





1 Introduction

A useful model for the analysis of polynomial growth curves was introduced
by Potthoff and Roy (1964) and may be described by

Y ~ N(XTA;Z®1Iy), (1.1)

where Y is a p x N matrix of observed data, the columns of which constitute
a random sample from a p-variate normal distribution with covariance matrix
¥, 7 is a m x g matrix of unknown parameters, X is an p x m within sample
units design matrix of rank m and A is a g x N across sample units design
matrix of rank g.

This model is particularly attractive because it may be adjusted by stan-
dard weighted least squares procedures available in a great number of com-
mercial statistical software packages. This might be one of the reasons why
it has been the focus of research of many authors in the past three decades
(see Kshirsagar and Smith (1995), for example). In particular, a great deal
of attention has been devoted to obtaining more precise estimates of the pa-
rameter matrix 7, mainly by using higher order polynomials for covariance
adjustment as proposed by Rao (1965).

Essentially, the covariance adjustment procedure is based on the trans-
formation

Y1 = Q,1Y1 Yz = ;Y (12)

where Q; and Q; denote p x m and p x (p — m) matrices, respectively,
such that QX = L, and Q;X = 0. Since from (1.1) and (1.2), we have
E(Y;) = TA and E(Y;) = 0, the m rows of Y, generate the estimation
space and the (p — m) rows of Y generate the error space.

If the columns of Y; are correlated with those of Y, it is possible to
reduce the variance of the estimators of = by fitting conditional models of
the form

Y]_'Yz ~ N(TA +nYa; 21|3 (] IN), (13)
where
7 =1,35,

iz = B — 1223 B,
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and
Eij = Q:EQ_N 4,j =12

In this context, Rao (1965, 1966) discusses the possibility of using less than
(p — m) covariables (i.e., rows of Y3) in the conditional model (1.3). He
shows that selecting only the rows of Y, which are highly correlated with
those of Y; as covariates in (1.3) might lead to more precise estimators of
the regression parameters 7. Furthermore, he identifies specific structures of
the within sample units covariance matrix ¥ for which this reduction holds.

Grizzle and Allen (1969) considered an empirical procedure based on the
examination of the within sample units sample covariance matrix of the trans-
formed variables to implement such a covariance adjustment procedure. Rao
(1967), Lee and Geisser (1972), Kenward (1985) and Verbyla (1986) provided
further insight on covariance adjustment under specific structures for the co-
variance matrix X. Chinchilli and Carter (1984), Fujikoshi and Rao (1991)
and Satoh et al. (1997) developed tests for the hypothesis of redundancy of
a given subset of rows of Y, in this context. The main problem with this
approach is the criterion for choosing how many and which rows of Y, to
include in the covariance adjustment procedure.

We propose a systematic procedure for this purpose. The idea is to iden-
tify uncorrelated (noncanonical) linear combinations of the rows of Y; which
minimize the variance of estimators of linear combinations of the components
of 7. The results are expressed in terms of eigenvalues and eigenvectors of
appropriate matrices which may be explicitly obtained. Section 2 is devoted
to the presentation of the covariance adjustment strategy; first we consider
the problem of estimating a single linear combination of the parameters and
then generalize the results to two or more of them. In Section 3 we illus-
trate the method with numerical examples from the statistical literature and
discuss possible extensions.

2 A strategy for inclusion of covariables from
the error space

Under model (1.3), the estimator of  adjusted by all the (p — m) potential
covariables is given by



1 = 70— SuSxnY.A'(AA)?
= (X'S'X)'X'S"LYA'(AAN), (2.1)

where
#o = (X'X)X'YA'(AA)
is the ordinary least squares estimator of T,
S=Y(Iy~ A'(AA)1A)Y’
and
Si;j = Yi(In — A'(AAYIA)Y; §ji=1,2

Rao (1967) and Grizzle and Allen (1969) show that 7y is unbiased and that
its unconditional covariance matrix is

N-g-1
N—-g-(p-m)-1

From (2.2) we conclude that the utility of covariance adjustment is essen-
tially affected by a balance between the loss in precision due to the removal
of variables from the error space (reflected in the term (V — g — 1)/(IV —
g — (p —m) — 1)) and the gain due to their inclusion as covariables in the
estimation space (which shows up in the term X;)).

