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The technique of laser cooling, whose basic idea was proposed in 1975 [1], provided the development of many
important areas like high-resolution spectroscopy [2], atomic clocks [3] and quantum gases confined in magnetic or
optical traps [4, 5]. Among the techniques applied to cooling neutral atoms is the optical molasses [6] that will be
explored in this work. Here we study the standard molasses and a new alternated molasses configuration, which
consists of turning on just one pair of counter-propagating laser beams per cycle, and alternating this pair between
the three spatial directions. We analyse the two techniques under the lens of the radiation force, by exploring a
semiclassical treatment, in order to obtain the minimum energy attained by each of them at the end of the cooling
process. We compare, then, these two cooling techniques, pointing out their advantages.
Keywords: Laser cooling, Optical molasses, Semiclassical treatment, Doppler limit

1. Introduction

The development of the laser cooling and trapping meth-
ods for neutral atoms were essential to the progress of
many fields. The reduction of the random thermal ve-
locities using radioactive forces allowed the study of
the atomic collisions and the determination of the atom
inner structure with great accuracy [7]. Associated to
the magneto-optical trap [8] (MOT), this technique also
formed the basis for the achievement of Bose-Einstein
condensation in atomic gases [9], opening the way to a
deeper understanding of the quantum-physical behaviour
of gases at ultra-low temperatures.

In this Letter we describe the standard and the alter-
nated optical molasses techniques, first introducing the
concept of radiation force, making use of a semiclassical
treatment to consider the interaction of electromagnetic
radiation with the atomic system. This force is at the
heart of the cooling technique, since it has the effect of
dissipating the energy of the atoms and, thus, cooling
them.
We determine the evolution of the atomic energy during
the cooling process, for the standard and alternated mo-
lasses configurations.

By looking at the evolution of energy and its minimum,
we can trace parallels between the two techniques and
their advantages/disadvantages concerning the experi-
mental process and the atomic densities reached by each
one of them.

A gas of bosonic atoms enters in the quantum-degenerate
regime and forms a Bose-Einstein condensate (BEC) if
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its spatial density ρ exceeds a critical value, which is
given approximately by the relation ρλ3

dB = 2.612, where
λdB = h/

√
2πmkBT is the thermal de Broglie wave-

length, T is the temperature, h and kB are the Planck’s
and Boltzmann’s constant, respectively, and m the mass
of an atom [10]. Low temperatures in combination with
high densities have to be reached to obtain quantum
degeneracy.

Since the early days of laser cooling, it has been asked
if the quantum degenerate regime could be reached using
this efficient method as the only cooling process. Until
now, however, laser cooling has to be followed by evapora-
tive cooling procedure [5] to produce quantum degeneracy
in cold atomic samples. The re-absorption of photons
scattered during laser cooling [1] induces an effective
repulsion and heating of the low energetic atoms. That
is a severe obstacle to the required density be reached.

As will be shown, the alternated molasses configura-
tion may be a better cooling technique in what concerns
the spatial density of the atomic sample.

2. Radiation force

There are basically two kinds of forces exerted on an
atomic system due to interaction with radiation: spon-
taneous and dipole forces [7, 11]. The spontaneous force
originates from the momentum transferred to the atom
during the photon absorption or emission processes. Each
photon transfers to the atom a momentum ~k in a time
interval related to the laser intensity, laser detuning and
atomic excited state lifetime. Otherwise, the dipole force
comes from the interaction of atomic electric dipole, that
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is, the induced electronic transition, with the gradient of
the radiation intensity.

In this paper we used a semiclassical approach to con-
sider the interaction of the radiation with the atomic
system [12,13], that is, we considered atoms, which will
be treated quantum mechanically, interacting with a clas-
sical electromagnetic field. This theory, which is based on
Ehrenfest’s theorem and optical Bloch equations, have
the advantage of giving an unified treatment to the radi-
ation force, including effects of spontaneous emission and
the induced dipole interaction, maintaining the simplicity
of the most elementary theories. The atom considered
in this theory has two energy levels (two-level quantum
system).

