - 0.0017 D6 

and 
- 0.0031 D4 - 0.0695 D5 + 0.0012 D6 -0.0379 0.0016 0.0447 0.0356 
- 0.0454 D4 - 0.0016 D5 -0.0017 D6, 
- 0.0031 D4 - 0.0695 D5 + 0.0012 D6 

and 
0.0044 D4 - 0.0032 D5 - 0.0314 D6 -0.0379 0.0017 0.0447 0.0382 

our interest lies solely on the reduction of the sum of the latter. 
In either case, the use of a single covariable conveniently constructed 

from the vectors spanning the error space produces estimates with smaller 
"variances" than their unadjusted counterparts. 

The proposed procedure for selecting covariables for covariance adjust­
ment yields optimal results and is easily implemented computationally avoid­
ing either the arbitrary choice implied by the strategy suggested by Grizzle 
and Allen (1969) or the possibly sub-optimal solution obtained by trying all 
possible subsets. The maximum number of covariables to be included in the 
adjustment process is also determined. A possible extension useful for cases 
where the parameter of interest is multidimensional, involves the optimiza­
tion of other criteria such as the generalized variance or the Euclidean norm 
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of the covariance matrix of the corresponding estimators as suggested by Rao 
(1964 and 1973). 

Table 3.4: Covariance adjusted estimation of the coronary sinus potassium 
cubic polynomial coe.fficients 

Cova.riable(s) 
None 
4th degree (D4) 
5th degree (D5) 
6th degree {D6) 
4th and 5th degree 
4th and 6th degree 
5th and 6th degree 
4th, 5th and 6th degree 
- 0.0381 D4 + 0.0266 D5 - 0.0085 D6 
- 0.0381 D4 + 0.0266 D5 - 0.0085 D6 

and 
0.0253 D4 + 0.0531 D5 - 0.0137 D6 
- 0.0381 D4 + 0.0266 D5 - 0.0085 D6, 
0.0253 D4 + 0.0531 D5 - 0.0137 D6 

and 
- 0.0015 D4 + 0.0363 D5 + 0.0269 06 

Acknowledgements 

trVar(-rB) 
0.3070 
0.3077 
0.3191 
0.3239 
0.3212 
0.3256 
0.3375 
0.3407 
0.3038 

0.3180 

0.3407 

9.8227 
9.2305 
9.5726 
9.7184 
9.0132 
9.1390 
9.4728 
8.9246 
9.1154 

Const 
0.0313 
0.0333 
0.0333 
0.0333 
0.0356 
0.0356 
0.0356 
0.0382 
0.0333 

8.9246 0.0356 
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