Grizzle and Allen (1969) consider all subsets of the columns of Y2 as
potential covariables; their choice falls on the subset for which the generalized
variance of the regression parameters is minimized. Since, in general, the
potential candidates are correlated, the procedure might not be efficient;
error space degrees of freedom might be wasted without the corresponding
gain in precision because redundant information might be transferred from
the error to the estimation space. To avoid this problem, we propose to use
uncorrelated linear combinations of the rows of Y, as the potential candidates
for covariables.

In this direction first let by,..., b, 0 < k < p — m denote (p — m)-
dimensional vectors satisfying

Var(#1) = (AA)!'® 1. (2.2)

biExb; =0, i#J. (2.3)
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Also let B denote a matrix with by, £k =0,...p — m as its columns.

Let C'TU, where C and U are fixed constant matrices, denote the linear
combinations of interest, e.g., features of the growth curves under investiga-
tion that may be expressed in terms of linear combinations of the elements
of .

Suppose firstly that the interest centres on the estimation of a single linear
combination, i.e., with C = ¢, a m x 1 vector and U = u, a g x 1 vector.
Under the conditional reduction of model (1.1) to model (1.3) obtained by
using the columns of B'Y; as the set of covariables, the adjusted estimator
ofc'ruis

c'#gu (2.4)
where
#p = # — S;uB(B'S»B) 'B'Y,A'(AA)).

The unconditional variance of ¢/#gu is

w(AA) ludSpe L, if B#0

Var(c'#gu) = (2.5)
w(AA) ludEye if B=0

where
EB = Eu = EuB(B'EnB)-IB'Em.

Note that when B is a null matrix, the procedure generates the ordinary least
squares estimator (in such a case, k = 0). Note that the conditional model
(1.3) is invariant under any choice of the basis generating the conditioning
space, i.e., the conditional distribution of Y;|B’Y; is invariant relative to
the choice of the B matrix, for all B of rank (p — m).

We now wish to choose the number of covariables, 1 < k& < p — m and
the B matrix, B # 0 in such a way that (2.5) is minimized. For fixed k, this
corresponds to obtaining B such that

¢'S1;B(B'S;,B) 'B'S; ¢ (2.6)

is maximum; note that the procedure does not depend on u. Keeping the
restrictions (2.3) in mind, and using standard results in Matrix Algebra,(2.6)
reduces to



k kA7 "
Y ¢/Bypby(biBby) b B c Y c___El-‘:b,-b.Enc
i=1 i=1 biznbi
- i biEncc’Eub,- (2 7)
&~ bBiZab
Note that the matrix X,;cc'E, is symmetric, positive semidefinite with rank
1 and that the matrix X5, is positive definite. Then, recalling that c is fixed,
and using well known results in Matrix Algebra (see Johnson and Wichern
(1992), for example) it follows that the maximum of (2.6) is attained with
= 1 and by = p;, where p; is the eigenvector associated with the single
nonzero root of the determinantal equation

IEnCC'Elz - ,\222| =0. (28)

In fact, the solution is given by A = ¢'E12X5; Xy ¢ and the corresponding
eigenvector by p; = aX;) By ¢ for any nonzero real constant a. Under the
restrictions (2.3), it follows that & = (¢'E13¥2; £21¢)~Y/2. Since this mini-
mizes (2.5) for B # 0, we must compare the result with that obtained with
no covariance adjustment, i.e., for B = 0.