Considering the atom moving sufficiently slow (r(t)),
i.e., electric field amplitude (E0) and phase time deriva-
tive (θ̇(t) = ∇θ(r(t))·ṙ(t)) varying a small fraction during
atomic excitation lifetime (Γ−1), the force due to the
interaction with the radiation will be given by

F = −~ΓΩ2∇θ + ~(∆ + θ̇)∇Ω2

4(∆ + θ̇)2 + Γ2 + 2Ω2 , (1)

where Ω = µ E(r(t))/~ is the Rabi frequency, which
characterizes the coupling between the atom and the
radiation; ∆ = ω − ω0 is the detuning between laser
frequency ω and atomic resonant frequency ω0 = (E1 −
E2)/~, the latter proportional to the energy distance
between the two energy levels; Γ is the spontaneous
emission rate and θ corresponds to the phase of electro-
magnetic field. Considering a plane wave with wavevector
k and frequency ω, the electromagnetic field is given by
E(r(t)) = E0 cos(k · r− ωt). We have, then, a constant
Rabi-frequency Ω = µE0/~ and the field phase at the
atom position is θ(r) = −k · r, with θ̇(r) = −k · ṙ . For
this particular condition, the radiation force reduces to
the spontaneous force

F = ΓΩ2~k
4(∆− k · ṙ)2 + Γ2 + 2Ω2

= Γ
2 ~k s0(

2∆−k·ṙ
Γ
)2 + 1 + s0

, (2)

where s0 = 2Ω2

Γ2 = I
I0

is the saturation parameter at
resonance (∆ = 0), which is related to the laser intensity
I and limits the force magnitude. According to equation
(2), the spontaneous force saturates at the maximum
value Fsat = Γ

2 ~k , since the atom can not cycle between
excited to ground state faster than Γ/ 2. The first term
in the denominator of equation (2) is velocity dependent
and, as the atom slows down, the Doppler shift ωD =
−k · ṙ brings it out of the resonance condition, lowering
the force magnitude. In order to reach the deceleration
that changes the atomic speed by hundreds of m/s, it
is necessary to compensate the Doppler shift to keep
∆ + ωD << Γ, either modifying ωD or ∆ [11].

Consider now two laser beams in the same direction
(z direction - figure (1)), but in opposite sense (which we

will call senses + and −). Within a low laser intensity
regime, the resulting force in the atomic system will
be just the sum of the spontaneous force of each beam
Fz = F++F−. For small atomic velocities, we can expand
the sum to first order in υz

Fz = 8~k2 |∆|
Γ

s0
(1 + 4∆2/Γ2 + s0)2 υz, (3)

where υz is the atomic velocity in the laser direction and
Fx = Fy = 0. For ∆ < 0, that is, ω < ω0, there will
be a dissipative viscous force acting in the z direction,
reducing the atom velocity.

Writing this damping force as Fz = −αυz, we have
the damping coefficient

α = 8~k2 |∆|
Γ

s0
(1 + 4∆2/Γ2 + s0)2 . (4)

This force has a maximum value Fz = −~k2

2 υz that
occurs for the saturation parameter s0 = 2 and detuning
∆ = −Γ

2 . It is important to notice that equation (3)
is valid only for low laser intensity regime [6], since we
consider the saturation term to be simply I/I0, which
would be equivalent to assume that each wave saturates
the atom independently. For higher intensities, the laser
beams can not be considered independently anymore.
Effects like stimulated emission have to be considered [11],
besides the dipole force due to the standing waves [14].

3. Optical molasses

As showed in the previous section, the combination of
the opposite laser beams produces a viscous force that
dissipates the energy of the atom to the electromagnetic
field. To determine the total energy of the atomic system,
however, we should consider the quantized nature of
electromagnetic field to evaluate the contribution of the
spontaneous emission process [15], where an atom initially
in an excited state can return to the ground state even
in the absence of incident radiation (see figure (2)).