For practical applications, the parameters X;; must be replaced by ap-
propriate estimates which implies that we must rely on approximate results.
Thus, the required linear combination of the error space variables will be
given by

b] = (c'SuS;}Smc)‘l/zsgsnc. (29)

Without loss of generality, suppose now that C = I, and U = I, i.e,
that we are interested in estimating the original parameters. As opposed
to the previous case, where the interest was centred on the minimization of
the variance of the estimator of a single contrast, here, several criteria are
available. Among them, a sensible alternative is to choose B to minimize the
trace of the covariance matrix of #p, i.e.,

(Th-1 ) s igtrEs if B#0

trVar(#p) = (2.10)
(Zi= NLj)thu if B=0
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where N; dénotes the sample size associated to the jth treatment (j =
1,...g). For fixed k, this corresponds to obtaining B that maximizes

t‘l"EuB(B’EnB)-lB'zn = tT(B'EnB)_lB’anuB
LB 539 >
_ 2421 241204
= & b{Zyb;

i=1

(2.11)

Since the rank of X3, £;, is min(m,p — m), there are only min(m,p — m)
nonnull eigenvalues 6;, (i = 1,...,min(m,p — m)), satisfying 6; > 6; >
.-+ > Omingnp-m)- Then, the maximum of (2.11) is attained when b, =
Pi;-.-»Dx = Dx, Pi1,...,Pr being the first k eigenvectors of the matrix
X091 Xg2 in the metric of Bgy, i.e., associated with the determinantal equation

|}321‘212 T 0,222] =0. (212)

Repeating the procedure for k = 1,...,min(m,p — m) and comparing the
results to that corresponding to ¥ = 0 we may choose the set of linear
combinations that minimize trVar(#35).

A similar approach was employed in a different context by Rao (1964);
he maximizes an expression like (2.11) to obtain the principal components of
instrumental variables.

3 Examples

'To compare the procedure proposed in Section 2 with other variable selection
strategies for covariance adjustment, we consider two datasets previously
analyzed in the literature.

We first focus on the data presented in Grizzle and Allen (1969), con-
cerning ramus bone heights (in mm) for 20 boys at 8, 8.5, 9 and 9.5 years of
age. A plot of the average profiles suggests that a straight line should fit the
data. Thus, model (1.1) may be specified by letting A = 129, 7 = (7, 71)’
and the within sample units design matrix expressed in terms of orthogonal
polynomials, i.e.,

1/4 —3/20
1/4 —1/20

x= 154 1520 (D)
1/4  3/20
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Under this parametrization, the transformation (1.2) may be carried out by
taking Q, = X and

1/4 -1/20
-1/4 3/20
Q= —154 -3;20
1/4 1/20

Here the terms in the estimation space (spanned bysthe rows of Y;) are
transformed by the values of orthogonal polynomials of orders 0 and 1 (m =
2) and those in the error space (spanned by the rows of Y3) correspond to
the quadratic and cubic orthogonal polynomials (p — m = 2). The sample
correlations between the rows of Y; (labeled Intercept and Linear) and Y,
(labeled Quadratic and Cubic) are given by

Intercept Linear
Quadratic -0.0828 0.1517
Cubic -0.0629 -0.5912

and suggest that some gain may be attained by covariance adjustment. Let
us first consider the problem of estimating the slope 71. For comparison pur-
poses, we present the results obtained under different alternatives: no ad-
justment, adjustments based on the quadratic and cubic terms separately
or simultaneously and adjustment based on linear combinations of them ob-
tained via the strategy outlined in Section 2. The results are summarized
in Table 3.1. The entries denoted ¢’Sgc and Constant correspond to an
estimate of ¢/Egc and to N — g — 1/N — g — k — 1, respectively, in the ex-
pression for the variance of #; given in (2.5) with u = 1 and ¢ = (0,1)".
Additionally, we also illustrate that the introduction of the second linear
combination obtained under the same conditions mentioned above does not
contribute to the covariance adjustment process, since it does not change the
term ¢’Spc but increases theterm N-g—1/N —-g—k - 1.