In spite of this random process does not change the
mean atomic momentum (〈∆P 〉 = 0), since the phase
and the direction of propagation of the radiation emitted
are random, it increases, however, the atomic kinetic
energy (

〈
(∆P )2〉 6= 0). This additional energy is given

Figure 1: Cooling process: two laser beams in opposite sense with
laser frequency ω smaller than the atomic resonant frequency
ω0.
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Figure 2: Two level system absorption and spontaneous emission,
the latter being a random process.

by the recoil rate

R = 2Γ
2

s0
(1 + 4∆2/Γ2 + s0)

〈
(∆P )2〉

2m , (5)

which corresponds to the scattering rate of the laser light
by the atom times its average kinetic energy. The latter
can be calculated considering the atomic diffusion in
the momentum space, with discrete walks of size ~k at
each absorption or emission process [16], resulting in the
following expression

R = Γ s0
(1 + 4∆2/Γ2 + s0)

(~k)2

2m η. (6)

In equation (6), η = ηabs + ηemis is the stochastic pa-
rameter that will be determined for different molasses
configurations (1D, 2D and 3D molasses).

We consider an isotropic emission process where ηemis =
1/3, that is, the emission will have an equal probability
for each direction, independently of the photon absorp-
tion direction. For the 1D molasses, the probability of
absorption will be ηabs = 1 in the direction of the laser
and zero at the other two directions, giving

R1D
i = Γ s0

(1 + 4∆2/Γ2 + s0)
4
3

(~k)2

2m , (7a)

R1D
j = Γ s0

(1 + 4∆2/Γ2 + s0)
1
3

(~k)2

2m , (7b)

where i represents the direction of the pair of laser beams
and j the other directions without the laser. Otherwise,
for 2D molasses, the probability of absorption will be
ηabs = 1/2 for each laser beam direction. Hence, for this
case

R2D
i = Γ s0

(1 + 4∆2/Γ2 + s0)
5
6

(~k)2

2m , (8a)

R2D
j = Γ s0

(1 + 4∆2/Γ2 + s0)
1
3

(~k)2

2m . (8b)

With the 3D molasses, the diffusion will be in three
dimensional momentum space, with the absorption prob-
ability ηabs = 1/3 for each direction, then

R3D
i = Γ s0

(1 + 4∆2/Γ2 + s0)
2
3

(~k)2

2m . (9)

The balance between the energy lost due to dissipative
cooling force and that acquired in the recoil process allow
us to construct the dynamic equation for the atomic
kinetic energy

dKN
i

dt
= υiFi +RNi = α

2Ki

m
+RNi , (10a)

dKN
j

dt
= RNj . (10b)

In Eqs. (10), the indices N classifies the 1D , 2D and
3D molasses configuration, for the direction with (i) and
without (j) laser illumination, which solutions will be
explored in the following.

Solving these equations for N = 1, i.e., for 1D molasses,
with α giving by equation (4) and R1D by equation (7),
we obtain

K1D
i (t) = e−t/τ (K0 − ξ) + ξ, (11a)

K1D
j (t) = K0 + 1

4βt, (11b)

where K0 is the initial kinetic energy in the directions
i and j. The parameter τ = m

2α represents the characteris-
tic time for the cooling process, β = Γ s0

(1+4∆2/Γ2+s0)
4
3

(~k)2

2m
is the rate that the kinetic energy increases due to the
spontaneous emission and ξ = τβ is the heating in the
characteristic time interval τ . The kinetic energy of the
atom in the 1D molasses configuration will be the sum
of these solutions

K1D(t) = 2K0 + ξ + e−t/τ (K0 − ξ) + 1
2βt, (12)

and it is straightforward to verify that it has a minimum
value at the time t1Dmin = τ ln [2(K0/ξ − 1)], with

K1D
min(t1Dmin) = 2K0 + 3

2ξ + 1
2βτ ln [2(K0/ξ − 1)] . (13)

Although the energy reaches a minimum value in the
direction i of the laser configuration, on the other hand,
as it can be seen from equation (11b), to the other two
directions, j, the energy increases linearly in time. Then,
for time intervals bigger than tmin, the system starts to
accumulate energy, since it is transferred to the directions
without laser illumination, where we do not have the
cooling process to control the recoil. This heating that
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occurs after tmin in the 1D molasses does not occur in
3D laser beam arrangement. For N = 3, with the force
given by equation (3) and the recoil term by equation
(9), the differential equation for the total energy can be
written as

dK3D

dt
= −1

τ
K3D + 3(3H3D

i ) = −1
τ
K3D + 9

2β. (14)

Equating the energy rate to zero we obtain a stationary
condition, where the energy is given by

Ks = 9
2ξ = 3

16
~Γ2(1 + 4∆2/Γ2 + s0)

|∆| . (15)

Solving equation (14), in terms of the Ks

K3D(t) = e−t/τ (K0 −Ks) +Ks. (16)

According to equation (15), the minimum energy value
is reached with a laser detuning of ∆ = −Γ/2. Then,
considering s0 << 1 in this same equation, we obtain
the Doppler cooling limit [7]

K3D
min = 3

4~Γ. (17)

4. Optical molasses with temporal
alternated beams

In this section we introduce our new cooling technique,
to be compared with the standard one, the alternated
molasses configuration. It has one pair of lasers at each
direction, which, however, will be alternately turned on
during a selected time interval. A natural choice is to
apply the characteristic time τ related to the cooling
process. In the following we calculate the atomic kinetic
energy evolution during the cooling cycles. Using the
solution for 1D molasses (equation (11)) we derive the
following sequence, starting with the laser pair in x

Kx(τ) = 1
e

(K0x − ξ) + ξ, (18a)

Ky(τ) = 1
e

(K0y − ξ) + ξ, (18b)

Kz(τ) = 1
4ξ +K0z. (18c)

Considering now the lasers at y, again turned on during
a time interval τ

Kx(2τ) = 1
4ξ +Kx(τ)

= 1
e

(K0x − ξ) + 5
4ξ, (19a)

Ky(2τ) = 1
e

(Ky(τ)− ξ) + ξ

= 1
e

(K0y −
3
4ξ) + ξ, (19b)

Kz(2τ) = 1
4ξ +Kz(τ)

= 1
2ξ +K0z. (19c)

With the pair along the z direction

Kx(3τ) = 3
2ξ + 1

e
(K0x − ξ), (20a)

Ky(3τ) = 5
4ξ + 1

e
(K0y −

3
4ξ), (20b)

Kz(3τ) = ξ + 1
e

(K0z −
1
2ξ). (20c)

Finally, after finished one cycle, we obtain

K(3τ) = 15
4 ξ + 1

e
(K0 −

9
4ξ). (21)

By using recurrence relations for the initial kinetic energy,
after the second cycle we will have

K(6τ) = 15
4 ξ−

9
4ξ

1
e

+K(3τ)
e

= 15
4 ξ+ 3

2ξ
1
e
− 9

4ξ
1
e2 +K0

e2 .

(22)
With the same procedure

K(9τ) = 15
4 ξ+ 3

2ξ
1
e

+ 3
2ξ

1
e2 + K0

e2 −
9
4ξ

1
e3 + K0

e3 . (23)

This initial sequence allows us to generalize the energy
after n cycles

K(3nτ) = 15
4 ξ + 3

2ξ
n−1∑

i=1

1
ei
− 9

4ξ
1
en

+ K0
en
. (24)

After many cycles, i.e., for large values of n, the second
term of equation (24) converges to

∑∞
i=1

1
ei ≈ 0, 581876

(the last two terms can be neglected). Then, the energy
reaches a minimum value close to the expected limit
given by equation (15)

K(3nτ) = 4, 62296ξ ≈ 9
2ξ. (25)
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5. Numerical Simulation

In this section we compare the atomic kinetic energy
evolution resulted from the previous studied molasses
configurations. For the simulation, we chose the atomic
strontium species, since it has many advantages in the
laser cooling context [17]. We selected the isotope 84Sr,
which has an interest transition linewidth in the KHz
region (Γ/2π = 7.4 KHz), allowing the achievement of
temperatures in the nanokelvin regime.