The estimated variance of the covariance adjusted estimator of the pa-
rameter 7; is smaller when a single covariable, given by b{Y; with b; =
(—0.036,0.177)' is used. As indicated in Section 2, b, is given by (2.9) and
corresponds to the eigenvector associated to the single nonull eigenvalue of
Sx1¢c¢'S12S72. The reduction in the term ¢’Sgc relatively to the nonadjusted
estimator is given by the corresponding eigenvalue A = 0.576. Clearly, the
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Table 3.1: Covariance adjusted estimation of the ramus bone growth slope

Covariable(s) #i 20Var(#) c'Spc Constant
None 0.467  0.085 1.613  0.053
Quadratic 0.471 0.093 1.576  0.059
Cubic 0.463  0.062 1.049  0.059
Quadratic and Cubic 0.465 0.069 1.037 0.066
-0.036 Quad + 0.117 Cubic 0.465  0.061 1.037  0.059
-0.036 Quad + 0.117 Cubic
and

0.241 Quad + 0.031 Cubic  0.465 0.069 1.037  0.066

introduction of the second linear combination of the variables in the error
space (byY; with by = (0.241, 0.031)’') does not contribute to further reduce
the variance of the estimator. Other authors, like Rao (1965, 1966), Grizzle
and Allen (1969) or Fujikoshi and Rao (1991), working with the same data,
choose the cubic term as the covariable to reduce the variance under inves-
tigation. To a certain extent, this concurs with the optimal golution, which
places more weight on this term than on the quadratic one.

Now suppose that the interest lies both in the intercept 7o and the slope i
and that the objective is to minimize the trace of the covariance matrix of the
corresponding vector of estimators. Following the same strategy considered
above, we present the results in Table 3.2. Here, the entries denoted ¢rSp and
Const correspond to an estimate of tr¥g andto N—g—-1/N—g—-k —1,
respectively, in the expression for the trace of the covariance matrix of 7g
given in (2.10).

In this case, under a minimum trace criterion, covariance adjustment
procedures do not contribute to obtain better estimates of the parameters,
since the decrease in the term ¢rSp obtained by including either one or
two linear combinations of the error space variates as covariables does not
compensate the corresponding increase in the constant term. The decrease
corresponding to the introduction of the first linear combination is equal to
the first nonnull eigenvalue of Sz;5,38z), i.e., 1.598 and that corresponding
to the introduction of both linear combinations is equal to the sum of both
nonnull eigenvalues, i.e., 1.914 = 1.598 + 0.416.

The selected covariables in the second case differ from that considered



Table 3.2: Covariance adjusted estimation of the ramus bone growth intercept
and slope

Covariable(s) Fo f1  20trVar(¥s) trSs Const
None 50.075 0.467 6.350 120.644 0.053
Quadratic 50.065 0.471 7.047 119.792 0.059
Cubic 50.072 0.463 7.036 119.610 0.059

Quadratic and Cubic 50.050 0.465 7.851 118.631 0.066
0.169 Quad + 0.096 Cub 50.053 0.458 7.003 119.047 0.059
0.169 Quad + 0.096 Cub

and
0.177 Quad - 0.074 Cub  50.050 0.465 7.851 118.631 0.066

in the first case because the estimation of an additional parameter is also
considered. Also note that either the model including the quadratic and
cubic terms or the model including both linear combinations generate the
same estimates and the same estimated variances of the parameters because
of the invariance property mentioned in Section 2.

For the second example, we consider the data on coronary sinus potassium
measured in dogs also presented in Grizzle and Allen (1969). The design
involved four groups of dogs observed at seven different occasions. Here, a
third degree polynomial (m = 4) was adopted as an adequate description of
the mean response for each group. Therefore, the candidate covariables are
linear combinations of the (p — m = 3) vectors that span the error space,
i.e., those associated to the polynomials of degrees 4, 5 and 6. The results
for the selection of the best covariable to minimize the estimated variance of
a linear combination of the parameters designed to compare the coefficients
of the quadratic terms corresponding to groups 1 and 4 are summarized
in Table 3.3 displayed under the same format as Tables 3.1 and 3.2. The
linear combination of interest is actually a contrast defined as ¢ru with
c¢=(0,0,1,0) and u = (1,0,0,-1)".

In Table 3.4, we present similar results for the case where interest is
focused on the entire vector of 16 parameters and we choose to minimize the
trace of the corresponding estimated covariance matrix. We neither present
estimates of the individual parameters nor of their estimated variances, since



Table 3.3: Covariance adjusted estimation of the difference between the
quadratic coefficients of the first and fourth group for the coronary sinus
potassium curve

Covariable(s) Estimated c¢'Sgc  Const
contrast variance
None -0.0127 0.0030 0.0973 0.0313
4th degree (D4) -0.0390 0.0015 0.0448 0.0333
5th degree (D5) -0.0134 0.0032 0.0970 0.0333
6th degree (D6) -0.0112 0.0032 0.0967 0.0333
4th and 5th degree -0.0388 0.0016 0.0448 0.0356
4th and 6th degree -0.0381 0.0016 0.0447 0.0356
5th and 6th degree -0.0118 0.0034 0.0965 0.0356
4th, 5th and 6th degree -0.0379 0.0017 0.0447 0.0382

- 0.0454 D4 - 0.0016 D5 - 0.0017 D6  -0.0379 0.0015 0.0447 0.0333
- 0.0454 D4 - 0.0016 D5 - 0.0017 D6

and
-0.0031 D4 - 0.0695 DS + 0.0012 D6 -0.0379 0.0016 0.0447 0.0356
- 0.0454 D4 - 0.0016 D5 -0.0017 D6,
- 0.0031 D4 - 0.0695 D5 + 0.0012 D6

and
0.0044 D4 - 0.0032 D5 - 0.0314 D6 -0.0379 0.0017 0.0447 0.0382

our interest lies solely on the reduction of the sum of the latter.

In either case, the use of a single covariable conveniently constructed
from the vectors spanning the error space produces estimates with smaller
"yariances” than their unadjusted counterparts.

The proposed procedure for selecting covariables for covariance adjust-
ment yields optimal results and is easily implemented computationally avoid-
ing either the arbitrary choice implied by the strategy suggested by Grizzle
and Allen (1969) or the possibly sub-optimal solution obtained by trying all
possible subsets. The maximum number of covariables to be included in the
adjustment process is also determined. A possible extension useful for cases
where the parameter of interest is multidimensional, involves the optimiza-
tion of other criteria such as the generalized variance or the Euclidean norm
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of the covariance matrix of the corresponding estimators as suggested by Rao
(1964 and 1973).

Table 3.4: Covariance adjusted estimation of the coronary sinus potassium
cubic polynomial coefficients

Covariable(s) trVar(7g) trSp Const
None 0.3070  9.8227 0.0313
4th degree (D4) 0.3077  9.2305 0.0333
5th degree (D5) 0.3191  9.5726 0.0333
6th degree (D6) 0.3239  9.7184 0.0333
4th and 5th degree 0.3212  9.0132 0.0356
4th and 6th degree 0.3256  9.1390 0.0356
5th and 6th degree 0.3375  9.4728 0.0356
4th, 5th and 6th degree 0.3407 8.9246 0.0382

- 0.0381 D4 + 0.0266 D5 - 0.0085 D6 0.3038 9.1154 0.0333
- 0.0381 D4 + 0.0266 D5 - 0.0085 D6

and
0.0253 D4 + 0.0531 D5 - 0.0137 D6 0.3180  8.9246 0.0356
- 0.0381 D4 + 0.0266 D5 - 0.0085 D6,
0.0253 D4 + 0.0531 D5 - 0.0137 D6

and

- 0.0015 D4 + 0.0363 D5 + 0.0269 D6 0.3407  8.9246 0.0382
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