Figure 3 shows the atomic energy evolution in the
standard 3D molasses and the alternated optical molasses
for the atomic vapour initial at T0 = 0.001 K. The
laser parameters were fixed to the values: ∆ = −Γ/2
(minimum energy condition), λ = 689 nm and s0 = 2
(maximum atomic deceleration).

As expected by our calculations, in both cases we
have the same energy limit which correspondents to a
temperature of 355 nK.

6. Standard Optical Molasses versus
Alternated Optical Molasses

It was shown above that the two techniques reach the
same energy limit. While the standard molasses may
be experimentally easier to perform when compared to
the alternated molasses, since it does not require the
alternation of the laser beams, our new configuration can
possibly reach a higher phase space density.

The atomic density reached in magneto-optical traps
has an upper bond value due to the repulsive forces be-
tween the atoms caused by the reabsorption of scattered
photons, as stated before.

For a collection of atoms in a optical trap with laser

Figure 3: Comparison between the standard 3D and the al-
ternated molasses, showing the energy as a function of time
for strontium atoms (energy rescaled by a factor Emin = 9

2ξ),
leading to a temperature of 355nK.

field intensity I, this force obeys the relation [18]

∇ · FR = 6σRσLIρ/c, (26)

where c is the speed of light, σR and σL are the direct
and scattered laser light, respectively, and ρ is the atomic
density.

Due to the intensity gradients, the confining lasers
also produce an attenuation force FA in the trapped
atoms [19], which compress the atomic cloud:

∇ · FA = −6σ2
LIρ/c. (27)

These two forces FA and FR must balance the trapping
force −k.r due to the electromagnetic field in the limit
that the temperature can be neglect, which implies a
maximum achievable density

ρmax = ck

2σL(σR − σL)I . (28)

Thus, the force generated by the re-absorption of light
gives an upper limit to the atomic density that is inversely
proportional to the field intensity. Since in the alternated
molasses this intensity is three times smaller than in
the standard 3D molasses, the maximum density will be
higher.

7. Conclusion

In this work we studied and compared two configurations
of optical molasses. Starting with the semiclassical treat-
ment of the laser-cooling concept, that is, explaining how
neutral atoms interact with the radiation force, we deter-
mined and studied the dynamic equation that governs
the atomic energy in a molasses configuration. This treat-
ment allows us to shown that the atomic sample reaches
the same minimum temperature expected for the stan-
dard and alternated molasses, without relevant increase
in the cooling time. Remarkably, the alternated config-
uration has the advantage of reducing the power beam
fluctuation during the cooling process. This factor is a
problematic issue in the standard molasses configuration,
that uses three retro-reflected laser beams. Otherwise,
the alternated molasses can be produced with just one
beam deflected between the three spatial directions, using
acoustic-optic modulators with appropriate time interval
(≈ 70 kHz) [20]. That reduces considerable this source of
fluctuation between laser beams.

The main difference of both configurations, however,
can be related to the atomic density reached in the
magneto-optical traps, which is constraint due to the re-
pulsive forces between the atoms caused by re-absorption
of the scattered photons. As a practical matter, the power
of the re-scattered light sets a limit to the number of
atoms which can be confined in a magneto-optical trap,
since the magnitude of this repulsive force depends on the
laser field intensity I. The alternated molasses will dimin-
ish the total light intensity incident on the atom sample
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if compared with the usual 3D molasses, favouring higher
atomic density values in the trap. That is an important
improvement of this particular method in the direction
of bring the atomic sample to the quantum degenerate
regime using the laser cooling technique alone.
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de Doctorat, Université de Paris, Paris, 1986.
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